

Edinburgh Research Explorer

A Complete Inference System for a Class of Regular Behaviours

Citation for published version:
Milner, R 1984, 'A Complete Inference System for a Class of Regular Behaviours' Journal of Computer and
System Sciences, vol. 28, no. 3, pp. 439-466. DOI: 10.1016/0022-0000(84)90023-0

Digital Object Identifier (DOI):
10.1016/0022-0000(84)90023-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Computer and System Sciences

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/0022-0000(84)90023-0
https://www.research.ed.ac.uk/portal/en/publications/a-complete-inference-system-for-a-class-of-regular-behaviours(d9f20085-a35d-48d5-bd8e-8bfafc0b4c40).html

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28,439466 (1984)

A Complete Inference System
for a Class of Regular Behaviours

ROBIN MILNER

Department of Computer Science, University of Edinburgh,
Edinburgh EH9 3JZ, Scotland

Received June 16, 1982; revised November 26, 1982

1. INTRODUCTION

The motivation of this paper is that a certain kind of tree, possibly infinite, is a
useful model of computation. The trees we consider have arcs labelled by symbols
taken from a set ACT= (a, b,...}, which we call actions. Examples are:

Tl T2 T3 T4

Let us think of such a tree (in which we take no account of the order among the sons
of a node) as modelling the behaviour of a machine accepting symbols from, or
submitting to observations by, its environment. In tree Tl only the symbol a may be
accepted at the start (or, only the observation a may be made), after which b or c
may be accepted. The tree is determinate, since no node has two outgoing arcs with
the same label. In T2 the same is true at the start, but the tree (or the machine
modelled) is not determinate. Factors beyond the observer’s control or knowledge will
determine whether it is only b, or only c, which may be observed after the observation
of a. Borrowing a phrase from C. A. Petri, we may think of information entering the
observed system at different points in time-specifically, at each nondeterminate node
of the tree. This information may be, for example, the influence of ambient tem-
perature.

Alternatively, tree T2 may be a model suitable for an observer with imperfect
vision, in that he cannot see a difference between actions a, and a,, but takes them
both to be a. For a better observer, the determinate tree T3 may be a better model.
But even the first observer can discover that the machine modelled by Tl is different

439
0022-0000/84 $3.00

Copyright 0 1984 by Academic Press, Inc.

57 1/28/3~7 All rights of reproductmn in any form reserved.

440 ROBIN MILNER

from that modelled by T2, since the former will always accept b after accepting a
while the latter will sometimes refuse to do so.

This difference is represented in the model by a difference of trees; it is not
represented when a machine is modelled by the set of (finite or infinite) sequences of
symbols which it accepts, since these sets are identical for Tl and T2.

Sometimes, however, an observer may not be able to distinguish an indeterminate
machine from a determinate one. The machines modelled by T4 and Tl may differ,
but the information used by T4 to choose which branch to follow from its root is
never used to effect a difference in future behaviour. Thus we argue that an observer
will never distinguish these machines, and that they should be modelled by the same
abstract object.

Since trees T4 and Tl differ (even when sons are not ordered), it follows that trees
as they stand are not a suitable model. A possible refinement is to restrict attention to
trees in which no node has two identical branches, where a branch is an action
(arc label) paired with a son tree. This model would work perfectly for finite trees,
but will not do in general; there are different trees of this kind which, from our view
of behaviour, should not be distinguished (see Example 2 in Section 3 below).

The solution, however, is quite easy and mathematically tractable. We take as
modelling objects not trees but certain equivalence classes of trees. (We do this
implicitly already, when we say that order among sons is ignored.) The equivalence
we use is that of bisimulation, a notion developed by Park [8] as a very fruitful
improvement upon the observation equivalence studied by Hennessy and the author
[4,7]. For trees it is very straightforward. Let us write n -% n’ when node n of a tree
leads to node n’ by an arc labelled a. Then a bisimulation of trees Tl and T2 is a
relation R between their node sets which contains the pair of roots, and such that if
(n,, n2) E R then

(i) whenever n, -5 n; in Tl, then for some n; in T2 n2 --% n; and (ni, n;) E R;

(ii) whenever n2 -% n; in T2, then for some n; in Tl n, -5 n; and (n;, n;) E R.

The illustrated trees Tl and T4 have a bisimulation, indicated by the broken lines in
the diagram below:

c-
_ -

----_

We defer the formal details, though even now it should be rather obvious that we
obtain an equivalence relation over trees in this way.

ACOMPLETE INFERENCE SYSTEM 441

Now, recognising the need for taking the quotient of the set of trees by equivalence
under bisimulation, we can widen the original set to include arbitrary transition
graphs, since bisimulation can be just as well defined for them. Each resulting
equivalence class is called the behauiour of its members. Part of the purpose of this
paper is to place behaviours, so defined, on an equal footing with notions of
behaviour (e.g., the languages of formal language theory) which are defined more
directly by set-theoretic means.

A central result of the paper is a complete inference system for finitely presented
behaviours, closely analogous to that of Salomaa [9] for regular sets of words. We
begin in Section 2 with an algebra of transition graphs. Section 3 introduces the
notion of bisimulation, and in Section 4 many properties of behaviours are derived
with a view to establishing the soundness of our inference system. Section 5 sets up
the inference system, and is mainly devoted to a proof of its completeness. In
Section 6 we compare it closely with Salomaa’s system; the analogy is so close that
the significant differences emerge very clearly.

There are many relationships between this and other work, apart from those
already mentioned. Many kinds of simulation exist (see Jensen [6] for example);
frequently they are not symmetric, and bisimulation is a new notion as far as I am
aware, though a special case of it is implicitly used in the standard procedure for
reducing finite-state automata which can be found in any relevant textbook. Courcelle
[2] has studied a class of infinite trees in depth; superficially at least the present
definitions and approach are different and differently motivated, but more work is
needed to establish the connection. The present material can probably, by a different
treatment of variables, be fitted in to the framework of Elgot’s [3] iterative algebraic
theories. Finally, Two models for communicating processes provide an interesting
contrast; the set-theoretic model of Hoare et al. [S] and that based upon metric
spaces due to de Bakker and Zucker [I]. The present work arose from wishing to
clarify my own approach [71 to the same topic by treating a special case, the obser-
vation of a single process, in depth.

2. CHARTS

We will introduce a kind of transition graph, called a chart, which is in one sense a
generalisation of the familiar notion of a nondeterministic finite-state acceptor. In the
latter, a node or state may be either accepting or nonaccepting. By contrast, we shall
allow a node to be labelled by zero or more variables; a variable X indicates nodes at
which the “behaviour” of the chart may be extended by substitution of another chart
for X, in a way which will be made precise.

The significant departure from standard automata theory is in our treatment of the
semantics of charts. We do not choose a language (set of words) as the meaning of a
chart; instead, its meaning is taken to be a congruence class of charts under
bisimdation (to be defined). Indeed, each such class will contain a tree-like
chart-intuitively the unfolding of other charts in the class-and the traditional

442 ROBIN MILNER

language may be obtained as a certain subset of finite paths of this tree. But many
charts equivalent in the standard sense are not congruent in our sense; the motivation
for this more refined semantics has been discussed above.

In what follows, no sets are finite unless explicitly declared to be so.
We presuppose two fixed sets:

Act = {a, a, ,..., b, b, ,... }, the actions

Var = {X, X, ,..., Y, Y, ,... }, the variables.

DEFINITION. A chart C is a quadruple

Q is a nonempty set

SEQ
DcQxActXQ

EcQxVar

C isflnite iff Q, D and E are finite.

We shall frequently write

D(q) = {(a, 4’) I (4, a, 4’) E

E(q)= {Xl (q,QEDL

(Q, s, D, E) where:

(the nodes)

(the start node)

(the derivations)

(the extensions).

Dl, the derivations of q

the extensions of q.

Moreover, when C is understood we shall write

4”-‘4’ for (q,a,q’)ED

qDX for (q, X) E D.

In the former, we are treating D as the union of an indexed family {a 1 a E Act} of
binary relations over Q.

As is common practice, we shall not distinguish between charts (Q,, s,, D,, E,)
and (Q,, s2, D,, E2) which are isomorphic, i.e., for which there is a bijection 4:
Q, + Q, such that s2 = W,), (9, a, s’) E D, iff (4(q), a, q&f)) E & and (9, X> E E,
iff @(q)y X> E J%.

We now turn to a simple algebra of charts; our algebraic operations will be seen
later to respect the property of bisimulation, which justifies our use of the word
congruence.

(1) Variable. For X E Var, the chart (Is}, s, 0, {(s, X)}) is written X.

\

0 * X

ACOMPLETEINFERENCE SYSTEM 443

(2) Null. The null chart is 0 = ((s}, s, 0,0).

(3) Prefix. If C = (Q, s, D, E) and II E Act, then

a(C) = (Q u Is’}, s’, D U {(s’, a, s)}, E)

where s’ & Q,

(4) Sum. Let Ci = (Q,, si, Di, Ei), i E (1, 2}, where Q, and Q, are disjoint. The
sum C = C, + C, is formed by adding a new node s which has the derivations and
extensions of both s, and s2. Formally, C = (Q, U Q, U (s}, S, D, U D, U D’, El U
E, U E’), where

D’ = IsI x (D,(s,)UW,))

E’ = (~1 x (E,(s,)UE,(s,)).

EXAMPLE.

(5) Substitution. Let c = (Cl,..., C,) and C be disjoint charts, and x =
(X ,,..., X,) distinct variables. The substitution C’ = C[c/x] is formed by replacing
each extension Xi in C by the derivations and extensions of the start node si in Ci.

444

Formally,

ROBIN MILNER

C’ = (Q V UQi, S, D’ V UDi 2 E’ V UEi)

where for q E Qi, D’(q) = E’(q) = 0, while for q E Q

D’(q) = D(q) ” u{Di(Si) I Xi E E(q))

E’(q) = E(q) -XU U{Ei(Si) 1 Xi E E(q)}*

EXAMPLE.

C III 0
s

Y ‘\

0 q XIY

c1 El 0 5 z . .
a “0 q

c [Cl

It may be helpful to remark here that the start-node of C,, rendered inaccessible in
this construction, causes no problem; the effect of bisimulation will be to ignore its
presence.

(6) R ecursion. If C = (Q, s, D, E), then the recursion ,uXC is formed by replacing
each extension X in C by the derivations and extensions (except X) of s in C.
Formally ,uXC = (Q, s, D + , E +), where

D+(q) = I D(q) u D(s) if XEE(q)

D(q) otherwise

E+(q) = I E(q) U E(s) - VI if XEE(q)

E(q) otherwise.

A COMPLETE INFERENCE SYSTEM 445

EXAMPLE.

C

*0 .
s XY .

\,

b0 x z

uxc

Note that the presence or absence of X as an extension of s makes no difference, and
that X is not an extension at all inpXC.

To summarise:
Null 0 and Variable X are nullary chart operations;
Prefix a(-) and ,uX(-) are unary operations;
Sum + is a binary operation;
Substitution (-)[-/z] is an (n + 1)-ary operation for each n-vector x of distinct

variables.

An n-ary operation for mutual recursion, ,D$C?, can also be defined, where d is an n-
vector of distinct variables and c’ an n-vector of charts; intuitively, it stands for the
ith component of a solution of the equations d = c. Indeed, infinitary versions of
recursion, substitution and sum are easily defined, and have some significance for
broader work. Here we shall be mainly concerned with finitely presentable charts, for
which indeed unary recursion has sufficient expressive power.

We should notice that a finite chart in which at most one variable occurs is not
quite the standard nondeterministic finite-state acceptor; we have not included empty
transitions (which may occur unobserved, i.e., which accept no input symbol). More
is said on this point at the end of Section 5.

3. BISIMULATION AND CONGRUENCE

Following Park [8], and by analogy with the strong congruence of Mimer [7], we
approach the notion of behaviour of a chart as follows.

446 ROBIN MILNER

DEFINITION. Let Ci = (Q,, si, Di, Ei) be charts, i = 1, 2. Then R E Q, X Q, is a
bisimulation of C, and C, if

(1) @,,%)ER,
(2) (s,, q2) E R implies

(i) For every q1 (1. q{ in D,, there exists q2 A q; in D, for which
(q;,q;)ER;

(ii) For every q2 a, q; in D,, there exists q, -% qi in D, for which
(s;,q;)ER;

(iii) Ei(q,) = E&).
Loosely speaking, condition (2) says that q1 and q2 must have equal derivations (up
to R) and equal extensions. Also, if we denote by X(R) the set of pairs (q,, q2)
satisfying clauses (i)-(iii), then condition (2) may be rewritten simply

R (=X(R).

This formulation allows a clean mathematical treatment, arising from the fact that the
function F over relations is monotone (for inclusion of relations) and preserves
many simple properties of relations, such as reflexivity, symmetry and transitivity.
But for our present purposes we can work directly from our definition as it stands.

DEFINITION. Charts C, and C, are congruent if they possess a bisimulation; we
write C, - C,.

PROPOSITION 3.1. Congruence of charts is an equivalence relation.

Proof. Immediate from the definition. 1

Some simple examples illustrate the notion.

(1) Every chart may be unfolded, from the start-node onwards, into a congruent
tree-like chart. In the diagram, the bisimulation is indicated by broken lines:

- - _ _

A COMPLETE INFERENCE SYSTEM 441

(2) Even distinct tree-like charts may be congruent; the two below are trivially
congruent to a single-node chart.

\

a I
0

a I
0

a

i

Our excuse for confronting the reader with this “triviality” is that it shows why it
would not be enough to take tree-charts, under any reasonably simple definition, as
our semantic objects; we should still require congruence classes of them.

(3) Two finite charts, equivalent as acceptors in the standard sense of automata
theory but not congruent, are shown below (think of nodes labelled X as accept
states):

We shall often write c” - C’ when c = C, ,..., C, and C’ = C; ,..., C:, and Ci - Cl
(i Q n). We now show that our chart operations respect congruence (justifying the
term).

448 ROBIN MILNER

PROPOSITION 3.2. Let C - C’, C, - Cl ,..., C, N CA. Then

(1) UC _ UC’,

(2) c, + c, - c; + c;,

(3) C[@F] - cp/Ay,

(4) pXC - pXC’.

Proof. In each case a bisimulation can be constructed from bisimulations R for C
and C’, and Ri for Ci and Cl. The details of proof are completely routine from the
definitions of the operations. In (2), for example, ifs and s’ are the new nodes added
in the respective sums, then R 1 U R 2 U {(s, s’)} is the required bisimulation; in (3) it
is simply R V R, V a.. V R,.

I

Before turning to the algebra of congruence classes, we need to establish the
important property that recursion is (up to congruence) a fixed-point for substitution.

PROPOSITION 3.3 (FIXED-POINT).

,u_Xc - C[&%T/X].

Proof: Let C = (Q, s, D, E), so that pXC = (Q, s, D + , E ’), where D ‘, Et are as
given in Section 2. Let C’ = (Q’, s’, D’, E’) be isomorphic to C, under the bijection
4: q F-+ q’, with Q and Q’ disjoint, and let C” = C’[pXC/X]. We have to show

pxc - C”.

Now C” = (Q’ U Q, s’, D”, E”), where from definitions we can deduce

(i) If q’ E Q’ then

D”(q’) =
1

D’W UD(s) if X E E’(q’)

D’(q’) otherwise

E”(q’) =
I

E’W uE(s) - IX1 if X E E’(q’)

E’(q’) otherwise;

(ii) If q E: Q then

D”(q) = D + (q) =] ;;; ” D;;erwif x E E(q)

E”(q) =E+(q) =
I

E(q) u E(s) - VI if XEE(q)
Etqj otherwise.

Now it is easy to check that 9 = Id, U 4 is a bisimulation of +XC and C”. Certainly
(s, s’) E R; the remaining conditions are easily established from (i) and (ii) bearing

A COMPLETE INFERENCE SYSTEM 449

in mind that, since C and C’ are isomorphic, E’(q’) = E(q) and D’(q’) = {(a, p’) (

(a, P> E D(q)}. I

PROPOSITION 3.4.

pX(C + X) - pxc.

Proof. If C = (Q, s, D, E), then let s’ be the start node of C +X, hence also of
,uX(C +X). It is readily seen that Id, U {(s’, s)} is a bisimilation of ,uX(C +X)
and,uXC. I

4. BEHAVIOURS AND THEIR PROPERTIES

DEFINITION. A behauiour is a congruence class of charts.

We will denote the set of behaviours by 3. Having already established that our
chart operations are well defined on 2, we also define derivations and extensions of
behaviours.

DEFINITION. The relations a G 5? x Act x 2 and 8 E 58 X Var are given as
follows:

(1) (B, a, B’) E g (written B -% B’) iff, for some C = (Q, s, D, E) in B, there
exists s’ in Q such that (s, a, s’) E D and (Q, s’, D, E) E B’;

(2) (B, X) E 8 (written B D X) iff for some C = (Q, s, D, E) in B, (s, X) E E.

It is readily established that, in each case, if some C in B has the stated property,
then every C in B has it.

Thus each behaviour B may be regarded as a chart (9, B, g, 8); in this
“universal” chart a behaviour is identified with a choice of start-node, and we may
therefore define congruence of behaviours:

But our universal chart is suitably abstract; in fact, congruent behaviours are equal!

PROPOSITION 4.1. Zf B, -B, then B, = B,.

Proof: Let 5%’ G 9 x 9 be a bisimulation containing (B,, B2). Now choose C, =
(Ql,s,,D,,E,)EB, and C2=(Q2,~2,D2,E2)EBz. We require C,-C,; for this
purpose we show that R E Q, x Q2, defined by

is a bisimulation of C, and C,. Certainly (si, sJ E R, by taking A,,A, = B,, B,.
Now suppose (q,, q2) E R.

450 ROBIN MILNER

(i) Let q, Aq; in D,. We require q; such that q2L q? in D, and
(q;,q;)ER. But A,--%A;, where (Q,,q;,D,,E,)EA;; hence A,*Ai, with
(A;,AI:)ER; then also q2-%q; in D,, with (Q,,qi,D,,E,)EA;, and finally
(4; 7 45) E R.

(ii) Letq,DXinE,.ThenA,DX,soA,DX,soq,DXinE,.

It follows, by symmetric argument, that R is a bisimulation, and from C, - C, it
follows that B, = B,. 1

Remark. We shall use this proposition to establish equational properties of
behaviours.

To reason directly about behaviours, we need to relate the derivatives and
extensions of the result of an operation to those of the operands. This is expressed in
the following proposition, which we state without proof.

PROPOSITION 4.2 (BEHAVIOUR DERIVATIONS AND EXTENSIONS).

(1) g(o) = 0, a(o) = 0.

(2) g(X) = 0, 8’(X) = {X).

(3) g(aB) = {(a, B)}, Z”(aB> = 0.

(4) g(B, + BJ = g(B,) Ug(B,), g(B, + B2) = g(B,) U g(B,).

(5) ~(B[~/~])={(a,B’[~/~])((a,B’)E~(B)}UU{~(Ai)IXiE~(B)),
B(B [~/~I) = B(B) - ~ U V{ ~(A i) 1 Xi E B(B)}.

(6) Zfg(B,) = g(B,) and B(B,) = g(B,) then B, = B,.

We may now begin to establish equational properties from which will follow the
soundness of the inference system to be presented in the following section.

PROPOSITION 4.3 (SUM).

(1) A +B=B+A.

(2) A + (B + C) = (A + B) + C.

(3) A +A=A.

(4) A+O=A.

Proof. Directly from Proposition 4.2(l), (4), (6). 1

The following properties are crucial for inference.

PROPOSITION 4.4 (RECURSION).

(1) pXB = B[pXB/X].

(2) pX(B + X) = pXB.

(3) If A = B[A/X] and B d X then A = ,uXB.

ACOMPLETE INFERENCE SYSTEM 451

ProoJ (1) From Proposition 3.3.

(2) From Proposition 3.4.

(3) By (l), it will be enough to show that if A 1 = B[A ,/X1 and A, = B [AZ/X]
then A, = A,.

Let 9 = ((C[A,/X], C[AJX]) / C E .9}. We wish to show that 9
bisimilation of the behaviours A, and A,. Clearly (A 1, A,) E 9 (take C = B),
remains to prove that 5%’ 5X(.9).

For arbitrary C, let C[A JX] --% D, . Then from Proposition 4!2(5) either

is a
and it

(i) CA C’ and D, = C’[A,/X]; but then also C[A,/X] -5 D, = C’[A,/X],
and (D,, DJ E 9, or

B4(z C~XandA,+D,;thenB[A,/X]*D,,whence(sincenOtBDX)
D, =B’[A,/X]; A, =B[A,/X] AD, = B’[A,/X]

(D,, 0,; E czdfurther, C[A,/X] L i:ko since C D X.
and

Now let C[A,/X] D Y. It follows by a similar (easier) argument that C[A,/X] D Y.
Hence, by symmetric argument, 9 is a bisimulation, and the result follows, by

Proposition 4.1. I

It is convenient to define a few simple notions before the last proposition of this
section, which presents properties of substitution.

DEFINITION. A computation of a behaviour B, is either of form

B,ZB,S . . . zB,=O, n > 0 (afinite computation)

or of form

@+B,~ . . . ?+B, 9 .,. (an infinite computation)

Then each Bi (i 2 0) is a derivative, and each Bi (i > 1) a proper derivative, of B,.

DEFINITION. X is live in B if B’ D X for some derivative B’ of B; otherwise X is
dead in B.

The following, whose simple proof we omit, is sometimes useful.

PROPOSITION 4.5. X is live in B iff every chart in B has a node with extension X.

Finally, we give the properties of substitution.

PROPOSITION 4.6.

(1) o@/Z; =o.

452 ROBIN MILNER

(3) (uB)[X/X] = @[T/z]).

(4) (B, + B,)[J/z] = B, [J/X] + B,[X/X].
(5) IfZ is dead in pYB thert pYB =pZ(B[Z/Y]).
(6) rf Y is dead in A” and not in .f then (pYB)[l/z] = pY(B [J/f]).

Proof. In each case, the corresponding congruences for charts may be shown by
simple bisimulations of charts. Alternatively, Proposition 4.2 may be used, at least for
(l)-(4). For (5), we may also use bisimulation of behaviours, as follows. Let A 1 and
A, be the two sides of the equation. Then A I = B [A i/Y] and A, = B[Z/Y] [A JZ].
The relation {(C[A,/Y], C[Z/Y][AJZ]) 1 C E S} may then be shown, using
Proposition 4.2(5), to be a bisimulation of A, and A,. 1

Having now listed many properties of behaviours, we may ask which are the
important ones. It turns out that this question may be answered firmly if we are only
interested in finitely expressible behaviours, i.e., those for which we can find an
expression in terms of our operations. In fact, the next section provides a complete
inference system for such behaviours.

5. EXPRESSIONS AND INFERENCE

The expressions E of our inference system are those which may be built with the
symbols we have been using for behaviour operations, excluding substitution, and
allowing parentheses wherever necessary or convenient. Thus, using conventional
notation for syntax definition,

E ::= 0 1x1 uE JE + El p.XE (X E Var, a E Act).

Though we now need to discuss syntax as well as what it stands for, we shall not find
it necessary to make explicit the “semantic function” which takes an expression to its
meaning (a behaviour); the context will make it clear whether an expression or its
meaning is intended, together with the convention that “E” is used for identity of
expressions and “=” for equality of meaning. Also, we shall use E, F, G for
expressions, and A, B, C for behaviours (which may not always be expressible).

DEFINITION. B is regular if it has a finite chart.

Note that this definition agrees with that normally given for trees (a tree is regular if
it has finitely many distinct subtrees), as it is easily seen that B is regular iff it has
finitely many distinct derivatives and employs only a finite part of Act and Var.

DEFINITION. B is expressible if it is the meaning of some expression.

PROPOSITION 5.1, If B is expressible then it is regular.

Proof: By induction on expressions. I

The converse will follow as a corollary of Theorem 5.7.

A COMPLETE INFERENCE SYSTEM 453

DEFINITION. X is free in expression E if E contains an occurrence of X not
contained in any subexpressionpXF. X is guarded in expression E if every free
occurrence of X in E is contained in a subexpression aF.

EXAMPLES. X is guarded in ax, pXX and Y + 0, but not in X, aX + X or
,uY(aY + X).

Our next task is to relate these syntactic concepts to semantic ones. Fortunately, it is
very simple.

PROPOSITION 5.2. X is guarded in E iff E 6 X.

Note. In this sentence, the first E stands for an expression, the second E for its
meaning.

Proof: By induction on E. We only need consider briefly the case yYE. If X is
guarded in ,uYE, then either X = Y, and certainly ,uXE 6 X (by definition of PX on
charts), or X f Y and X is guarded in E, whence by induction E b X, and again it

follows that pXE & X. If X is unguarded in ,uYE then X $ Y and X is unguarded in
E, so E D X, whence ,uYE = E[pYE/Y] D X by Proposition 4.2(5). 1

PROPOSITION 5.3. X is free in E iff X is live in E.

ProoJ: By induction on E. Consider only the case ,uYE. For clarity, let E denote
behaviour B. If X is free in ,uYE then X f Y and X is free in E, so X is live in B, and
B’ D X for some derivative B’ of B. But then pYB = B[,uYB/Y] has a derivative
B’[pYB/Y] (by iterative use of Proposition 4.2(5)) DX; hence X is live in ,uYE.

If X is not free in pYE, then either X = Y, and then pYB has a chart with no
extension X, so X is dead in pYE by Proposition 4.5, or X f Y and X is not free in E,
so not live in B, and again (with the help of Proposition 4.5) ,uYB has a chart with no
extension X, so X is dead in ,uYE. I

To formulate our axiom system we need-as in the lambda calculus-a.detinition
of syntactic substitution. F{_!?/g} stands for the simultaneous substitution of
expressions E for variables x in expression F. -r-/z} is thus an operation on
expressions, while -[-/f] operates on behaviours.

DEFINITION. F{l?/f} is defined by induction on F as follows:

O{E/Z} E 0

Y{E/Z) E Y if. Y@GX

_Ei if Y=Xi

454 ROBIN MILNER

uF{QZ} E a(F{Z/Z})

(F + G)(&f} = F{&f) -t G{J??/~}

(/lYF){J?/X} =/lY(F{QX}) if Y is not in X nor free in B;

= jLZ(F{Z/Y} {E/2}) otherwise, for some Z not in d nor free

in ,uYF or _??.

The following essential proposition, relating syntactic and semantic substitution, can
now be proved.

PROPOSITION 5.4. F{I?/_f} = F[g/2].

Proof. By induction on the number of operation symbols in F. We consider only
the case ,uYF, in the case where Y is in 2 or free in ,?.

On the one hand, F{I?/_f} -pZ(F{Z/Y}{l?/f}), with Z not in X and not free in
,uYF or l?. But, since F(Z/Y} has exactly the same number of operation symbols as F,
by induction F{Z/Y}{l?/if} = F{Z/Y}[E/2] (semantic equality) and also F{Z/Y} =
F[Z/Y]; hence (by congruence) F(I?/z} =pZ(F[Z/Y] [E/f]).

On the other hand, using Proposition 5.3 (free = live) and Proposition 4.6(5),
,uYF = pZ(F[Z/Y]), and by Proposition 4.6(6) ,uZ(F[Z/Y]) = pZ(F[Z/Y] @/.?I). 1

We are now ready to present our inference system, whose sentences are equations
E = F (we occasionally abbreviate a finite sequence of equations by E” = F).

Rules of Inference

Equivalence: E 1.
E2.
E3.

Congruence: C 1.
c2.

Summation: S1.
s2.
s3.
S4.

Recursion: R1.
R2.
R3.
R4.

E=E
From E=Finfer F=E
From E=Fand F=G infer E=G

From l? = E”’ and F = F’ infer F{J!?/~} = F’{I?‘/f}
From E = E’ infer pXE =,uXE’

E+F=F+E
E+(F+G)=(E+F)+G
E+E=E
E+O=E

Notes. (i) We

,uXE = ,u Y(E { Y/X}), Y not free in ,uXE
,uXE = E(pXE/X}
,uX(E + X) = pXE
From E = F{E/X}, X guarded in F, infer E =,uXF.

have not been concerned with reducing the equivalence and
congruence rules to a minimum; some smaller set of rules may be equipotent.

(ii) It is significant that we need no explicit rule for prefixes aE. In particular,
the distributive law a(E + F) = aE + aF is not valid.

If an equation E = F may be deduced by the rules, we write tE = F.

ACOMPLETE INFERENCE SYSTEM 455

THEOREM 5.5 (SOUNDNESS). If FE = F then E = F.

Proof. As usual, we must show that each rule of inference is valid. For
(El)-(E3), (C l)-(C2) and (Sl j(S4) appeal to Propositions 3.1, 3.2 and 4.3, respec-
tively. For (RI)-(R4) appeal to Propositions 4.6(5) and 4.4, using Propositions
5.2-5.4 to relate syntactic and semantic notions. 1

The converse, completeness, will be proved in Theorem 5.10. In it and the theorems
leading to it, we need to appeal to provable properties of syntactic substitution. The
congruence rules are often used without explicit reference, but we also need the
following technical lemma.

LEMMA 5.6. (1) Zf no Xi is free in E then kE{F/z} = E.

(2) If x’ and P are disjoint then

Proof By induction on the size of E. The only point of interest arises in the case
,uZE; in (2), if Z is in X or F or free in P or G, one must first use t-,uZE =
,uV(E{ V/Z}) (rule Rl) for a completely new variable V. Otherwise the details are
routine. I

THEOREM 5.7 (UNIQUE SOLUTION OF EQUATIONS). Let a= (X,,...,X,J and
P = (Y, ,...) Y,,) be distinct variables, and F”= (F , ,..., F,) expressions with free
variables in (2, n in which each Xi is guarded. Then there exist expressions ,!? =
(E ,,..., E,) with free variables in p such that

tE, = Fi{_@x} (i < m).

Moreover, tf the same property may be proved when I? are replaced by expressions
l?’ = (E’, ,..., EL) with free variables in F, then

FE; = Ei (i < m).

Proof By induction on m. For m = 1 we choose E, = ,uX, F, , and the result
follows immediately using the rule R4.

Assume the result for m, and now let f= (F1,..., F,) and F,, , be expressions with
free variables in (2, X,, , , I7) in which each Xi is guarded (i < m + 1). We first find
expressions E’ = (E, ,..., E,) and E,+ , such that

t-Ei=Fi{~/~,E,+I/X,+,} (i<m + 1).

For this purpose, first set

G ,,,+I =H,+,F,+, (2)
Gi~FiIGm+JXm+~l (i < m). (3)

456 ROBIN MILNER

Since each G,i has free variables in (2, 0, with d guarded, by induction there are
expressions E = (E, ,..., Em) with free variables in P such that

tEi = Gi{~/~} (i < m). (4)

If we now choose
E m+1= Gm+*Wl (5)

then we may first rewrite (4) using (3), then appeal to Lemma 5.6 and use (5) to
obtain the required equations (1) for i < m; the details may be left to the reader. To
obtain (1) for i = m + 1, we deduce from (2) and (5) (since X,,,, 1 is not free in g)

E m+l ~Pxm+l(Fm+*~~/~l)

and hence by R2 and Lemma 5.6 (since X,,,, , is not free in E)

‘--Em+, =Fm+, {WY E, + I/X, + 11

as required.
For the second part, suppose that (1) is satisfied also by expressions g’ =

(EI ,..., EL) and Eh,, with free variables in f. Then first we have by Lemma 5.6

FE’ m+1 =F,+,{~‘/~}(E:,+,/X,+,}.

ButX,+, is guarded in Fm+ 1 {,i?/f}, whence by rule R4

-:,+, =PX~+,(F,+A~‘/~~)

and since X,,,, 1 is not free in ,??I we deduce

FE&+, = G,+,{I?‘/~}. (6)

Second, we use this equation with the assumed property of i?’ to obtain

tEI =Fi{~‘/~, Gm+,(E”‘/~}/Xm+,} (i<m)

and hence, by Lemma 5.6 and (3),

tE; = G,{E”@) (i < m).

But from (4) using induction we obtain

I-E; = Ei (i < m).

Finally, summarising these equations by FE”’ = i?, we deduce from (5) and (6) that

kE&+r =E,+,

and the proof is complete. 1

A COMPLETE INFERENCE SYSTEM 457

Before continuing towards the completeness theorem, we divert to prove the
converse of Proposition 5.1. We adopt the convention that in an indexed sum
CJ’= 1 Ej, if n = 0 then 0 is intended.

COROLLARY 5.8. If B is regular then it is expressible.

Proof. Because B has a finite chart, there exist B, ,..., B, with B = B,, such that
each B, has a finite set {(a+ Bfci,jj) 1 1 < j< m(i)} of derivations, and a finite set
(Y,,i,jj 1 1 < j< n(i)} of extensions. Therefore, setting

m(i) n(i)

Fi E X aijxf(i,j) + x yE(i j)
j=l j=l ’

(m(i), n(i) > 0)

the following equations hold of behaviours:

Bi = F, [g/z] (i < m).

But from the first part of Theorem 5.7 there are expressible behaviours E, ,..., E, for
which

Ei = F, [I?/$] (i < m).

(We are only concerned here with the truth, not the provability of these equations.)
Now from the simple form of the expressions Fi, it is readily seen that ((Bi, Ei))
1 < i < m) is a bisimulation of behaviours; whence Bi = Ei ; hence B is expressed
by&.‘ I

Having shown in Theorem 5.7 that suitably guarded equations are provably
satisfied by expressible behaviours, we proceed to show that, conversely, every
expressible behaviour provably satisfies a set of equations.

THEOREM 5.9 (EQUATIONAL CHARACTERISATION). For any expression E, with
free variables in p, there exist expressions E , ,..., E, (p > 1) with free variables in F,
satisfying p equations

m(i) n(i)
‘-Ei = 1 aijEfct,j, + C Yg(i,j, (1 < p) and moreover FE = E, .

j=l j=l

Proof. By induction on the structure of E. The only nontrivial case is E 3 ,uXF.
Now F has free variables in (X, 0, so by induction we have expressions F, ,..., F,
satisfying p equations which may be written

m(i) n(i)
I-Fi = x aijFf(i,j) + C Yg,i,jj[+Xl (i<pP) j=l j=1

in each of which the summand X may or may not occur; also tF = I;,. Now set
Ml) n(l)

F; G 2 a,jFf(l,j) + C ygCl,j)
j=l j=l

458 ROBIN MILNER

so that either EF = F; or t-F = F; +X. It follows, by rules R2 and R3, that

F-E = F; {E/X). (1)

Now set

Ei ~ Fi{E/X} (i < P).

Then by the instantiation {E/X} of the given equations we obtain, using (1) for any
summand X.

m(i) n(i)

[

m(l) n(l)

I-El = E aijEf(i,j) + x yg(i,j) + C aljEf(l,j) + C yg(l,j)
I

(i< PI
j=l j=1 j=l j=l

which by rearrangement, are equations of the desired form. Moreover, tE = E,
follows from t-F = F,, and the expressions Ei are easily seen to have free variables
inF. 1

THEOREM 5.10 (COMPLETENESS). Zf E=E’ then kE=E’.

Proof: Let E and E’ have free variables in ?. By Theorem 5.9 there are provable
equations t-E = E,, k-E’ = E’, and

m(i) n(i)
+-Ei = x aijEjci,j, + x Yg(i,j, (i< P)

j=l j=l

m’(i) n’(i)

tE[= ~ U;E~,(i,j~ + ~ Y,,,i,j, (i < p’).
j=l j=l

Now let Z= {(i, i’) 1 E, = Ef,}. Clearly (1, 1) E I. Moreover, since El and Ef, must
have equal derivations and equal extensions when (i, i’) E Z, the following hold:

(1) For each (i, i’) E Z, there exists a total surjective relation Jii, between
m(i)) and (l,..., m’(i’)), given by Jii, = {(j, j’) 1 aij = Uitj, and (f(i, j), j-$ j!), E I);

(2) kc;“{ Y,(,,j, = ~~l’f’) Yg!(i,,j)*

We now consider the formal equations, one for each (i, i’) E I:

n(i)

xiil = E uijXf(i,j),f’(if.j’) + C yg(i,j)
(j,j’)ERii’ j=l

where the Xii, are not in p.
First we assert that they are provably satisfied when each Xii, is instantiated to Ei.

To see this, note that the typical equation becomes

n(i)

(j,j’)eRti, j=l

A COMPLETE INFERENCE SYSTEM 459

and is provable, since-as Jii, is total-its right-hand side differs at most by repeated
summands from that of the already proved equation for Ei.

Second, the forma1 equations are provably satisfied when each Xii, is instantiated
to Ei,; this depends on the surjectivity of Jii,.

Finally, we note that each Xii, is guarded in the right-hand sides of the formal
equations. It immediately follows from Theorem 5.7 that ~-Ei = E;, for each
(i, i’) E I, and hence tE = E’. 1

Remark. The main idea of this proof is essentially that of Salomaa’s proof of
completeness for an axiom system for regular expressions 19, Theorem 21. However,
our different interpretation of nondeterministic acceptors entails significant difference
in detail, and it was by no means obvious to the author that Salomaa’s idea could be
adapted.

Let us briefly consider the introduction of empty transitions into charts, as
mentioned at the end of Section 2. In the standard literature these are represented by
arcs labelled E (the empty word); in our own work (4, 71 the symbol r was used since
our interpretation is not in terms of words, and the transitions correspond to internal
actions of a machine-arising perhaps from intercommunication of component
machines. We cannot eliminate them as easily as can be done in standard automata
theory.

Nevertheless, a corresponding notion of bisimulation can be defined, on the lines of
the observation equivalence of Hennessy and Milner [4]. Intuitively, a sequence of r-
transitions is equivalent to a single one, but a single one cannot be totally ignored
since it can have the effect of destroying certain capabilities of observation; in the
diagram below, the ability to accept the symbol a can be lost

In the last-mentioned paper, a complete inference system for finite behaviours with r-
transitions was presented. It remains open whether the axioms given there can be
combined with our rules to yield a complete system for regular behaviours with r-
transitions.

460 ROBIN MILNER

6. STAR BEHAVIOURS

We now examine more closely the relation between behaviours and the standard
theory of regular expressions and their interpretation.

To obtain a precise comparison, we first restrict attention to those behaviours in
which at most the distinguished variable X is live; let us call them X-behauiours.
Then each X-behaviour has an X-chart, one in which at most X appears as an
extension, and which (if finite) may be interpreted as a finite-state acceptor in the
standard way, by taking as accept states the nodes labelled X.

The regular operators $, +, 0 and * over languages mean (in the standard inter-
pretation), respectively, the empty language, union, concatenation and iteration
(Kleene star). Over X-behaviours we give them the interpretation

#MO

B,+B,I+B,+B,

B, oB, bBB,[B,/Xl

B* t-+pY(B[Y/X] +X).

To understand regular expressions over Act as X-behaviours, we need only add the
interpretation

Ul-+UX (a E Act).

Now, to avoid confusion, let us rename the standard regular expressions over Act
star expressions. Each star expression e may be regarded as an abbreviation for a
behaviour expression E; for example, a abbreviates ax, and if e, f abbreviates E, F
then e 0 f abbreviates E{F/X}. We shall use the lowercase letters e, f, g to stand for
star expressions; thereby they may also stand for the behaviour expressions which
they abbreviate, or for their behaviours-which we will call star behaviours.

Salomaa [9] provides a complete inference system for star expressions under
standard interpretation. When we dualise it, by writing f 0 e for e 0 f everywhere in
Salomaa’s rules (which gives an equipotent system), it has the following rules:

A, e+(f+g)=(e+f)tg A, eo$*=e
4 (e~f)~g=e~(f~g) A8 eo@=qd

A, etf=f+e A9 et#=e

A, (e+f)og=eogtfog Aul e*=#*+eoe*

A, eo(f+g)=eofteog ‘%I e* = ($* t e)*

A, e+e=e

R, Iff does not possess e.w.p. then

frome=foe+hinfere=f*oh.

(We have omitted R,, the substitution rule.)

A COMPLETE INFERENCE SYSTEM 461

The empty word property (e.w.p.) is defined over star expressions by

(i) e* has e.w.p.

(ii) If e or f has e.w.p. then e + f has e.w.p.
(iii) If e and f have e.w.p. then e o f has e.w.p.

If we regard e, f, g as X-behaviour expressions, then the following is easily
established (we omit the proof).

PROPOSITION 6.1. (1) e has e.w.p. ijjf X is not guarded in e.
(2) All except A, and A, of Salomaa’s rules are derivable from the inference

system of Section 5.

The most important fact to notice in the correspondence between the two systems is
that Salomaa’s A,,,, A,, and R, follow from our R2, R3, R4.

Moreover, A, and A, are not valid for behaviours. For from A, we derive
abX + acX = a(bX + cX), seen to be false in Section 2 (Example 3); from A, we
derive a0 = 0, also false.

The question immediately arises whether, by removing A, and A,, we obtain a
complete inference system for star behaviours (it is certainly sound, by
Proposition 6.1).

The answer is probably no for a trivial reason; the valid equation 4 0 e = 4 does
not appear to be derivable (in deriving it, A, seems necessary). But we may add

and the question may then be harder to answer. The difficulty is that the method of
Theorem 5.10 or of Salomaa’s original completeness proof cannot be applied directly,
since-in contrast with the case for languages-an arbitrary system of guarded
equations in X-behaviours cannot in general be solved in star expressions.

To see the difficulty informally, let us look at three examples. The first can be
solved in star expressions, the second apparently cannot and the third certainly
cannot, as we show formally later.

First, note that #* =X (equality of X-behaviours) easily follows from our
definitions. This enables us to work directly with star expressions in attempting to
obtain solutions.

EXAMPLE 1. Solve for f and g

f =a,f+a,g
g=b,f tb,gtX.

Translating into star expression notation, we obtain

f=a,ofta,og

g=b,of+b,og+#*.

462 ROBIN MILNER

Now from the first equation

whence by substitution in the second

g=b, OaToa, og+b,og+#*

= (b, 0 a:’ 0 a2 + b2) 0 g + $*
ct>

and finally

g = (b, o a: 0 a2 + b,)*.

EXAMPLE 2. Solve for f and g

f=a,f+a,g+X

g = b,f + b, g +X.

Working as in Example 1 up to (t), we obtain instead

g=b,oa,*o(a,og+$*)+b,og+$*.

But now we need the (invalid!) distributive law A, to extract and collect the terms in
g on the right-hand side. We cannot apparently continue.

EXAMPLE 3. Solve for f, g and h

f=a,g+a,h

g=b,h+b,f

h = c,f + c* g.

The same difftculty as in Example 2 occurs when we first eliminate f, say, and
attempt to solve for g.

In the case of Example 3, Theorem 6.5 will show that the unique solution for f is
not a star behaviour. The intuitive idea (slightly simplified) of the proof is that f,
though infinite, possesses an infinite computation in which f never occurs as a proper
derivative, and that the same fact is true of g and h, the only other distinct derivatives
off. Lemma 6.4 will show that this state of affairs cannot arise for a star behaviour.
It is helpful to see the computations off in tree form:

A COMPLETE INFERENCE SYSTEM 463

y h i2yg y” :.._
Y’+_, __- --.

f \, Cl+ _L=
.

\
.

c2 *,---
g

=.
. .

-+g----
__

__

We first need a technical proposition, the analogue of a standard result.

PROPOSITION 6.2. Every star expression e is behaviourally equivalent to one
having no subexpression f * for which f possesses e.w.p.

Proof. We first show, by induction on e, that if e possesses e.w.p. then e = $* + e’
for some e’ without e.w.p. and with no greater depth of nesting of * than e. This
follows simply from Salomaa’s inference system without A, and A,; for the crucial
case e = f * we appeal to A,,, and A,, .

The result then follows by replacing each subexpression f * of e, with f possessing
e.w.p., by f '* with f’ not possessing e.w.p., working from the outermost. I

Now we look for a properly which is possessed by all star behaviours but not by all
regular behaviours. The intuition behind the property which we exhibit is provided by
Example 3 above. Roughly, we show that every infinite star behaviour must have
some infinite derivative II,,, such that every infinite computation of B, reenters the
“state” II, at some point. While not completely accurate, this remark should help the
reader to understand the following definition.

DEFINITION. An X-behaviour B is infinite if it is possesses an infinite
computation. B is a loop if, for some infinite B, and some C, B = B, + C, where
every computation of B, has an initial segment

for which

al B,- . . . ZB,%B~ (n>O>

(i) Bi&X, O<iin,
(ii) either B’ = 0 or B’ = B, + C’ for some C’.

LEMMA 6.3. If B has a loop derivative, then so has B + C.

Proof. Straightforward. 1

LEMMA 6.4. If e is an injkite star behaviour, then it has a loop derivative.

464 ROBIN MILNER

Proof: By induction on the structure of e, which we may assume (by
Proposition 6.2) has no subexpression f * wherefpossesses e.w.p. Assume now that e
is infinite.

(i) If e z 4 or e E a then it is a finite behaviour.

(ii) If e 3 f + g then f, say, is infinite; but since f has a loop derivative, so
has e by Lemma 6.3.

(iii) If e 3 f o g = f [g/X] then either f is infinite or f has a derivative B + X
and g is infinite.

In the first case f has a loop derivative B, + C, where B, satisfies the properties of
the definition, so B,[g/X] + C[g/X] is an infinite derivative off o g. But every
computation of B,[g/X] has an initial segment

01
+ . . . D, D’

with Di = Bi[g/X], 0 < i < n, since its computations cannot divert from those of B,
until a derivative with extension X is reached, and moreover

Di & Xy O<i<n

D’=O or D’ = B&/X] + C’[g/X].

Thus B,[g/X] + C[g/X] is a loop derivative of e.
In the second case e has a derivative B[g/X] + g, which has a loop derivative

(since g does), so also e does.

(iv) If e E f *, where f does not possess e.w.p., then e = f 0 e + $*.

Iff is infinite the argument is as for the first case of (iii), appealing to induction for f.
Otherwise f is finite, and f & X since f does not possess e.w.p. So each computation
off must have an initial segment

f =B,+ . ..aB.$B’ (n 2 0)

where Bi t& X, 0 < i < n,. and either B’ = 0 or B’ =X + C’ (that is, after finite length
either a computation ends or it meets extension X for the first time). Note that
B, # 0, else e would be finite. Moreover the second alternative B’ =X + C’ must
occur for some computation, else f would have no derivative with extension X and
again e would be finite.

We now assert that e is itself a loop. For it has the form D, + #*, where each
computation of D, = f o e has initial segment

Do?+ . . . AD,*D~

with Di = Bi[e/X], 0 < i < n, hence Di 6 X, and either D’ = 0 or D’ = e + C’[e/X] =
f 0 e + #* + C’[e/X]. F ur th er, D, is infinite since the second alternative occurs for
some computation, so e satisfies the loop conditions. m

A COMPLETE INFERENCE SYSTEM 465

THEOREM 6.5. Not every X-behaviour is a star behaviour.

Proof. Consider the X-behaviour S defined in Example 3. (In fact, not even X is
live inJ) We assert that f itself is not a loop. For iff = B, + C, where B, satisfies
the loop conditions, B, can only be a, g or a,h or f itself. In each case, B, has an
infinite computation which is one of the following

and in each case no proper derivative (i.e., neither of g, h) has B, as a summand.
This contradicts the loop conditions.

By symmetry, g and h are not loops. Butf, g and h are the only distinct derivatives
of j’, hence f has no loop derivative. But f is infinite, so by Lemma 6.4 f is not a star
behaviour. m

The condition of possessing a loop derivative, though necessary, is far from
sufficient to ensure that a behaviour is a star behaviour, even if it is regular. The
reader may like to check that Example 2, though apparently not a star behaviour,
does satisfy the condition; take f = B, + C, where B, = a, f and C = a2 g + X.

We conclude the section by listing a few intriguing open questions about star
behaviours, though perhaps their interest is limited compared with questions about
regular behaviours.

(i) Is Salomaa’s system without A, and A,, but with A; and/or other axioms,
complete for star behaviours?

(ii) What structural property of finite charts is necessary and sufficient for star
behaviour?

(iii) Is there, for each n, a star behaviour using only one action which is not
represented by any expression of star height less than n? The answer for the standard
interpretation, regular sets of words, is no (see [lo]); in the present case we
conjecture that f, is such a behaviour, where

f,=a*

fn+, = (fnoa)* [e.g., f3 = ((a* 0 a)* 0 a)*]

but have not found a proof. Note that a * o a f a 0 a * in the behaviour interpretation.

ACKNOWLEDGMENTS

I would like to thank David Park for discussions about bisirnulation, which greatly enhances the
formulations and proofs in this paper.

466 ROBIN MILNER

REFERENCES

1. J. W. DE BAKKER AND J. I. ZLJCKER, Denotational semantics of concurrency, in “Proceedings, 14th
ACM Symposium on Theory of Computing,” pp. 153-158, 1982.

2. B. COIJRCELLE, “Fundamental Properties of Infinite Trees,” Report No. 8105, Uer de Mathematique
et Informatique Bordeaux, 198 1.

3. C. C. ELGOT, Monadic computation and iterative algebraic theories, in “Logic Colloquium” (Rose
and Shepherdson, Eds.), pp. 175-230, North-Holland, Amsterdam, 1973.

4. M. HENNESSY AND R. MILNER, On observing nondeterminism and concurrency, in “Lecture Notes
in Computer Science,” Vol. 85, pp. 299-309.

5. C. A. R. HOARE, S. D. BROOKES, AND A. W. ROSCOE, “A Theory of Communicating Sequential
Processes,” Programming Research Group, Oxford University, 198 1.

6. K. JENSEN, “A Method To Compare the Descriptive Power of Different Types of Petri Nets,”
DAIMI Report PB-108, Aarhus University, 1980.

7. R. MILNER, A calculus of communicating systems, in “Lecture Notes in Computer Science,”
Vol. 92, Springer-Verlag, New York/Berlin, 1980.

8. D. M. R. PARK, “Concurrency and Automata on Finite Sequences,” Computer Science Department,
University of Warwick, 1981.

9. A. SALOMAA, Two complete axiom systems for the algebra of regular events, J. Assoc. Conzput.
Mach. 13 (1) (1966), 158-169.

10. A. SALOMAA, “Jewels of Formal Language Theory,” Computer Science Press, Potomac, Md., 198 1.

