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ABSTRACT 

Training at the optimal load for peak power output (PPO) has been proposed as a 

method for enhancing power output, although others argue that the force, velocity and 

PPO are of interest across the full range of loads. The aim of the present study was to 

examine the influence of load on PPO, peak barbell velocity and peak vertical ground 

reaction force during the jump squat (JS) in a group of professional rugby players. 

Eleven male professional rugby players (age, 26 ± 3 years; height, 1.83 ± 6.12 m; 

mass, 97.3 ± 11.6 kg) performed loaded JS at loads from 20 – 100% of 1-RM JS. A 

force plate and linear position transducer, with a mechanical braking unit, were used 

to measure PPO, vertical ground reaction force (VGRF) and barbell velocity (BV). 

Load had very large significant effects on PPO (P < 0.001; partial η
2 

= 0.915), peak 

VGRF (P < 0.001; partial η
2 
= 0.854) and peak BV (P < 0.001 partial η

2 
= 0.973). PPO 

and peak BV were highest at 20% 1-RM, though PPO was not significantly greater 

than at 30% 1-RM. Peak VGRF was significantly greater at 1-RM than all other loads, 

with no significant difference between 20 and 60% 1-RM. In resistance trained 

professional rugby players the optimal load for eliciting PPO during the loaded JS in 

the range measured occurs at 20% 1-RM JS, with decreases in PPO and BV, and 

increases in VGRF, as load is increased, although greater PPO likely occurs without 

any additional load. 

 

 

Key Words: optimal load; ballistic exercise; assessment 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



POWER, FORCE & VELOCITY DURING JUMP SQUATS  3 

INTRODUCTION 

In many sports athletes are required to generate forces across a range of velocities, 

with a resulting power-load spectrum (26), similar to originally characterised by 

force-velocity characteristics of isolated muscle by AV Hill in the 1930’s. It is a 

common view in the strength & conditioning literature that peak power output (PPO) 

is an important determinant of performance as this represents the balance between 

force and velocity above/below which power output declines. However, the evidence 

regarding the strength of the relationship between PPO and performance is equivocal 

(12,42) and furthermore, recommendations regarding how best to train PPO are far 

from conclusive (10,12,17,26,29). Most recommended interventions include explosive 

lower-body exercises involving the triple-extension of the knee, ankle and hip that 

avoid a deceleration phase as they are considered closest to the actions of sprinting 

and jumping seen in many sports (26). Consequently, there has emerged an interest in 

characterising the power-load relationship in athletes for a range of ballistic 

(1,2,3,4,9,11,25,30,31,35,37,39,40,43) or Olympic-style lifts (27,28,31) that elicit 

high PPO, either for the purposes of training prescription or monitoring responses to 

training. However, there is considerable disagreement in the literature regarding the 

relative loads that elicit PPO. 

 

The inverted U-shape of the power-load relationship demonstrates that an optimal 

load exists for eliciting PPO and there is some argument for training at such a load to 

increase PPO (2,3,17,18,25,26,32,33,43), although others argue of the importance of 

specificity, i.e. training at a range of loads and velocities encountered during sports 

performance (9,41,42). For jump squats, an explosive triple-extension exercise that 

elicits high power outputs, loads ranging from body mass (BM) to as high as 80% of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



POWER, FORCE & VELOCITY DURING JUMP SQUATS  4 

1-RM (2,4,9,17,25,30,31,37,39,40,43) have been identified as optimal for PPO, with 

an even greater range when Olympic lifts (15,27,28,31) and upper-body ballistic 

exercises are included (3,4). Such discrepancies appear to exist primarily due to 

differences in methodology (6,13). Contributing factors include: the lift being tested 

(e.g. upper vs lower body, technique, inclusion of a countermovement, single- vs 

multi-joint exercises); individual differences; calculation of average vs. peak power; 

inclusion of BM in calculations; data collection methods (e.g. linear position 

transducer (LPT) vs. force plate); reporting of load intensity (e.g. relative to 1-RM of 

traditional compared to ballistic lifts). The resistance training history and strength 

level of participants has varied greatly in the existing research, and yet for the well-

trained athlete for whom accuracy in training load is arguably most important, there is 

not agreement regarding the optimal load for PPO. Some authors have suggested that 

strength trained athletes require higher relative loads than less-trained individuals 

(32), yet other data suggests the opposite (22) or little difference (31,34). 

 

Therefore, the aim of the present study was to examine the influence of load on PPO, 

peak barbell velocity (BV) and peak vertical ground reaction force (VGRF) during the 

JS in a group of professional rugby players completing a single maximal testing 

session. Given the available evidence it was hypothesised that there will be a 

significant effect of load on peak force, velocity and hence PPO. It was further 

hypothesised that the optimal load for PPO and BV will be the lowest load measured, 

and peak VGRF at the highest load. 
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METHODS 

Experimental Approach to the Problem 

To evaluate the impact of load on PPO during the JS in professional rugby players, a 

repeated measures design was used with multiple jumps performed at loads ranging 

from 20 kg – 100% 1-RM JS in a single session following familiarisation. The full-

time professional rugby union players were mid-phase of the competitive season 

(multiple UK and European league and cup competitions), so it was imperative that 

the study design maximised efficiency of testing, such that training disruption was 

minimised, yet the protocols could be replicated easily in the gym for monitoring 

purposes, whilst ensuring accuracy and player safety. The coaches were interested in 

exploring the use of a range of loads for subsequent training, as well as the potential 

for using incremental JS for monitoring training in the future. Therefore, data 

collection was performed using a force plate with linear position transducer to 

measure vertical ground reaction force, barbell velocity and power output. Peak 

power output (PPO) was the key dependent variable, with VGRF and peak BV also 

investigated as the key parameters that underpin PPO. Load above BM was the 

independent variable, selected as % of an initially estimated 1-RM JS based on a 

previously determined 5-RM squat, although actual 1-RM JS was deliberately 

assessed as part of the protocol. 

 

The incremental protocol used does mean that there is a potential for an order effect 

(either a positive potentiation and/or learning effect, or negative fatiguing effect) on 

the dependent variables, although this protocol was deliberately used in line with 

recommendations for 1-RM testing of traditional lifts (25). Sheppard et al. (35) have 
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shown such an approach to be reliable, valid and sensitive to training improvements in 

athletes although they did not progress to as high relative loads. 

 

Subjects 

The study involved 11 professional male rugby players (BM 97.3 ± 11.6 kg; Height 

1.83 ± 0.12 m; Age 25.6 ± 3.3 yrs; 1-RM jump squat 183.6 ± 19.6 kg) from the same 

club who played a range of positions (5 front-row; 1 back-row; 3 half-backs; 2 

wingers) as reflected in the considerable variation in size and 1-RM values. Testing 

was integrated into their regular conditioning program and the testing session took 

place in the middle of the competitive season during a strength & power maintenance 

phase characterised by low volume and high intensity relative to pre-season. All 

subjects provided written informed consent and the study was approved by the ethics 

committee of the university. Inclusion criteria were that players demonstrated sound 

technique during the JS, as assessed by an accredited strength & conditioning coach, 

and were engaged full-time in a supervised strength & conditioning program for at 

least 2 years. 

 

Experimental Procedures 

Following familiarisation with full testing procedures on a different day, participants 

reported to testing hydrated and having refrained from strenuous exercise and alcohol 

consumption for at least 24h, as well as caffeine for at least 3h hours, before testing. 

Each participant completed a 10 minute standardised and supervised warm-up which 

included dynamic stretching as well as movements specific to the JS. The protocol 

required participants to perform maximum effort JS at 20 kg – 100% of their 
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estimated 1-RM JS. For those participants that were still successfully completing a JS 

at 100% of the estimated 1-RM JS the load was further increased until the participant 

did not complete the JS, as detailed below. During all jumps athletes were instructed 

to jump as high as possible and verbal encouragement was given. 

 

JS Testing. The JS testing protocol was adapted from the 1-RM testing method 

outlined by Stone and O’Bryant (38) and was modified to allow a complete load 

spectrum to be tested. The loading protocol used repetition values (3 reps ≤ 40% 

estimated 1-RM, 2 reps ≤ 80% estimated 1-RM, 1 rep > 80% estimated 1-RM) at 

given loads modified to strike a balance between ensuring the detection of PPO (2-5 

reps (1)) and reducing the total volume to minimise fatigue. Each attempt was 

followed by a 3 minute rest period in order to allow adequate recovery. If a participant 

did not reach their 1-RM at the provided estimate, a load increase of 5-10 kg was 

added after each further attempt and 3 minutes rest. An individual was deemed to 

have reached their 1-RM when their feet did not leave the ground, which was 

monitored and judged using the real-time force plate data. Each participant was 

allowed one further attempt at improving their 1-RM following a 3 minute rest period. 

 

When performing the jumps, participants were instructed to apply constant downward 

pressure on the barbell so it remained on their shoulders at all times (6). During pilot 

testing and familiarisation it was noted that when jumping with anything less than an 

Olympic barbell (20 kg), e.g. a wooden broom handle for an essentially unloaded JS, 

the tension from the linear position transducer (LPT) and magnetic braking unit 

(MBU) (both located above the bar) made it very difficult to maintain contact with the 

shoulders. Therefore, loads below 20 kg (including unloaded jumps) could not be 
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explored accurately and so this was not included in the protocol. The depth of the 

initial eccentric portion of the JS was not regulated, as in other studies (9,21). This 

was based on evidence which suggests that trained humans automatically adjust their 

squat depth to allow for maximal performance in movements that involve jumping 

(5). 

 

Power measurement. The FT 700 Power System (Fittech, Australia) was used as a 

performance platform and data collection tool. The system was connected to a laptop 

installed with the Ballistic Measurement System software (BMS, Innervations, 

Australia) and included a linear position transducer (LPT), a magnetic braking unit 

(MBU) and a force plate (400Series, Fittech, Australia). The combined use of a force 

plate and an LPT is considered a valid method to assess BV (using LPT), VGRF 

(using force plate) and power output (LPT + force plate) in human participants 

(6,8,20). Using the same equipment and analysis Sheppard et al. (35) previously 

demonstrated reliability of this approach in trained athletes (ICCs ranging 0.8-0.9 for 

peak power, 0.95-0.97 for peak force and 0.75-0.83 for peak velocity). The MBU was 

used as an injury-prevention mechanism (21) to unload the landing phase of each JS, 

adjusted for each load so that a participant never landed with more than 50 kg bar 

load.  

 

Prior to testing, the force plate and LPT were calibrated using loads and 

displacements spanning the range of values experienced during the JS. The sampling 

frequency was set at 500 Hz with sample periods being 20 seconds in length. The total 

system mass (bodyweight + bar load) was used in all data collection (7,31).  
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Analysis. As participants were tested at different absolute and relative loads (based on 

initial estimates), the data were normalised so that all participants could be compared. 

The loads were expressed as % of the measured 1-RM and then the dependent 

variables (PPO, VGRF, and BV) were interpolated to ‘standard’ percentage intervals 

of each individual’s 1-RM JS (20, 30, 40, 50, 60, 70, 80, 90, 100% JS 1-RM). Jump 

squats were not performed below 20 kg (see above) and as this load represented 

various percentages of 1-RM for each subject, the lowest percentage that all subjects 

lifted was 20% 1-RM.  

 

Method of Interpolation. To interpolate the datasets, a cubic polynomial curve was 

fitted using Microsoft Excel to each of the three dependent variables plotted against 

the actual percentages of maximum load. This method was similar to that of Jandacka 

and Vaverka (23). These equations were then used to generate interpolated dependent 

variables corresponding to the ‘standard’ independent variables (20-100% 1-RM JS at 

10% intervals). 

 

The fit of the equations were assessed in two ways. Firstly the common variance of 

the equation (R
2
) was calculated. Mean (± s) R

2
 values for PPO, VGRF and BV were 

0.956 (± 0.032), 0.927 (±0.092) and 0.990 (±0.012) respectively. Secondly, the 

Standard Error of the Estimate (SEE) was calculated and the 95% Confidence Interval 

for the regression was then computed (14). The 95% Confidence Intervals were 313.5 

(± 180.8) W, 144.6 (±85.1) N and 0.087 (±0.050) m·s
-1

 for PPO, VGRF and BV 

respectively. These values combined with the high R
2
 coefficients indicated good 

curve fits. 
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Statistical Analysis 

The standard level of significance was set at 0.05. The effects of load on PPO, VGRF 

and BV were analysed using One-Way Repeated Measures Analyses of Variance 

(ANOVA) after checking for normality using Shapiro-Wilk tests (14). The 

Greenhouse-Geisser adjustment of the degrees of freedom was applied if the Mauchly 

Test of Sphericity was compromised (14). Post-hoc pairwise Bonferroni tests were 

then performed on significant results (14). Effect sizes were assessed using partial eta 

squared (partial η
2
) values which were square-rooted to give correlation coefficients 

(14) that were compared with the effect sizes given by Hopkins (19); 0.1-0.3 as small, 

0.3-0.5 as moderate, 0.5-0.7 as large and 0.7-0.9 as very large. 

 

Friedman’s Non-Parametric test was run for the BV data, instead of the ANOVA, as 

the data at two loads (90 and 100%) were not normally distributed. Post-hoc 

Wilcoxon Matched Pair Signed Rank pairwise comparisons were made for each load 

against the subsequent load (e.g. 10% vs 20%, 20% vs 30% etc.), with the -level 

adjusted by dividing by the total number of post-hoc tests (8). 

 

Post-hoc statistical power was calculated using G-Power software (Universitåt Kiel, 

Germany). The statistical power was 100% at -levels of 0.05, 0.01 and 0.001, 

computed with the effect sizes (partial-eta squared) achieved in the ANOVA tests and 

the inter-trial correlations. Finally a ‘pseudo’ a-priori 95% power calculation was 

calculated to show that sample sizes of 2, 3 and 2 for the ANOVAs would have been 

sufficient to be 95% certain of finding the effect sizes actually seen. 
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RESULTS 

 

Peak Power Output 

For PPO, the result from the ANOVA showed a significant Load effect on PPO 

(Greenhouse-Geisser Epsilon = 0.318; F2.5, 25.5 = 107.1; P < 0.001; partial η
2 

= 0.915; 

Very Large Effect), with PPO highest at 20% 1-RM JS (4509 ± 701 W; 46.9 ± 8.4 

W.kg
-1

 BM) and decreasing as the additional load was increased. Pairwise 

comparisons showed significant differences between power outputs at all percentages 

of maximum except between 20% and 30%. Figure 1 shows the interpolated PPO, 

peak VGRF and peak BV plotted against load. 

Insert Figure 1 about here 

 

Peak Force 

For peak VGRF, the ANOVA showed a significant Load effect on peak force output 

(Greenhouse-Geisser Epsilon = 0.164; F1.3, 13.1 = 58.5; P < 0.001; partial η
2 

= 0.854; 

Very Large Effect), with VGRF increasing as the additional load was increased to a 

highest value at maximum load (2126 ± 285 N). The pairwise comparisons gave 

significant differences between forces at all percentages of maximum except 20% v 

30%, 40%, 50% & 60%, and 30% v 40% & 50%.  

 

Peak Velocity 

Peak BV occurred at 20% 1-RM (2.1 ± 0.1 m.s
-1

) and BV decreased as additional load 

was increased. The Friedman’s Test resulted in a Chi-Square value of 87.8 and a 

significance of P < 0.001. Pairwise Wilcoxon tests gave significance values of P = 

0.003 for all comparisons, except for 90% v 100%, which was P = 0.004, all below 

the Bonferroni adjusted -level of 0.006.  
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DISCUSSION 

The purpose of this study was to evaluate the influence of load on peak power ouput, 

peak vertical ground reaction force and peak barbell velocity during loaded jump 

squats in a group of professional rugby players. In support of our initial hypothesis, 

the incremental additional load had significant effects on all dependent variables. 

Peak power output was elicited at the lowest load tested (20% 1-RM JS), with lower 

values as load was increased although this was not significant between 20 and 30% 1-

RM JS. Also in support of our hypotheses, the peak VGRF was elicited at the highest 

load (100% 1-RM JS), with lower values at each lower load, although these 

differences were not significant between 20 and 60% 1-RM JS. Additionally, in 

support of our hypotheses, the peak BV was elicited at the lightest load (20% 1-RM 

JS significantly greater than all other loads) with anticipated decreases in peak BV as 

load was increased. To our knowledge, these are the first force, velocity and power 

data in the maximum loaded JS across a range of loads up to 1-RM in resistance-

trained professional rugby union players.  

 

As well as identifying the optimal load for PPO, the current study measured PPO, BV 

and VGRF at incremental loads with good data resolution, in comparison to many 

existing protocols which use only a few arbitrary loads, and in a single in-season 

testing session without injury by using eccentric braking. Therefore, the data can be 

used to design training programmes for these athletes based on optimal load 

(2,3,17,18,25,26,32,33,43), as well as knowing how PPO, VGRF and BV will be 

affected when training across a range of loads, as has been recommended by others 

(9,41,42). The analysis also demonstrated the value in using data interpolation 
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techniques across this range to complete the profiles (16,23). Such data enables the 

force and velocity at each load to be explored to explain the individual power 

relationship in greater detail. Many authors propose that the optimal load, for 

example, should be assessed on an individual basis rather than using average fixed 

relative loads (2,3,28). Such information could be used to inform training prescription 

based on the sporting demands specific to that individual (i.e. emphasis on forces and 

velocities encountered) as well as identify specific weaknesses in the force-velocity 

relationship that could be targeted to provide the most effective training stimulus for 

that athlete (35). Another rationale behind individually assessing the wider range of 

loads stems from research findings where large bandwidths of optimal loads (without 

significant effect on PPO) have been reported (e.g. 9,28), reflecting that the optimal 

load for PPO (even in relative terms) demonstrates considerable variability between 

individuals, with maximal strength possibly a key factor (39). For example, in the 

current investigation, individual power curves show a range of gradients at the lowest 

loads such that some athletes were beginning to plateau (reach the peak of the power 

load curve and hence their own optimal load) whereas others would clearly have had 

higher PPO at lower loads. This may explain the lack of a significant difference in 

PPO between 20 and 30% 1-RM in the current investigation, although this was close 

to significance. It is unlikely that this represents a Type II statistical error, given the 

very large effect sizes and reported statistical power. 

 

This observation highlights the limitation of the current investigation in not assessing 

PPO in the JS with BM only. However, this was a factor of the study design due to 

technical factors discussed in the methods section. Interestingly, in some studies it is 

unclear if the lowest loads also included barbell mass and therefore are truly unloaded 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



POWER, FORCE & VELOCITY DURING JUMP SQUATS  14 

jumps. In any case, a very recent study (34) has further extended this range of loads in 

JS by using unloading apparatus, as well as loading, during the JS in resistance trained 

athletes. Nuzzo et al. (34) presented data in support of the Maximum Dynamic Output 

Hypothesis (24), which postulated that in untrained healthy individuals the optimal 

load for jumping should be BM as this is the load that the leg extensors are habitually 

contracting against. Nuzzo et al. (34) showed that JS with BM-only elicited 

significantly higher PPO than lower and greater loads, even in this resistance trained 

(RT) population. This finding is in contrast to the commonly cited paper of Stone et 

al. (39) which proposed that stronger athletes required higher relative loads to elicit 

PPO. A possible explanation for this finding, highlighted by Nuzzo et al. (34), was 

that the participants in their study were simply not as strong, with factors such as 

strength, BM and type of resistance training having been shown to have a significant 

effect on the power-load spectrum (2,7,39). In this regard, it is worth noting that the 

participants of the current study were heavier and able to JS with loads typically 

greater than the 1-RM squat in the study by Nuzzo et al. (mean JS 1-RM 184 kg or 

1.89*BM vs mean squat 1-RM 168 ± 28 kg or 1.96*BM), but lower than the 1-RM 

squat in the strong group of Stone et al. (mean JS 1-RM 212 kg or 2.0*BM). 

Therefore, it remains to be confirmed if the optimal load for PPO is still BM-only in 

the strongest of athletes, e.g. power-lifters. Furthermore, this relationship importantly 

remains to be explored more accurately in other populations, e.g. female and 

older/younger participants. Further explanation may reside in the depth of squat used 

during the JS protocols, which has variably been controlled. 

 

As mentioned above, the finding that PPO occurs at lower loads during the JS is in 

contrast to some existing studies (2,36,37), although most of the studies cannot be 
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compared due to the many methodological differences (6,13). The current data do 

support the findings of some of the well controlled investigations using lower-body 

ballistic exercises in trained populations (31,39,40,43). For example, the findings and 

values are similar to Cormie et al. (9) and Sheppard et al. (35), who used similar 

technology and also used trained athletes. Both of these studies demonstrated that 

PPO was recorded at the lightest loads used (BM only). However, the power outputs 

recorded in the current investigation (4509 ± 701 W) are noticeably lower than 

recorded by Cormie et al. (6437 ± 1046 W (9)) and Sheppard et al. (7386 ± 324 W 

(35)), but similar to McBride et al. (3775 ± 951 W (31)). The main underpinning 

factor in these differences appears to be the peak velocities achieved at the lightest 

loads (2.11 ± 0.10 m·s
-1

 in the current study vs. 3.66 ± 0.26 (9) and 3.47 ± 0.23 m·s
-1

 

(35)). Peak forces in the current study at the lowest load (2126 ± 285 N) were closer 

to Cormie et al. (1990.5 ± 339 N, (9)) and Sheppard et al. (2330 ± 196 N (35)). One 

possible explanation for these findings is that the values in those studies were 

recorded during the JS with BM only, compared to BM + 20% 1-RM in the current 

investigation. Based on the shape of the velocity-load relationship shown in Figure 1 

and existing data (e.g. 34), it is highly likely that higher velocities and power outputs 

would be recorded in our athletes jumping against BM only. Indeed the values 

reported by McBride et al (31) support this, although their participants had lower 1-

RM squat values than 1-RM JS values in the current investigation, illustrating 

differences in strength levels. 

 

Interestingly, the other available data for professional rugby players (4) reported 

similar values for PPO in the JS (4256 ± 489 W) at a load similar to 20% 1-RM JS 

(20% 1-RM squat). However, the velocity data were not reported and VGRF was not 
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recorded (LPT only) meaning that PPO was estimated. As mentioned previously, 

Duggan et al. (13) and Cormie et al. (6) have demonstrated that for accurate 

measurement of force, velocity and power output during the JS a combination of force 

plate and LPT is required. Although all of the data are not available for direct 

comparison, as the PPO values are so similar in the current study and Bevan et al. (4), 

this may imply that the LPT alone may be of some practical use for indirect 

estimation of PPO during the JS in professional rugby players. This would be 

considerably more feasible in many strength & conditioning settings where force plate 

equipment and analysis software may not be accessible, accepting the limitations 

regarding accuracy. 

 

It is also worth noting that as the load was increased in the current investigation, peak 

velocity was the most sensitive variable measured, with significant differences 

between all loads. Peak VGRF changes were more variable, as shown by the error 

bars in Figure 1 and the lack of significant differences in peak VGRF between 20 and 

60% 1-RM JS. Combined with the comparison with existing data (9,35) above, this 

information highlights the importance of peak velocity for PPO during the JS and 

other ballistic exercises (16). Consequently, the monitoring of BV during training is 

recommended to ensure that athletes are achieving PPO in sessions, perhaps using a 

minimum threshold % of peak BV at that load. 

 

Conclusions 

Peak power output, peak VGRF and BV are significantly affected by the amount of 

additional load during the loaded jump squat in professional rugby players. The PPO 

is elicited using the lightest load used (20% 1-RM JS) with decreases in PPO at 
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greater loads. As anticipated with incremental increases in load, peak VGRF 

increased and peak BV decreased. The power, force and velocity relationship can be 

accurately measured in professional rugby players across a full range of loads (up to 

1-RM) for the JS in a single session in a competitive phase without injury when 

eccentric braking is used in combination with a force plate and linear position 

transducer. Characterisation across this full spectrum of loads on an individual basis 

will enable greater precision for monitoring training-induced improvements, assessing 

individual weaknesses and for prescription of training. 

 

PRACTICAL APPLICATIONS 

This study presents relevant data for professional rugby union players that can be 

compared with athletes trained for other sports. The findings add to the increasing 

body of evidence supporting that the optimal load for PPO during the JS occurs at the 

lowest loads used, even in trained professional rugby union players. Such information 

is useful for the strength & conditioning coach seeking to train at the optimal load for 

PPO during the JS, although there are good arguments supporting training at a range 

of loads, and hence velocities, specific to the sport. This study illustrates how peak 

VGRF and peak BV are affected over such a range of loads accordingly, such that 

trainers can make more informed decisions. This study also demonstrates that it is 

feasible and safe to fully characterise the PPO, BV and VGRF across a full range of 

loads up to 100% 1-RM during a single session. However, based on existing evidence, 

for accuracy it is recommended that a combination of force plate and linear position 

transducer are used and for safety a magnetic braking unit can also be employed. Such 

data enables the strength & conditioning coach to assess individual strengths and 

weaknesses across the force-velocity relationship, such that programs can be tailored 
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accordingly, as well as accurately monitoring the effectiveness of varying 

interventions across the range.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



POWER, FORCE & VELOCITY DURING JUMP SQUATS  19 

REFERENCES 

1. Baker, D and Newton, RU. Change in power output across a high-repetition set of 

bench throws and jump squats in highly trained athletes. J Strength Cond Res 

21(4): 1007-1011, 2007. 

2. Baker, D, Nance, S, and Moore, M. The load that maximises the average 

mechanical power output during jump squats in power-trained athletes.  J Strength 

Cond Res 15: 92-97, 2001. 

3. Baker, D, Nance, S, and Moore, M. The load that maximises the average 

mechanical power output during explosive bench press throws in highly trained 

athletes. J Strength Cond Res 15: 20-24, 2001. 

4. Bevan, HR, Bunce, PJ, Owen, NJ, Bennett, MA, Cook, CJ, Cunningham, DJ, 

Newton, RU, and Kilduff, LP. Optimal loading for the development of peak 

power output in professional rugby players. J Strength Cond Res 24(1): 43-47, 

2010. 

5. Bobbert, MF, Casius, LJ, Sijpkens, IW, and Jaspers, RT. Humans adjust control to 

initial squat depth in vertical squat jumping. J Appl Physiol 105: 1428-1440, 2008. 

6. Cormie, P, Deane, R, and McBride, JM. Methodological concerns for determining 

power output in the jump squat. J Strength Cond Res 21(2): 424-430, 2007. 

7. Cormie, P, McBride, JM, and McCaulley, GO. The influence of body mass on 

calculation of power during lower-body resistance exercises. J Strength Cond Res 

21(4): 1042-1049, 2007. 

8. Cormie, P, McBride, JM, and McCaulley, GO. Validation of power measurement 

techniques in dynamic lower body resistance exercises. J Appl Biomechanics 23: 

103-118, 2007. 

9. Cormie, P, McCaulley, GO, Travis-Triplett, N, and McBride, JM. Optimal loading 

for maximal power output during lower-body resistance exercises. Med Sci Sports 

Exerc 39(2): 340-349, 2007. 

10. Crewther, B, Cronin, J, and Keogh, J. Possible stimuli for strength and power 

adaptation: acute mechanical responses. Sports Medicine 35(11): 967-989, 2005. 

11. Cronin, J, McNair, PJ, and Marshall, RN. Developing explosive power: a 

comparison of technique and training. J Sci Med Sport 4(1): 59-70, 2001. 

12. Cronin, J, and Sleivert, G. Challenges in understanding the influence of maximal 

power training on improving athletic performance. Sports Medicine 35(3): 213-34, 

2005. 

13. Dugan, EL, Doyle, TLA, Humpheries, B, Hasson, C, and Newton, RU. 

Determining the optimal load for jump squats: a review of methods and 

calculations. J Strength Cond Res 18: 668-674, 2004. 

14. Field, A. Discovering Statistics Using SPSS (Introducing Statistical Methods 

series). Sage Publications Ltd, UK; Third Edition, 2009. 

15. Garhammer, J. A review of power output studies of Olympic and powerlifting: 

Methodology, performance prediction and evaluation tests. J Strength Cond Res 7: 

76-89, 1993. 

16. Gonzalez-Badillo, JJ, and Sanchez-Medina, L. Movement velocity as a measure of 

loading intensity in resistance training. Int J Sports Med 31: 347-352, 2010. 

17. Harris, NK, Cronin, JB, Hopkins, WG, and Hansen, KT. Squat jump training at 

maximal power loads vs. heavy loads: effect on sprint ability. J Strength Cond Res 

22(6): 1742-1749, 2008. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



POWER, FORCE & VELOCITY DURING JUMP SQUATS  20 

18. Hoffman, JR, Ratamess, NA, Cooper, JJ, Kang, J, Chilakos, A, and Faigenbaum, 

AD. Comparison of loaded and unloaded jump squat training on strength/power 

performance in college football players. J Strength Cond Res 19: 810-815, 2005. 

19. Hopkins, WG (2006) "A Scale of Magnitudes for Effect Statistics". 

http://sportsci.org/resource/stats/ accessed 04/08/10. 

20. Hori, N, Newton, RU, Andrews, WA, Kawamori, N, McGuigan, MR, and 

Nosaka, K. Comparison of four different methods to measure power output during 

the hang power clean and the weighted jump squat. J Strength Cond Res 21(2): 

314-320, 2007. 

21. Hori, N, Newton, RU, Kawamori, N, McGuigan, MR, Andrews, WA, Chapman, 

DW, and Nosaka, K. Comparison of weighted jump squat training with and 

without eccentric breaking. J Strength Cond Res 22(1): 54-65, 2008. 

22. Izquierdo, M, Ibanez, J, Hakinnen, K, Kraemer, WJ, Ruesta, M, and Gorostiaga, 

EM. Maximal strength and power, muscle mass, endurance and serum hormones 

in weightlifters and road cyclists. J Sports Sci 22: 465-478, 2004. 

23. Jandacka D, and Vaverka F. A regression model to determine load for maximum 

power output. Sports Biomech 7(3): 361-71, 2008. 

24. Jaric S, and Markovic G. Leg muscles design: the maximum dynamic output 

hypothesis. Med Sci Sports Exerc 41(4): 780-7, 2009. 

25. Kaneko, M, Fuchimoto, T, Toji, H, and Suei, K. Training effect of different loads 

on the force-velocity relationship and mechanical power output in human muscle. 

Scand J Med Sci Sports 5: 50-55, 1983. 

26. Kawamori, N, and Haff, GG. The Optimal Training Load for the Development of 

Muscular Power. J Strength Cond Res 18(3): 675-684, 2004. 

27. Kawamori, N, Crum, AJ, Blumert, PA, Kulik, JR, Childers, JT, Wood, JA, Stone, 

MH, and Haff, GG. Influence of Different Relative Intensities on Power Output 

during the Hang Power Clean: Identification of the Optimal Load. J Strength 

Cond Res 19(3): 698-708, 2005. 

28. Kilduff, LP, Bevan, H, Owen, N, Kingsley, MIC, Bunce, P, Bennett, M, and 

Cunningham, D. Optimal Loading for Peak Power Output During the Hang Power 

Clean in Professional Rugby Players. International Journal of Sports Physiology 

and Performance 2: 260-269, 2007. 

29. Kraemer, WJ, and Ratamess, NA. Fundamentals of resistance training: 

Progression and exercise prescription. Med Sci Sports Exerc 36(4): 674-688, 

2004. 

30. Markovic, G, and Jaric, S. Positive and negative loading and mechanical output in 

maximum vertical jumping. Med Sci Sports Exerc 39(10): 1757-64, 2007. 

31. McBride, JM, Haines, TL, and Kirby, TJ. Effect of loading on peak power of the 

bar, body, and system during power cleans, squats, and jump squats. J Sports Sci 

29(11): 1215-21, 2011. 

32. McBride, JM, Triplett-McBride, T, Davie, A, and Newton, RU. The effect of 

heavy- vs. light-load jump squats on the development of strength, power, and 

speed. J Strength Cond Res 16(1): 75-82, 2002. 

33. Newton, RU, Rogers, VA, Volek, JS, Hakkinen, K, and Kraemer, WJ. Four weeks 

of optimal load ballistic resistance training at the end of season attenuates 

declining jump performance of women volleyball players. J Strength Cond Res 

20(4): 955-961, 2006. 

34. Nuzzo, JL, McBride, JM, Dayne, AM, Israetel, MA, Dumke, CL, and Triplett, 

NT. Testing of the maximal dynamic output hypothesis in trained and untrained 

subjects. J Strength Cond Res 24(5): 1269-1276, 2010. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



POWER, FORCE & VELOCITY DURING JUMP SQUATS  21 

35. Sheppard, JM, Cormack, S, Taylor, K, McGuigan, MR, and Newton, RU. 

Assessing the force-velocity characteristics of the leg extensors in well trained 

athletes: The incremental load power profile. J Strength Cond Res 22(4): 1320-

1326, 2008. 

36. Sleivert, GG, and Taingahue, M. The relationship between maximal jump-squat 

power and sprint acceleration in athlete. Eur J Appl Physiol 91: 46-52, 2004. 

37. Sleivert, GG, Esliger, DW, and Bourque, PJ. The neuromechanical effects of 

varying relative load in a maximal squat jump. Med Sci Sports Exerc 34(Suppl.): 

S125, 2002. 

38. Stone, MH, and O’Bryant, HS. Weight training: A scientific approach. 

Minneapolis: Burgess, 1987. 

39. Stone, MH, O’Bryant, HS, McCoy, L, Coglianese, R, Lehmkuhl, M, and Shilling, 

B. Power and maximum strength relationships during performance of dynamic 

and static weighted jumps. J Strength Cond Res 17: 140-147, 2003. 

40. Thomas, GA, Kraemer, WJ, Spiering, BA, Volek, JS, Anderson, JM, and Maresh, 

CM. Maximal power at different percentages of one repetition maximum: 

Influence of resistance and gender. J Strength Cond Res 21(2): 336-342, 2007. 

41. Toji, H, and Kaneko, M. Effect of multiple-load training on the force-velocity 

relationship. J Strength Cond Res 18: 792-795, 2004. 

42. Young, WB. Transfer of strength & power training to sports performance. 

International Journal of Sports Physiology and Performance 1: 74-83, 2006. 

43. Wilson, GJ, Newton, RU, Murphy, AJ, and Humphries, BJ. The optimal training 

load for the development of dynamic athletic performance. Med Sci Sports Exerc 

25: 1279-1286, 1993. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



POWER, FORCE & VELOCITY DURING JUMP SQUATS  22 

Figure Legend 

 

FIGURE 1 - Interpolated Peak Power Output (Panel A), Peak Vertical Ground 

Reaction Force (Panel B) and Peak Bar Velocity (Panel C) vs. Percentage Maximum 

Load during loaded jump squats at incremental loads. * indicates PPO or peak BV 

significantly lower than at 20% Load, P < 0.01. + indicates Force significantly greater 

than at 30% Load, P < 0.001. ^ indicates Force significantly greater than at 20% Load, 

P < 0.001. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



0

2000

4000

6000

P
e

a
k

 P
o

w
e

r 
O

u
tp

u
t 

(W
)

0

1000

2000

3000

4000

P
e

a
k

 F
o

rc
e

 (
N

)

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Pecentage Maximum Load (%)

P
e

a
k

 V
e

lo
c

it
y

 (
m

.s
-1

)

A

B

C

*

*
*

* * *

*

*

*
* *

*
*

*

*

+
+

+
+ +

^
^

^ ^

Figure


