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Abstract
Speech output is used extensively, including in situations where
correct message reception is threatened by adverse listening
conditions. Recently, there has been a growing interest in algo-
rithmic modifications that aim to increase the intelligibility of
both natural and synthetic speech when presented in noise. The
Hurricane Challenge is the first large-scale open evaluation of
algorithms designed to enhance speech intelligibility. Eighteen
systems operating on a common data set were subjected to ex-
tensive listening tests and compared to unmodified natural and
text-to-speech (TTS) baselines. The best-performing systems
achieved gains over unmodified natural speech of 4.4 and 5.1 dB
in competing speaker and stationary noise respectively, while
TTS systems made gains of 5.6 and 5.1 dB over their base-
line. Surprisingly, for most conditions the largest gains were
observed for noise-independent algorithms, suggesting that per-
formance in this task can be further improved by exploiting in-
formation in the masking signal.
Index Terms: intelligibility, speech modification, TTS

1. Introduction
Speech output – whether from mobile phones, public address
systems or simply domestic audio devices – is widely used. In
many listening contexts the intelligibility of the intended mes-
sage might be compromised by environmental noise or channel
distortion. Problems can be minimised by increasing output in-
tensity or repeating the message, but these approaches are not
ideal for either the listener (e.g. discomfort, stress; see [1]) or
the output device (e.g. power consumption, failure). A better
approach is to seek ways to modify the speech signal to increase
intelligibility in noise. The need for more robust speech output
is particularly pressing for TTS systems, whose intelligibility in
noise falls short of naturally-produced speech [2, 3].

While modification algorithms have been studied for some
time in audio [4] and speech technologies [5, 6], recent years
have witnessed a renewed interest in tackling what has been
termed the ‘near-end’ speech enhancement problem [7–15].
Consequently it is of interest to compare their performance us-
ing shared data and metrics.

The idea of a common evaluation of algorithms was piloted
in 2012 within the EU-funded ‘Listening Talker’ project. That
study [16] compared 7 speech modification algorithms against
read and Lombard speech and an unmodified TTS system. The
best techniques led to substantial gains over baseline. The Hur-
ricane Challenge extends the pilot study to an open international
evaluation of algorithms, the results of which are reported here.
Further details of the Challenge can be found at http://listening-
talker.org/hurricane.

2. The Challenge problem
Entrants to the Challenge (section 3) were provided with a cor-
pus of speech and noise waveforms (section 2.1), as well as
optional data resources to construct/adapt a TTS system (sec-
tion 2.2). Entrants then returned algorithmically-modified or
synthetically-generated speech waveforms for the entire corpus.
These were subjected to evaluation by listeners (section 4). En-
trants had around 6 weeks to prepare their modified signals, and
all made a financial contribution to the cost of listening tests.

2.1. Speech and noise corpora

The ‘Plain’ unmodified natural speech corpus consists of the
first 180 sentences of the Harvard corpus [17] read by a male
British English speaker. The Harvard corpus contains sen-
tences such as “the salt breeeze came across from the sea” ar-
ranged into phonemically-balanced subsets. The Plain corpus
was elicited as read speech from a highly-intelligible speaker,
and can therefore be considered as intrinsically rather clear (i.e.
hyper-articulated).

Entrants also received six sets of noise waveforms for each
utterance arising from the combination of two masker types
at three signal-to-noise ratios (SNRs). The noise conditions
were (i) a fluctuating masker, which was competing speech (CS)
from a female talker producing read speech scaled to produce
utterance-wide SNRs of -7, -14 and -21 dB; and (ii) a station-
ary masker, which was speech-shaped noise (SSN) whose long-
term average spectrum matched that of the CS, at SNRs of 1, -4
and -9 dB. Entrants therefore had access to separate speech and
masker signals as well as SNRs at which these would be subse-
quently combined for listener evaluation. Speech was centrally-
embedded in the noise with 0.5s lead/lag intervals. Entrants
were permitted to modify the overall duration of the speech
within these limits (i.e. a maximum total extension of 1s). All
materials were provided at a sampling rate of 16 kHz.

2.2. TTS

In addition to the speech and noise waveforms outlined above,
those entrants wishing to submit a TTS entry had available two
natural speech datasets (spoken by the same speaker who pro-
duced the Plain material) and associated orthographic transcrip-
tions. One consists of about 3 hours of additional unmodified
natural speech for three different reading materials: 2023 news-
paper style sentences, 300 sentences containing words from the
modified rhyme test [18] inserted in the carrier sentence ‘Now
we will say word again’, and the remaining 540 Harvard sen-
tences not used in the evaluation. The second dataset consists
of just under 1 hour of Lombard speech from the same speaker
who produced the Plain corpus, recorded with speech modu-



lated noise from a male speaker [19] played at 84 dBA over
headphones. This dataset consists of the same reading material
as the Plain set with the exception of the newspaper sentences.
Both datasets were sampled at 96 kHz.

3. Challenge entries
Each entry has a short name which is used in the results pre-
sentation. Many entries will be reported in full papers at Inter-
speech 2013 using the same identifiers.

AdaptDRC: AdaptDRC aims at enhancing speech con-
tent at high frequencies as well as boosting low energy speech
content in conditions of low predicted intelligibility. It ap-
plies a time- and frequency-dependent dynamic range compres-
sion (DRC) and frequency-shaping (FS) in octave bands. The
amount of DRC and FS is controlled by an estimate of the
Speech Intelligibility Index (SII).

F0-shift: F0 is shifted per-utterance to maximise an objec-
tive intelligibility metric based on energetic masking. Predicted
intelligibility is typically highest for large downward shifts in
F0, whose effect is to increase the number of resolved harmonic
components in an auditory-scaled speech representation.

GCRetime: Local speech rate is modified to minimise
overlap with a known fluctuating masker. Continuous time-
scale factors are derived from an optimisation procedure applied
to the energetic masking relations of the speech and noise mix-
ture [20] supplemented by the identification of potentially most
informative speech regions [21]. Intelligibility gains come from
energetic masking release, particularly in the time domain.

IWFEMD: Intrinsic mode functions (IMF) of empirical
mode decomposition (EMD) [22] representing speech are mod-
ified based on an inverse Wiener filter. Without reducing the
time-frequency resolution, the enhancement process for voiced
speech is performed on low frequency IMFs, in which harmonic
components are detected. For the unvoiced consonants, this en-
hancement process is performed on the high frequency IMFs.

on/offset: Speech components such as bursts and vocalic
onsets/offsets are selected using an extrapolation-based detec-
tor [23] and amplified with a variable gain. The additional
power used for amplification is taken from the strong voiced
components. The main goal was to subjectively evaluate this
basic time domain speech modification method without consid-
ering modification of the spectral information.

OptimalSII: A linear time-invariant filter is designed
which redistributes speech energy over frequency to maximise
the SII. Using a nonlinear approximation to the SII, a closed-
form solution could be found to the power-constrained optimi-
sation problem [24]. Note that this is not the same as the OptSII
system described in [16].

phoneLLabso: A recogniser trained on WSJ0 [25] pro-
vides phone segmentation information and associates signal
frames with acoustic models. Phone energy, normalised by du-
ration, is equalised for all phones in the sentence. The log-
likelihood (LL) of noisy frame-based features is maximised
for each phone in isolation, conditioned on the correct acous-
tic model, for a set of band-gain adjustment coefficients under
an energy-preservation constraint. A noise PSD estimator from
past observations enables the computation of noisy features.

phoneLLdscr: This entry builds on phoneLLabso, aug-
menting the objective measure with the difference of the mea-
sure in phoneLLabso, and the log of the sum of likelihoods con-
ditioned on alternative acoustic models [26]. To reduce com-
plexity, the context (phone neighbours) is assumed known and
only a subset of all alternative models is considered based on

the proximity of their LL scores to that obtained by the correct
model.

RESSYSMOD: Perceptually-significant features of the ex-
citation and vocal tract system are modified to increase the per-
ceived loudness of speech. Impulse-like excitation around glot-
tal closure instants and sharpness of formants are major contrib-
utors to perceived loudness. Modifications sharpen these two
features according to the level of degradation.

SBM: A spectrum binary mask for the clean speech is cal-
culated by comparing the short-time Fourier spectra of speech
and noise. At each frequency point, the SBM is set to 1 if the
speech spectrum amplitude is larger than the noise, otherwise 0.
The processed speech spectrum is obtained by multiplying the
SBM with the original clean spectrum. The modified speech is
re-synthesized by inverse Fourier transform/overlap-add.

SEO: Spectral energy is optimised retaining and emphasis-
ing acoustical features important for speech perception. Three
processing methods (flattening spectral tilt, enhancement of
spectrum contrast and retaining harmonics components in the
low frequency region) are combined. The processing is per-
formed with fixed parameters determined by consideration of
the energy balance of the three processed parts.

SINCoFETS: This system combines different noise-
dependent and independent algorithms. Non-uniform time-
scaling is used to slow down the speech and redistribute the
available time between the vowels and consonants (cf [27]).
Dynamic range compression is applied to decrease amplitude
differences between vowels and consonants. Finally, if severely
degraded SNR levels are detected, the system applies psycho-
acoustic based adaptive equalisation to improve intelligibility
robustness against the detected noise (cf [10]).

SSS: Steady-state portions of speech (syllable nuclei) are
detected from spectral transitions and their amplitudes are sup-
pressed, given their lesser importance for speech perception and
their greater energy compared with transient portions (sylla-
ble onset and coda) [28]. Since SSS suppresses steady-state
portions and hence relatively enhances transient portions when
compared with an unprocessed signal at the same SNR, it is
expected to increase speech intelligibility in noise.

uwSSDRCt: This entry incorporates additional spectral
and time domain modifications into the Spectral Shaping and
Dynamic Range Compression method [15]. (i) Speech is uni-
formly time stretched within the constraints of the Challenge in
order to increase signal redundancy; (ii) a frequency warping
approach to vowel space expansion is incorporated into the SS;
(iii) scaling to enhance the transient regions of speech is applied
in the time-domain along with DRC.

TTS: The TTS entry was a voice built by adapting a high
quality average voice model to the Plain dataset provided. The
training and adaptation data had a sampling rate of 48 kHz. To
train and adapt speech the following were extracted: 59 Mel
cepstral coefficients with α = 0.77, Mel scale F0, and 25 aperi-
odicity energy band. See [16] for more details.

TTSLGP-DRC: The excitation and duration parameters
of the voice ‘TTS’ were adapted to the Lombard dataset pro-
vided in order to mimic a speaker’s Lombard duration and F0

changes. To enhance the spectral envelope a noise-dependent
optimisation based on the glimpse proportion measure was per-
formed [29]. Finally, DRC was applied on the generated wave-
form to boost the lower level regions of speech.

C2H-TTS: This entry is a HMM-based TTS system in-
spired by the C2H model of Hyper- and Hypo-articulated
speech production [12, 30]. Transformations on synthetic
speech aim to control phonetic contrast by increasing/reducing



the acoustic distance between what are hypothesised to be low-
energy attractors for both human and synthetic speech. In this
instance, the system was applied to achieve the maximum de-
gree of hyper-articulated speech, i.e. maximum phonetic con-
trast.

GlottLombard: A TTS voice trained from modal speech
[31] was transformed to a Lombard voice by modifying glottal
pulse shape, spectral tilt, harmonic-to-noise ratio and F0. The
modifications were applied in unsupervised fashion based on a
few utterances of Lombard speech from the target speaker. In
addition, DRC and formant-sharpening were applied to increase
noise robustness.

PSSDRC-syn: HMM synthesis plus noise-independent
modifications at vocoder level: (1) amplification of the 1-4 kHz
band; (2) postfiltering with a voicing probability dependent fac-
tor; (3) F0 increment by factor 1.2; (4) standard deviation of
log-F0 multiplied by factor 1.5; (5) uniform lengthening of the
signal up to 120%; (6) DRC applied to the energy contour.

4. Listener evaluation
The subjective intelligibility of the 20 entries was measured in
6 noise conditions using a total of 21600 stimuli (20 entries x
180 sentences x 2 maskers x 3 SNRs) divided into blocks of
30. Within each block, entries were mixed such that by listen-
ing to 6 blocks (=180 sentences) a single participant would hear
9 sentences from each entry. A balanced design assigned lis-
teners to blocks such that (i) each listener heard one block of
30 sentences in each of the six noise conditions, (ii) no listener
heard the same sentence twice, and (iii) each noise condition
was heard by the same number of listeners.

Young adult listeners (predominantly 19-27 years old) were
recruited via the University of Edinburgh Student and Graduate
Employment service. Listeners were required to be native En-
glish talkers, to report no history of speech and/or language dis-
orders and to pass an audiological screening; 175 listeners met
these criteria. All were paid for their participation.

Modified speech entries were combined with maskers at
each SNR, computed over the region where the speech was
present (entrants who modified the original speech duration also
provided endpoint markers for the modified speech). Stimuli
were normalised to have the same root-mean-square level and
presented to participants in dedicated, sound-attenuated listen-
ing booths at the University of Edinburgh using Beyerdynamic
DT770 headphones. Listeners were given two short practice
sessions, one per masker type, presented at 0 dB SNR for SSN
and -3 dB for CS, using Plain speech Harvard sentences from
outside the sets used for the main test. Stimuli were presented
once only, and listeners could not change the output level.
Custom-built MATLAB software controlled the presentation of
stimuli and collection of responses. Participants were instructed
to type what they had heard rather than attempt to reconstruct
the whole sentence. The subsequent stimulus was presented au-
tomatically after the entry of a response. Null responses were
not permitted: listeners typed ‘X’ for those sentences when no
words were intelligible. The listening test was completed on
average in 40-45 minutes.

Responses were scored in terms of number of words cor-
rectly identified. Short words (‘a’, ‘the’, ‘in’, ‘to’, ‘on’, ‘is’,
‘and’, ‘of’, ‘for’, ‘at’) were not scored. Prior to scoring, both
reference sentence lists and listener responses were edited to re-
move punctuation. A custom dictionary was employed to match
common response alternatives (e.g. ‘sideshow’ vs ‘side show’,
‘50’ vs ‘fifty’).
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Figure 1: EICs in dB re Plain/TTS baselines (dotted lines) for
the SSN and CS maskers. Green: natural speech; blue: TTS.



Noise Duration gains in CS gains in SSN
Dependent? modified? snrHi snrMid snrLo snrHi snrMid snrLo

re. Plain 85.1 57.0 24.8 88.3 63.0 17.3
AdaptDRC yes no 1.7 (4) 2.9 (12) 2.4 (9) 0.9 (3) 2.2 (15) 3.1 (20)

F0-Shift yes no -1.8 (-5) -0.6 (-3) -0.6 (-2) -1.0 (-4) -0.7 (-6) -1.1 (-5)
GCRetime yes yes -0.1 (0) 4.4 (18) 4.0 (16) -1.3 (-5) -1.2 (-10) -0.5 (-2)
IWFEMD yes no -7.6 (-26) -3.5 (-16) -2.9 (-9) 0.8 (3) 0.0 (0) -0.6 (-3)

on/offset no no -0.2 (0) 1.4 (6) 0.7 (3) -0.3 (-1) -1.4 (-11) -0.3 (-1)
OptimalSII yes no -0.3 (-1) -1.7 (-8) -5.8 (-15) 0.9 (3) 2.1 (15) 4.7 (33)

phoneLLabso yes yes -5.8 (-19) -3.1 (-14) -0.9 (-3) -1.5 (-7) 0.7 (5) 3.5 (23)
phoneLLdscr yes yes -6.3 (-21) -2.3 (-11) -2.0 (-6) -1.4 (-6) 1.5 (11) 3.7 (25)

RESSYSMOD no no -11.0 (-42) -9.0 (-37) -6.2 (-15) -5.9 (-38) -4.3 (-35) -1.7 (-7)
SBM yes no 0.4 (1) 0.5 (2) 0.0 (0) -0.9 (-4) -1.4 (-11) -0.3 (-1)
SEO no no 1.7 (4) 3.9 (16) 3.5 (14) 2.2 (6) 3.3 (21) 4.8 (34)

SINCoFETS yes yes 1.4 (3) 0.6 (3) -0.5 (-2) -0.2 (-1) 1.6 (12) 1.2 (6)
SSS no no -3.4 (-10) -2.7 (-12) -2.3 (-7) -2.9 (-14) -3.5 (-29) -1.2 (-5)

uwSSDRCt no yes 1.1 (2) 3.4 (14) 3.9 (16) 0.2 (1) 3.1 (20) 5.1 (37)
TTS no yes -7.3 (-25) -5.8 (-26) -5.0 (-13) -4.3 (-25) -3.7 (-30) -3.1 (-11)

re. TTS 59.7 31.3 11.7 63.7 32.8 6.8
TTSLGP-DRC yes yes 1.4 (6) 3.8 (17) 4.9 (13) 2.7 (17) 4.1 (33) 4.0 (15)

C2H-TTS yes yes -3.1 (-14) -1.8 (-7) -0.5 (-1) -2.1 (-17) -1.6 (-10) 0.4 (1)
GlottLombard no yes -0.1 (0) 1.1 (5) 2.4 (5) 0.5 (4) 2.3 (19) 4.3 (17)
PSSDRC-syn no yes 1.3 (5) 4.0 (18) 5.6 (16) 2.0 (14) 3.8 (31) 5.1 (22)

Fisher LSD 2.0 (4.7) 1.2 (5.5) 1.3 (4.6) 1.2 (4.2) 0.7 (5.2) 1.0 (4.8)

Table 1: Changes relative to Plain and TTS baselines for Hurricane 2013 entries, expressed as EICs in dB, with percentage points changes in keyword
scores in parentheses. Entries with the largest gains for each noise type/SNR combination are highlighted. The keywords correct scores expressed in
absolute percentages for the Plain and TTS baselines are also provided as well as Fisher’s LSD values.

Intelligibility gains/losses for each entry over the appropri-
ate Plain or TTS baseline are shown in Figure 1. Gains are
expressed as equivalent intensity changes (EICs) computed by
mapping scores to psychometric curves previously obtained for
each masker using Plain speech (see [16] for details). EICs are
plotted for SSN against CS to permit a clearer visualisation of
which methods are beneficial for one or both types of masker.

Table 1 lists changes relative to Plain in dBs and percentage
points. The largest gains for both natural and synthetic entries
in each masker condition are highlighted. To permit compari-
son of entries, Fisher’s least significant differences in dBs and
percentage points are also tabulated, computed using separate
ANOVAs for each SNR level and masker type with a single fac-
tor of modification entry.

5. Discussion
Large intelligibility gains equivalent to boosting the level of un-
modified speech by up to 5.6 dB were observed, with similar-
sized increases over both natural and TTS baselines and for
both types of masker. These gains are substantial, reaching up
to 37 percentage points of word accuracy. Larger gains were
seen at mid and low SNRs, perhaps due to the limited scope
for improvement over the baseline in the high SNR conditions,
although it is notable that TTS systems operating from a lower
baseline also showed smaller gains in the high SNR condition.

A high degree of masker preference can be seen in these
results. For natural speech, only 3 methods (SEO, uwSS-
DRCt, AdaptDRC) produced significant gains for both CS and
SSN maskers. Other approaches (optimalSII, phoneLLdscr,
phoneLLabso, SINCoFETS) performed well in stationary noise
but were more or less harmful for the non-stationary case, where
GCRetime scored well.

Not surprisingly, Plain speech was more intelligible than
unmodified TTS, although the gap reduced with decreasing
SNR from around 4/7 dB to 3/5 dB for SSN/CS respectively.
However, one striking outcome of the Challenge is the find-

ing that three modified TTS entries (PSSDRC-syn, TTSLGP-
DRC, GlottLombard) reached and even exceeded the intelligi-
bility level of Plain speech in stationary noise, with PSSDRC-
syn also showing marginal gains for the CS masker. As noted
earlier, the Plain utterances were intrinsically clear, and to boost
TTS beyond that level is a significant achievement.

Intriguingly, there was no clear advantage for entries that
used prior knowledge of the masker. In fact, two of the best
techniques overall for natural speech (SEO, uwSSDRCt) were
noise-independent, as was PSSDRC-syn for TTS. Durational
changes were used by nearly half of natural speech entries and
all TTS systems and appear to have contributed to good perfor-
mance in several cases, especially for the GCRetime approach
which exploits temporal fluctuations in the masker. The perfor-
mance of SEO is of note given that it exploited neither dura-
tional expansion nor knowledge of the masker signal.

While detailed discussion of individual modification algo-
rithms and their components is outside the scope of this sum-
mary article, it is clear that most of the natural and TTS en-
tries that incorporated dynamic range compression (AdaptDRC,
uwSSDRCt, TTSLGP-DRC, PSSDRC-syn) performed well.

In conclusion, the first large-scale open evaluation of
speech modification algorithms designed to enhance intelligi-
bility has demonstrated worthwhile gains over a relatively-clear
unmodified speech baseline. It is to be hoped that synergis-
tic combination of techniques or their components is possible,
leading to larger gains. Other factors which might be measured
in future comparisons include speech quality, perceived loud-
ness and computational complexity.
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