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Abstract. To compare different forecasting methods on demand series
we require an error measure. Many error measures have been proposed,
but when demand is intermittent some become inapplicable, some give
counter-intuitive results, and there is no agreement on which is best. We
argue that almost all known measures rank forecasters incorrectly on
intermittent demand series. We propose several new error measures with
wider applicability, and correct forecaster ranking on several intermittent
demand patterns. We call these “mean-based” error measures because
they evaluate forecasts against the (possibly time-dependent) mean of
the underlying stochastic process instead of point demands.

1 Introduction

Inventory management is of great economic importance to industry, but forecast-
ing demand for spare parts is difficult because it is intermittent : in many time
periods the demand is zero. This type of demand occurs in several industries,
for example in aerospace and military inventories from which spare parts such
as wings or jet engines are infrequently required. Various methods have been
proposed for forecasting, some simple and others statistically sophisticated, but
relatively little work has been done on intermittent demand. Most work in this
area is influenced by that of [5], who first separated the forecasting of demand
size and inter-demand interval. A survey of forecasting methods for spare parts
is given in [3].

To choose a good forecasting method we can test the alternatives empirically
on demand series to see which gives the smallest error. For this we require an
error measure (or accuracy measure). Unfortunately, there is no general agree-
ment on which of the many existing error measures is best. Forecasting methods
have been extensively compared on real and simulated data in the well-known
M-, M2- and M3-competitions [14,15,16] using several error measures. However,
these forecasting competitions did not deal specifically with intermittent de-
mands, so the experience gained from these competitions cannot be used as a
guide.

http://arxiv.org/abs/1310.5663v1


For intermittent demand series some error measures are inapplicable because
division by zero leads to infinities, but there are still several possibilities. This is
an important issue because if researchers are free to choose from a large set of
measures then their results are likely to be incomparable. Moreover, there is a
temptation to choose measures that give desired results [24], making experiments
less objective. In 1992 the editor of the International Journal of Forecasting wrote
that the choice of error measure is not a matter of personal preference and urged
researchers to follow contemporary recommendations [24].

In this paper we examine the suitability of known error measures for in-
termittent demand, and propose new improved measures. Section 2 provides
background, demonstrates anomalous behaviour in existing error measures, and
proposes new measures. Section 3 evaluates the new measures on simulated data.
Section 4 concludes the paper.

2 New error measures

In this section we provide some necessary background and describe our con-
tribution. Section 2.1 describes the relevant forecasting methods, Section 2.2
surveys known error measures, Section 2.3 argues that these measures can rank
forecasters incorrectly, and Section 2.4 proposes new measures.

2.1 Forecasting methods

First we describe the forecasting methods that will be used in the paper. Single
exponential smoothing (SES) computes a smoothed series ỹt via the formula

ỹt = αyt + (1− α)ỹt−1

where α ∈ (0, 1) is a smoothing parameter . The smaller the value of α the less
weight is attached to the most recent observations. An up-to-date survey of
exponential smoothing algorithms is given in [8]. They perform remarkably well,
often beating more complex approaches [7]. However, SES is known to perform
poorly on intermittent demand, at least under some error measures.

The standard method for handling intermittency is Croston’s method [5]
which applies SES to the non-zero demand sizes y and inter-demand intervals
τ independently, using smoothing factors α and β respectively. Given smoothed
demand ỹt and smoothed interval τ̃t at time t, the forecast is ft = ỹt/τ̃t. Both
ỹt and τ̃t, and hence ft, are updated at each time t for which yt 6= 0. Alternative
versions were proposed by [13,17,18] and we shall use the variant of Syntetos &
Boylan [18] which is known to have low bias and variance on stochastic demand.

We also mention the random walk method (RW), also known as the naive

method : take the previous period’s demand as a forecast. Though RW is a rather
trivial forecaster, it is often used as a baseline for evaluating other methods.

Finally we mention the forecaster that always forecasts 0, which following
[20] we call ZF. It was proposed by Croston, mentioned by [25] and studied by
[4,20].



2.2 Existing error measures

Next we survey error measures, largely based on [10,11]. No one error measure
is generally accepted as useful on intermittent demand, and opinion is highly
divided [24]. A common compromise is to use more than one measure as in
the forecasting competitions, and [9] recommend using different measures for
different types of demand.

Scale-dependent measures The most common are:

– Mean [Signed] Error (ME): mean(et)
– Mean Square Error (MSE): mean(e2

t
)

– Root Mean Square Error (RMSE):
√
MSE

– Mean Absolute Error (MAE): mean(|et|)
– Median Absolute Error (MdAE): median(|et|)

where et is the error yt − ŷt. These are useful for comparing methods on one
series, but not for comparing over several series. Doubt has been cast on the
suitability of MAE for intermittent demand [26].

Percentage errors These are also popular:

– Mean Absolute Percentage Error (MAPE): mean(|pt|)
– Median Absolute Percentage Error (MdAPE): median(|pt|)
– Root Mean Square Percentage Error (RMSPE):

√

mean(p2t )

– Root Median Square Percentage Error (RMdSPE):
√

median(p2
t
)

– Symmetric Mean Absolute Percentage Error (sMAPE): mean(200|et|/(yt +
ŷt))

– Symmetric Median Absolute Percentage Error (sMdAPE): median(200|et|/(yt+
ŷt))

where pt = 100et/yt. The last two measures are motivated by the fact that
MAPE and MdAPE penalise positive errors more than negative ones.

However, percentage errors are undefined if any yt = 0 (and if ŷt = 0 in the
last two cases) and have very skewed distributions when yt ≈ 0. It is also pointed
out in [11] that they assume a meaningful zero, which is not the case for some
data such as temperatures. Despite these drawbacks MAPE is recommended by
most textbooks and was the main error measure used in the M-competition,
while MdAPE is recommended by [6], and sMAPE and sMdAPE were used in
the M3-competition.

It is pointed out by [12] that many commercial software packages report a
MAPE even when a series contains zeros, although the MAPE is technically un-
defined in this case. This is done by simply excluding periods with zero demands,
which does not reflect the true errors of a forecast. We shall denote this MAPE
variant by iMAPE.



Relative error-based measures We may also scale by using errors from other
measures:

– Mean Relative Absolute Error (MRAE): mean(|rt|)
– Median Relative Absolute Error (MdRAE): median(|rt|)
– Geometric Mean Relative Absolute Error (GMRAE): gmean(|rt|)

where rt = et/e
∗

t and e∗t is the error from a baseline method which is often RW.
GMRAE is also known as Relative Geometric Root Mean Square and has

desirable statistical properties [6]. It is used by [18], and [1] recommends the use
of relative error-based measures. It has been proposed for intermittent demand
in particular [18]. However, these measures have the drawback of infinite variance
because e∗t can be arbitrarily small [4,11]. In the particular case of intermittent
demand with RW as baseline, e∗

t
is often zero so these measures are undefined.

Extreme values can be trimmed [1] but this introduces some arbitrariness [11].

Relative measures Instead of computing an absolute quantity to measure the
accuracy of a method, we may compare it with another method. This can be
done for many types of error measure, for example

– Relative Mean Absolute Error (RelMAE): MAE/MAEb

– Relative Mean Squared Error (RelMSE): MSE/MSEb

– Relative Root Mean Squared Error (RelRMSE): RMSE/RMSEb

– etc

where MAEb, MSEb and RMSEb are the MAE, MSE and RMSE of a baseline
measure. The most popular baseline is RW, in which case RelRMSE is Theil’s
U2 statistic [22] and logRelMSE is Thompson’s LMR measure [23]. RelMAE
was recommended for intermittent demand by [18] and called CumMAE by [1].
It is unlikely for these measures to become infinite, because the denominator is
only zero if the baseline forecaster gives perfect results.

Another relative measure is Percent Better (PB) where a method is com-
pared to another, usually RW, by how often its absolute error is smaller. This is
recommended by [12]. A related measure is Percent Best (PBt) which compares
several methods and computes the percentage of times each is most accurate. A
drawback with PB and PBt is that they give no indication of the size of errors,
so one large error is considered to be less serious than two tiny errors.

Scaled errors Wemention two of these. Firstly, the MAD/Mean Ratio [12], also
called the Weighted MAPE, which we shall abbreviate to MMR. MAD (Mean
Absolute Deviation) is another name for MAE so MMR = MAE/ME. Secondly,
the MASE [11] (Mean Absolute Scaled Error) defined by

MASE = mean(|qt|)

where qt is a scaled error defined by

qt =
et

1

n−1

∑

n

i=2
|yi − yi−1|



and t = 1 . . . n is the set of sample periods used for forecasting. MASE effec-
tively evaluates a forecasting method against RW. The only situation in which
it is unusable is when all in-sample demands are identical. Other scaled error
measures defined analogously to MASE include the Root Mean Squared Scaled
Error (RMSSE) and the Median Absolute Scaled Error (MdASE). MASE has
been argued to be superior to several other methods used in forecasting compe-
titions. An advantage of MASE over MMR is that it is more reliable on demand
with seasonality, trends or other forms of non-stationarity. However, [12] note
that the MASE of two series with identical forecasts and identical demands dur-
ing the forecast horizon will differ if the two series differed in their historical
demands. This is counter-intuitive so MASE is not always easy to interpret.

2.3 Ranking forecasters

Which forecaster is best for intermittent demand? There is no universally-agreed
ranking but CR is often applied in practice to intermittent demand [7], and
versions of CR are used in leading statistical forecasting software packages such
as SAP and Forecast Pro [21] so we might expect it to be ranked first. However,
there is some debate on this issue.

[4] investigate whether MAPE, MSE or U2 is the best error measure for
intermittent demand, using more than one error measure. They find that ZF
does surprisingly well, beating SES and CR on lumpy demand under a modified
MAPE, but losing under MSE and U2. However, [20] note that ZF is of no
practical use for inventory control. [18] found that SES beat CR on intermittent
demand, using more than one error measure, though CR was better if issue
point only were considered. According to [8] it is hard to conclude from the
various studies that CR is best, because the results depend on the data and
error measures used. [2] also note that there is no conclusive evidence pointing
to a best method. But [20] conclude that the apparently poor performance of
CR in some studies is caused by the use of inappropriate error measures, while
[9,20,27] found that CR beats SES on intermittent series.

Our position is that it is both reasonable and consistent with current wisdom
to rank CR above SES, and SES above ZF, on intermittent demand series. CR
has maintained its popularity over several decades, and if practitioners prefer a
method based on experience, then any error measure that disagrees with this
preference is of little use to them. We shall therefore take it as axiomatic that
any error measure that fails this test, which we denote by CR ≻ SES ≻ ZF,
should not be applied to intermittent demand. Of course some researchers will
disagree with this position, which is entirely reasonable, but we hope that our
work will be of use to those who agree with our ranking axiom.

2.4 Mean-based error measures

In Section 3 we shall test known error measures against this axiom. First we
propose several new measures: in fact one for each existing measure, obtained
by evaluating forecasts against the mean of the underlying stochastic process of



the demand, which we denote ym
t
, instead of the point demand yt. So instead of

the usual error et = yt− ŷt we use e
m
t = ymt − ŷt, instead of pt = 100et/yt we use

pmt = 100emt /ymt , and similarly for baseline measures. The error emt measures
how well a forecaster ignores noise and estimates the underlying demand rate.
We shall call these mean-based measures, and denote them by adding the prefix
“m” to the measure they are based on (mMAE, mMSE, etc).

For artificial data it is easy to find ymt . For stationary demand we can use
ym
t

= mean(yt) where the mean is either derived analytically or simply computed
over the entire series. For non-stationary demand the mean of the stochastic
process is a function of time, but we can still use our knowledge of the data
to obtain the dynamic underlying demand rate. For example the obsolescence
experiments of [21] use artificial data whose non-zero demand probability drops
either linearly or abruptly to 0, whereas demand sizes follow a fixed distribution:
in either case we can multiply the current probability by the fixed distribution
mean to obtain ymt .

On real-world series the stochastic process is of course unknown, though one
can make assume a particular form (for example a Poisson process) then estimate
its parameters. A simple approach is to estimate the current mean demand
via standard techniques used to estimate seasonal components. It is common
to estimate a seasonal component by taking a moving average over a window,
stretching forward and backward in time. We can use the same moving window
technique to obtain a smoothed version of the demand series, and use this as
ymt . If the demand series is too short to use a moving window, we can estimate
the changing mean by regression. Or if we assume demand to be stationary, we
can take the series mean as ymt . As with seasonal component estimation, there
are several reasonable approaches.

Mean-based error measures have wider applicability than their original coun-
terparts. Percentage errors such as MAPE are undefined whenever yt = 0,
whereas mMAPE is only undefined when ym

t
= 0: for stationary demand ym

t

is the series mean, which is only zero when yt = 0 for all t. Relative error-based
measures such as GMRAE with RW as baseline are undefined on intermittent
demand, because both the demand and RW’s forecast are often zero so the RW
error e∗t (which is the denominator) is also zero. However, a measure such as
mGMRAE is only undefined when the denominator e∗m

t
= y∗m

t
− ŷ∗

t
is zero: the

RW forecast ŷ∗t will often be zero, but again y∗mt is only zero when yt = 0 for all
t.

We now have a large number of new error measures, none of which is likely
to give infinite answers on intermittent demand. This allows us to measure fore-
casting deviations using absolute or squared values, in scaled or unscaled ways,
and on one or multiple demand series. In the next section we shall evaluate them
with respect to our forecaster ranking axiom.



3 Experiments

The error measures we compare are selected from the various classes described
in Section 2.2. To represent the scale-dependent measures we use MAE, MdAE
and MSE and their mean-based equivalents mMAE, mMdAE and mMSE; from
the percentage errors we use iMAPE and mMAPE. Note that the mMAPE of
ZF is always 100emt /ymt = 100(ymt − 0)/ymt = 100 and the iMAPE of ZF is
always 100et/yt = 100(yt − 0)/yt = 100 (MAPE is undefined on intermittent
demand). To represent the relative error-based measures we use only mGMRAE
with RW as baseline (GMRAE with RW as baseline is undefined for intermittent
demand). To represent the relative measures we use PB and mPB with RW as
baseline.

We start with data based on that used in the experiments of Teunter et al.
[21]. Demands occur with some probability in each period, hence inter-demand
intervals are distributed geometrically, and we use a logarithmic distribution
for demand sizes. Geometrically distributed intervals are a discrete version of
Poisson intervals, and the combination of Poisson intervals and logarithmic de-
mand sizes yields a negative binomial distribution, for which there is theoretical
and empirical evidence: see for example the recent discussion in [19]. Teunter
et al. generate demand data that is nonzero with probability p0 where p0 is
either 0.2 or 0.5, and whose size is logarithmically distributed. The logarith-
mic distribution is characterised by a parameter ℓ ∈ (0, 1) and is discrete with
Pr[X = k] = −ℓk/k log(1 − ℓ) for k ≥ 1. They use two values: ℓ = 0.001 to
simulate low demand and ℓ = 0.9 to simulate lumpy demand.

Tables 1–4 show best results for SES, CR and ZF using α and β values cho-
sen from {0.1, 0.2, 0.3}. We initialise the forecasters by choosing arbitrary initial
values ŷ0 = τ̂0 = 1 then running them for 104 periods using demand probability
p0. Results are then computed over 105 time periods. To estimate the stochastic
process mean we simply compute the mean of all 105 demands (including zeros).
The results show that MAE, MdAE and iMAPE are unreliable error measures
for some types of intermittent demand because they incorrectly rank the three
forecasters. PB is more reliable but the differences are sometimes very small, and
in one case PB ranked CR and SES equally. Among existing measures only MSE
behaves correctly. However, all mean-based measures behave correctly, though
mPB still scores CR and SES quite similarly. We also tried geometrically dis-
tributed demand sizes as in [21], and regular intermittent demand as in [5], with
similar results.

However, in further experiments MSE was also unreliable. Willemain et al.

[27] point out that demand in industrial data is often autocorrelated: demand
may occur in streaks, with longer sequences of zero or nonzero values than one
would expect. This is a positive autocorrelation on demand intervals, but they
also observed negative autocorrelation: frequent alternation between zero and
nonzero demand. Following Willemain et al. we model autocorrelation by a first-
order 2-state Markov process. Let all demands be 0 or 1, and denote the tran-
sition probability from 0 to 1 by p01, and from 1 to 0 by p10. On negatively
autocorrelated demand MSE ranks correctly, but results for positively autocor-



error SES CR ZF forecaster
measure α error α β error error ranking

MAE 0.3 0.32134 0.1 0.3 0.31846 0.20141 ZF ≻ CR ≻ SES
MdAE 0.3 0.23740 0.3 0.3 0.20867 0.00000 ZF ≻ CR ≻ SES
MSE 0.1 0.16931 0.1 0.1 0.16271 0.20151 CR ≻ SES ≻ ZF
iMAPE 0.3 79.77339 0.1 0.1 80.07155 100.00000 SES ≻ CR ≻ ZF
PB 0.1 32.52000 0.1 0.1 32.52000 16.26000 CR = SES ≻ ZF

mMAE 0.1 0.07434 0.1 0.1 0.03225 0.20122 CR ≻ SES ≻ ZF
mMdAE 0.3 0.13379 0.3 0.3 0.04651 0.20160 CR ≻ SES ≻ ZF
mMSE 0.1 0.00856 0.1 0.1 0.00167 0.04054 CR ≻ SES ≻ ZF
mMAPE 0.1 36.91216 0.1 0.1 16.01403 100.00000 CR ≻ SES ≻ ZF
mPB 0.3 97.83000 0.1 0.3 98.75000 20.15000 CR ≻ SES ≻ ZF
mGMRAE 0.1 0.30005 0.1 0.1 0.13512 0.84936 CR ≻ SES ≻ ZF

Table 1. Results for artificial demand with p0 = 0.2 and ℓ = 0.001

error SES CR ZF forecaster
measure α error α β error error ranking

MAE 0.3 0.49945 0.1 0.3 0.49962 0.49963 SES ≻ CR ≻ ZF
MdAE 0.3 0.50463 0.3 0.3 0.50064 0.00000 ZF ≻ CR ≻ SES
MSE 0.1 0.26335 0.1 0.1 0.25643 0.50003 CR ≻ SES ≻ ZF
iMAPE 0.3 49.97213 0.1 0.1 24.98300 100.00000 CR ≻ SES ≻ ZF
PB 0.3 50.63000 0.1 0.1 50.65000 25.31000 CR ≻ SES ≻ ZF

mMAE 0.1 0.09310 0.1 0.1 0.06324 0.49993 CR ≻ SES ≻ ZF
mMdAE 0.3 0.15114 0.3 0.3 0.09643 0.49870 CR ≻ SES ≻ ZF
mMSE 0.1 0.01339 0.1 0.1 0.00614 0.24985 CR ≻ SES ≻ ZF
mMAPE 0.1 18.63340 0.1 0.1 12.65683 100.00000 CR ≻ SES ≻ ZF
mPB 0.3 99.95000 0.1 0.1 100.00000 49.84000 CR ≻ SES ≻ ZF
mGMRAE 0.1 0.17928 0.1 0.1 0.12201 0.99721 CR ≻ SES ≻ ZF

Table 2. Results for artificial demand with p0 = 0.5 and ℓ = 0.001

error SES CR ZF forecaster
measure α error α β error error ranking

MAE 0.1 1.25741 0.1 0.3 1.23205 0.77191 ZF ≻ CR ≻ SES
MdAE 0.3 0.53944 0.3 0.3 0.67425 0.00000 ZF ≻ SES ≻ CR
MSE 0.1 7.10279 0.1 0.1 6.83258 7.35755 CR ≻ SES ≻ ZF
iMAPE 0.1 68.79125 0.1 0.1 59.83256 100.00000 CR ≻ SES ≻ ZF
PB 0.3 31.80000 0.1 0.3 33.09000 17.31000 CR ≻ SES ≻ ZF

mMAE 0.1 0.44085 0.1 0.1 0.21087 0.77266 CR ≻ SES ≻ ZF
mMdAE 0.3 0.56279 0.3 0.3 0.28997 0.76560 CR ≻ SES ≻ ZF
mMSE 0.1 0.36904 0.1 0.1 0.07450 0.59660 CR ≻ SES ≻ ZF
mMAPE 0.1 57.11138 0.1 0.1 27.31830 100.00000 CR ≻ SES ≻ ZF
mPB 0.2 87.12000 0.3 0.3 89.02000 12.42000 CR ≻ SES ≻ ZF
mGMRAE 0.1 0.58574 0.1 0.1 0.29300 1.09061 CR ≻ SES ≻ ZF

Table 3. Results for artificial demand with p0 = 0.2 and ℓ = 0.9



error SES CR ZF forecaster
measure α error α β error error ranking

MAE 0.1 2.38007 0.1 0.3 2.28662 1.93788 ZF ≻ CR ≻ SES
MdAE 0.3 1.45094 0.3 0.3 1.38990 0.00000 ZF ≻ CR ≻ SES
MSE 0.1 16.01983 0.1 0.1 15.59856 18.97148 CR ≻ SES ≻ ZF
iMAPE 0.1 72.02938 0.1 0.3 65.44701 100.00000 CR ≻ SES ≻ ZF
PB 0.1 50.78000 0.1 0.1 50.89000 31.69000 CR ≻ SES ≻ ZF

mMAE 0.1 0.68463 0.1 0.1 0.48617 1.93752 CR ≻ SES ≻ ZF
mMdAE 0.3 0.95963 0.3 0.3 0.72759 1.90290 CR ≻ SES ≻ ZF
mMSE 0.1 0.79809 0.1 0.1 0.38147 3.75220 CR ≻ SES ≻ ZF
mMAPE 0.1 35.32882 0.1 0.1 25.08728 100.00000 CR ≻ SES ≻ ZF
mPB 0.3 78.51000 0.3 0.3 79.11000 15.88000 CR ≻ SES ≻ ZF
mGMRAE 0.1 0.94599 0.1 0.1 0.72287 2.83995 CR ≻ SES ≻ ZF

Table 4. Results for artificial demand with p0 = 0.5 and ℓ = 0.9

related demand with p01 = p10 = 0.3 are shown in Table 5. Here MAE, MdAE,
MSE and iMAPE are all unreliable while mMAE, mMdAE, mMSE, mMAPE,
mGMRAE and mPB give correct rankings, as does PB. We found similar results
for other values of p01 and p10.

error SES CR ZF forecaster
measure α error α β error error ranking

MAE 0.3 0.41673 0.1 0.3 0.49992 0.49880 SES ≻ ZF ≻ CR
MdAE 0.3 0.37776 0.3 0.3 0.49221 0.00000 ZF ≻ SES ≻ CR
MSE 0.2 0.24507 0.1 0.1 0.26352 0.49880 SES ≻ CR ≻ ZF
iMAPE 0.3 41.77340 0.1 0.1 49.86910 100.000 SES ≻ CR ≻ ZF
PB 0.3 43.55000 0.1 0.3 44.29000 21.82000 CR ≻ SES ≻ ZF

mMAE 0.1 0.13732 0.1 0.1 0.09385 0.49902 CR ≻ SES ≻ ZF
mMdAE 0.3 0.23571 0.3 0.3 0.14783 0.49940 CR ≻ SES ≻ ZF
mMSE 0.1 0.02808 0.1 0.1 0.01344 0.24865 CR ≻ SES ≻ ZF
mMAPE 0.1 27.52970 0.1 0.1 18.81399 100.000 CR ≻ SES ≻ ZF
mPB 0.3 96.82000 0.3 0.3 98.65000 30.02000 CR ≻ SES ≻ ZF
mGMRAE 0.1 0.28674 0.1 0.1 0.20195 0.99883 CR ≻ SES ≻ ZF

Table 5. Results for autocorrelated demand with p01 = p10 = 0.3

Collectively these results imply that almost all tested error measures are
unreliable. They also imply that other untested error measures are unreliable,
because they are monotonic functions of MAE or MSE and hence rank forecasters
in the same way. These include RMSE, relative measures such as RelMAE and
RelMSE and as their special cases U2 and LMR, and scaled errors such as MMR
and MASE. Hence most existing error measures are inapplicable to intermittent



demand, if our ranking axiom is reasonable. PB was almost correct, but in one
case it was unable to distinguish between CR and SES (see Table 1).

We conclude that all known error measures (except ME which measures bias,
not deviation) are unreliable on some types of intermittent demand, even when
they do not incur infinities, so there is currently no reliable way of measuring
deviation. These results reinforce and complement those of [20], who show that
MAE and RMSE rank ZF above SES (and above a moving average), and SES
above CR, on a large data set of intermittent demand from an air force. Our
results apply to more error measures and are more easily reproducible, being
based on simple artificial data. But their result shows that the inappropriateness
of at least some current error measures extends to real data. In contrast, our
new measures gave correct results in all cases.

Based on our experiments, and on inapplicabilities pointed out by other re-
searchers, we make two proposals regarding measures of deviation for inter-
mittent demand. Firstly, we do not recommend any existing error measures.
Secondly, we recommend several new error measures: mMSE, mRMSE, mMAE,
mMdAE, mMAPE, mRelMSE (including special cases mU2 and mLMR plus
other relative measures such as mRelMAE), mRelRMSE, mMMR, mMASE and
mGMRAE. Which of these is best depends on user preference, and considera-
tions such as whether errors are to be compared on one or across several series.

In our experiments we did not evaluate several other possible new measures:
mMdAPE, mRMSPE, mRMdSPE, msMAPE, msMdAPE, mMRAE, mMdRAE,
mRMSSE and mMdASE, all defined in the obvious way. We leave their evalua-
tion for future work.

4 Conclusion

We have shown that almost all known error measures rank forecasting methods
incorrectly on some intermittent demand series. Given this result, and the well-
known fact that several error measures are inapplicable to intermittent demand
because of infinities, there is currently no reliable way of measuring forecast
deviation errors on such demands.

To alleviate this problem, we described a simple way of modifying all known
error measures so that they are more widely applicable and behave more cor-
rectly. This yields many new mean-based error measures that can be used to
compare forecasters on intermittent demand. They are unlikely to be plagued
by infinities, and in tests they consistently ranked forecasters correctly.

We have defined a large number of new error measures, and it might be argued
that this only adds to the confusion. But we believe that the improved behaviour
and wider applicability of our measures make them worth considering when faced
with intermittent demand. To simplify matters we should perhaps recommend a
small number of new measures. Based on popularity and the recommendations
of experts, we choose the mean-based analogues of MAPE, GMRAE and U2.

In future work we shall evaluate other error measures that can be modified
by our technique. We shall experiment with artificial non-stationary data and



real-world series. The statistical properties of the new error measures should
be investigated. Finally, the new error measures can also be applied to non-
intermittent demand, and we shall evaluate their usefulness using series from
the forecasting competitions.
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