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Abstract

Disease progression in HIV-infected individuals varies greatly, and while the environmental and host factors influencing this
variation have been widely investigated, the viral contribution to variation in set-point viral load, a predictor of disease
progression, is less clear. Previous studies, using transmission-pairs and analysis of phylogenetic signal in small numbers of
individuals, have produced a wide range of viral genetic effect estimates. Here we present a novel application of a
population-scale method based in quantitative genetics to estimate the viral genetic effect on set-point viral load in the UK
subtype B HIV-1 epidemic, based on a very large data set. Analyzing the initial viral load and associated pol sequence, both
taken before anti-retroviral therapy, of 8,483 patients, we estimate the proportion of variance in viral load explained by viral
genetic effects to be 5.7% (CI 2.8–8.6%). We also estimated the change in viral load over time due to selection on the virus
and environmental effects to be a decline of 0.05 log10 copies/mL/year, in contrast to recent studies which suggested a
reported small increase in viral load over the last 20 years might be due to evolutionary changes in the virus. Our results
suggest that in the UK epidemic, subtype B has a small but significant viral genetic effect on viral load. By allowing the
analysis of large sample sizes, we expect our approach to be applicable to the estimation of the genetic contribution to
traits in many organisms.

Citation: Hodcroft E, Hadfield JD, Fearnhill E, Phillips A, Dunn D, et al. (2014) The Contribution of Viral Genotype to Plasma Viral Set-Point in HIV Infection. PLoS
Pathog 10(5): e1004112. doi:10.1371/journal.ppat.1004112

Editor: Michael Worobey, University of Arizona, United States of America

Received September 24, 2013; Accepted March 22, 2014; Published May 1, 2014

Copyright: � 2014 Hodcroft et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Biological Sciences Research Council studentship (www.bbsrc.ac.uk) and funds from the Royal Society
(royalsociety.org). The UK HIV Drug Resistance Database is supported by the Medical Research Council (grant number G0900274) (www.mrc.ac.uk) and is partly
funded by the Department of Health (www.gov.uk/government/organisations/department-of-health). Additional support for the UK HIV RDB is provided by
Boehringer Ingelheim (www.boehringer-ingelheim.co.uk), Bristol-Myers Squibb (www.b-ms.co.uk), Gilead (www.gilead.com), Tibotec (a division of Janssen-Cilag)
(www.janssentherapeutics.com) and Roche (www.roche.co.uk). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: Additional support for the UK HIV Resistance Database is provided by Boehringer Ingelheim, Bristol-Myers Squibb, Gilead, Tibotec (a
division of Janssen-Cilag) and Roche. Although some authors have received funding from various commercial organizations for research, travel grants, speaking
engagements or consultancy fees, neither those organizations nor the study funders had any role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript and this does not alter our adherence to all PLOS Pathogens policies on sharing data and materials.

* E-mail: A.Leigh-Brown@ed.ac.uk

" Membership of the UK HIV Drug Resistance Database and the UK CHIC Study is provided at the end of this paper.

Introduction

Plasma viral load has long been considered one of the most

important clinical measures in HIV-positive patients. The

progression time from infection to AIDS or death varies

enormously from a few years to decades, and ‘set-point’ viral

load, taken early in the asymptomatic phase of the disease, is the

best known early predictor of the long-term rate of disease

progression [1–3] and is also strongly associated with transmission

risk [4–6]. Variation in host genes, particularly HLA [7–12] but

also the CCR5 co-receptor and its ligands, and even the gene

APOBEC3G [13–15], has been identified as influencing progres-

sion rate, but the contribution of the viral genome is still much less

clear.

Nevertheless, the hypothesis that HIV could be evolving to

become more virulent has been a driver for decades of HIV

research. In the mid-1980’s, it became clear that some HIV

isolates, deemed ‘high/fast’ lines, had a much higher replicative

capacity in cell lines than others [16–18]. When a drop in CD4+
cell count at diagnosis was reported a few years later [19,20],

speculation began as to whether the spread of these ‘high/fast’

lines could be responsible [20–22]. A number of studies looking at

long-term trends in HIV virulence were published, drawing mixed

conclusions on whether there was evidence of HIV becoming

more virulent [23–35]. However, a lack of standardization of when

measurements were taken, what measures were used, and whether

patients were on anti-retroviral therapy (ART), as well as

differences in the subtypes, risk groups, and demographics of the

patients involved mean that these studies are difficult to compare

directly. Despite this, two meta-analyses have been performed,

both concluding that a decrease in CD4+ count and an increase in

viral load can be observed, implying an increase in HIV virulence
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that both papers suggest could be caused by viral factors [36,37].

This would require that the viral genome exerted some influence

over the set-point viral load. In the context of drug resistance it is

well known that viral variation affects the replication capacity of

HIV (reviewed in [38]), suggesting that such a viral genetic

influence could indeed be possible.

Evolutionary theory predicts that pathogens evolve to modulate

their density within hosts in order to maximize transmission rate.

In the classic studies of myxomatosis [39], viral genotypes with

reduced replication rates that permitted longer host survival were

selected for when host density, and thus transmission probability,

declined as the epidemic progressed. This, along with classic

studies on the link between transmission and virulence [40,41],

raises the possibility that in the 100 years HIV is known to have

infected humans [42,43], it might have adapted to different levels

of transmission probability associated with different infected

populations [2,6]. Studies of disease progression and viral load

have found evidence of differences between HIV-1 subtypes [44–

46], suggesting that major viral genetic differences among

immunodeficiency viruses influence virulence.

Three studies investigated the contribution of viral genotype to

set-point in studies of HIV sero-discordant couples. In these studies

of 115, 56, and 47 sequence verified transmission-pairs in Zambia,

the Netherlands and the USA, correlation coefficients of 0.21, 0.25,

and 0.55, respectively, were estimated between set-point viral load

in the index and contact cases [10,47,48]. Another transmission-

pair study on 28 couples from Uganda reported the coefficient of

determination from ANOVA analysis as R2 = 27%, and R2 = 37%

after adjusting for confounding effects [49]. In a fourth study, based

on the Swiss Cohort, Alizon et al. [50] adopted a phylogenetic

approach, looking for a signal of inherited viral effect in men who

have sex with men (MSM) infected with subtype B. Phylogenetic

signal measures the amount that the connections in a phylogeny

explain the similarity in trait values seen in different individuals

[51,52]. Using their strictest definition of set-point viral load and

consequently their smallest sample size (n = 134), Alizon et al. [50]

obtained a statistically significant estimate that approximately half of

the variation observed in viral load could be explained by viral

genetic effects. However, the estimates obtained using a more liberal

definition of set-point viral load in the MSM group (n = 404) were

much lower, at around 11%, and in the largest datasets where all

risk-groups were included the estimates were non-significant.

Given the small numbers in all of these studies, we sought an

alternative approach which would allow the inclusion of the large

numbers of individuals for which both plasma viral load and viral

sequence data are now available.

In quantitative genetics the proportion of the total trait variation

(VP) caused by additive genetic factors (VA) is described as its narrow-

sense heritability (h2). Numerous approaches have been proposed to

estimate variance components and heritability from phylogenetic

data, including restricted maximum-likelihood (REML) [53],

maximum-likelihood (ML) [51], and generalized least squares

[52]. REML methods have emerged as the preferred choice for

variance component and heritability estimation due to their ability

to give unbiased estimates [54–56]. In 1996 the program ASReml

introduced an efficient implementation of REML-based variance

estimation specifically designed for data from pedigreed individuals

[56,57]. By measuring the relationships between individuals on the

pedigree as the probability that their alleles are identical by descent,

and linking this to the observed differences in trait measures, the

amount of trait variation explained by the genetic relationships can

be estimated. These identical by descent relationship measures are

calculated from the pedigree to form a genetic relatedness matrix,

usually referred to as A [58].

For a phylogeny, the phylogenetic covariance of two taxa is

proportional to the total length from the taxa’s most recent

common ancestor (MRCA) to the root under a Brownian motion

model of evolution [59,60], and the covariances between all taxa

can be represented by the matrix A. In order to calculate variance

components the inverse of A, A21, is usually needed, but can be

computationally resource intensive to calculate [56,58]. Hender-

son [58] showed that for pedigrees this problem can be made

easier by including ‘phantom parents’ for all individuals with

unknown parentage so that the population could be traced back to

unrelated ancestors. Hadfield and Nakagawa [56] extended this

technique to phylogenies by expanding A to include all the internal

nodes in the tree, allowing the inverse matrix to be calculated by

the method of Henderson [58] and to provide a structure to the

model that can be exploited by generic sparse matrix algorithms

[61]. (See [62] for an alternative algorithm.)

Here, we apply this approach by using ASReml to estimate the

heritability of viral load in the UK subtype B HIV epidemic,

analyzing set-point viral load in almost 8,500 individuals for whom

matched HIV sequences and viral load data were available.

Results

The sequences used were made available by the UK HIV Drug

Resistance Database (UK HIV RDB), which collects pol sequences

from HIV-positive patients attending clinics across the UK before

starting and during ART in order to detect resistance mutations.

The UK HIV RDB was estimated to contain sequences for

approximately two-thirds of the subtype B MSM patients who

were treated for HIV in the UK in 2006 [63]. The first sequence

available for each patient was analyzed. Fully anonymized clinical

data corresponding to many of the sequences was made available

by the UK Clinical HIV Cohort (UK CHIC) [64], with viral load

before starting ART being available for 8,700 initial subtype B

sequences, reflecting the most prevalent subtype epidemic in the

UK. The data used were the most current available, with

sequences and clinical data collected up to mid-2009.

After removing all cases where there was uncertainty over

disease or treatment status or large sections of sequence were

missing, 8,483 subtype B sequences and associated viral load

measurements remained. The demographics of the dataset show

that 73% (6,198 individuals) were white MSM, reflecting the

historic preponderance of this subtype among MSM (Table 1). A

phylogeny of these sequences was generated using RAxML

[65,66] with 38 subtype reference pol sequences from the Los

Alamos HIV Database (www.hiv.lanl.gov) used as an outgroup.

Author Summary

HIV viral load, the amount of virus in the blood, is an
important predictor of rate of CD4+ cell decline, time to
AIDS and onwards transmission. Plasma viral load is
influenced by many environmental and host factors, but
the contribution of the viral genome is not yet clear. We
have adapted a method from quantitative genetics which
considers the viral phylogeny as a pedigree, permitting
analysis of large cohort-derived datasets for the first time.
We found the viral genome contributes significantly to the
level of the set point viral load, but only determines about
6% of the variation in this property in this population. Our
study also suggests that the change over time in mean
plasma viral load described in some recent studies has not
been due to a change in the component of viral load that
is contributed by viral genotype.

Heritability of Set-Point Viral Load in HIV
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Preliminary runs in ASReml were used to determine the fixed

and random effects for the model. Sex, ethnicity, country of origin,

age when the set-point viral load was taken, year of HIV diagnosis,

and time from HIV diagnosis to the date when set-point viral load

was taken, were all included in the final model (effect estimates

given in Table S1). Set-point viral load was found to increase with

age, but decrease with a more recent year of diagnosis and with a

longer time period between HIV diagnosis and viral load testing.

HIV-positive females and non-white individuals were found to

have decreased set-point viral load measures compared to males

and white individuals. The random effects were estimated to have

a variance of 3.1161023 and 6.5561024 for year of HIV

diagnosis and country of origin, respectively.

To confirm that our method performed as expected when tested

on trees with known heritabilities we performed a simulation

analysis similar to that of Alizon et al. [50]. We found the

estimated heritability values to correspond well with the simulated

values (see Text S1).

Bootstrapped phylogenetic trees were reconstructed in duplicate

on the 8,483 sequences and both trees analyzed using ASReml

independently. Using the comparison of the resulting log-

likelihood values from running the model with and without the

tree to estimate significance, both replicates produced highly

significant (p,0.0001) heritability estimates of 5.8% (CI 2.9–8.7%)

and 5.6% (CI 2.6–8.5%; Table 2).

As is typical for phylogenies based on population samples of

HIV pol sequences, there is relatively little well-supported internal

structure. In order to avoid possible bias in the heritability

estimates, the analysis was repeated after splits with bootstrap-

support values less than 90% were collapsed (Fig. S1), which

removed 78% of internal nodes. Nevertheless, the heritability

estimates remained significant in each case, with estimates of 5.1%

(CI 2.4–7.8%) and 6.0% (CI 3.1–8.8%). However, when the entire

tree was collapsed (excepting the split to the outgroup) leaving only

branch-length information, the estimate was not significant,

highlighting that detecting the heritability signal relies on at least

some tree structure. One hundred bootstrapped phylogenies were

analyzed to further examine the effect of uncertainty in the tree.

Only four of the resulting heritability estimates failed to reach

significance after Bonferroni correction (though their p-values

were still ,0.002), resulting in a mean heritability estimate of 5.5%

(CI 2.6–8.5%) (data not shown).

In order to investigate how the viral genetic effect on set-point

viral load varies across the phylogeny and through time, we

constructed a time-resolved phylogeny using BEAST [67]. For

reasons of computational tractability, this phylogeny had to be

generated on a 652-sequence sub-sample of the dataset but

produced a significant heritability estimate of 5.1% (upper CI

11.2%, p,0.005). We then used ASReml to estimate the

phylogenetic effect of each node on viral load and mapped these

estimates onto the time-resolved phylogeny, allowing the distribu-

tion of the effects across the tree and over time to be visualized.

This showed some viral lineages to be clearly associated with

substantial positive genetic effects on viral load, relative to the

mean, and others to be associated with equally large negative

effects (Fig. 1).

To investigate more formally the change in set-point viral load

over time, we conducted an analysis in the R package

MCMCglmm [68,69] in order to estimate the change in viral

load due to selection on the virus and environmental effects using

information from the temporal variation in sample dates (see Text

S2). Analysis of the change due to selection on the virus and

environmental effects revealed that this would have contributed a

small but significant negative change in viral load of 20.05 log10

copies/mL/year (Fig. 2).

Discussion

Our analysis showed that viral genotype has a small but

significant effect on set-point viral load in this population, with an

estimated mean heritability of 5.7% (CI 2.8–8.6%). When the

analysis was repeated after subsampling and using a different

phylogenetic method, the heritability remained significant and did

not differ significantly from the original estimate. As the star-like

Table 1. Demographics of patients whose samples were
analyzed.

Subtype B (n = 8,483)

Age at Set-point (years) (mean, range): 35.4 (15–83)

Log10 Set-point Viral Load (mean, SD): 4.49360.86

Sex Female: 464 (5.5%)

Male: 8019 (94.5%)

Risk Group Homo/Bisexual: 7278 (85.8%)

Heterosexual: 711 (8.4%)

IDU: 239 (2.8%)

Other/Unknown: 255 (3.0%)

Ethnicity White: 6990 (82.4%)

Black: 597 (7.0%)

Asian: 221 (2.6%)

Other/Unknown: 675 (8.0%)

doi:10.1371/journal.ppat.1004112.t001

Table 2. Estimates of viral genetic influence on set-point viral load in HIV subtype B in the UK.

Dataset Method N Replicate Viral Heritability (Conf. Interval)

Full dataset RAxML 8,483 1 5.8% (2.9–8.7%)

2 5.6% (2.6–8.5%)

Nodes with bootstraps ,90% collapsed RAxML 8,483 1 5.1% (2.4–7.8%)

2 6.0% (3.1–8.8%)

BEAST 652 Sub-Sample BEAST 652 1 5.1% (0–11.2%)

1,726 sequences with only 1 viral load removed RAxML 6,757 1 7.8% (4.3–11.3%)

2 6.6% 3.4–9.9%)

doi:10.1371/journal.ppat.1004112.t002

Heritability of Set-Point Viral Load in HIV
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structure of HIV phylogenies can cause poor resolution of the

internal nodes, resulting in low split support values, the impact of

this effect was tested by collapsing weakly-supported nodes and

analyzing one hundred bootstrapped phylogenies. This showed

that the heritability estimates and their significance were not due

to spurious or poorly-supported splits. Finally, a simulation

analysis following the method of Alizon et al. [50] confirmed that

our method of estimating heritability down a phylogeny performed

as expected on a phylogeny where heritability is known (Text S1).

Analyzing smaller sampled datasets in BEAST allowed further

investigation of the genetic effect on viral load. Plotting the

estimated node effect on viral load back onto the phylogeny for the

652 sampled sequences illustrates the association of closely related

sequences and similar genetic effects on viral loads in transmission

chains that seem to have begun differentiating around the time

subtype B arrived in the UK [70]. Finding viral lineages with both

positive and negative genetic effects on viral load indicates that

there is viral genetic variation that acts to both increase and

decrease viral load relative to the mean.

Our estimates of the fixed effects influencing set-point viral load

reflect previous reports identifying age [71,72] and sex [73–75] as

significant, with older individuals and males having higher set-

point viral loads. We also found ethnicity to have a significant

effect on set-point viral load, finding a similar estimate for the

effect of Black-African ethnicity to a previous paper looking

specifically at this effect [76]. Although many previous studies on

the influence of ethnicity on set-point viral load suggest there is no

difference between ethnic groups or that non-white minorities

have higher viral loads [77–79], differences in socio-economic

status, risk-group, and access to care make the effect of ethnicity

difficult to investigate [79]. Our finding that those with a longer

time from HIV diagnosis to viral load testing had a slightly lower

set-point viral load could reflect that individuals with lower viral

load progress more slowly and therefore may be in general slower

to access care, and also indicates that we are not classifying late-

stage, rising viral loads as ‘set-point,’ which would result in the

opposite effect. Finally, the fact that individuals with a more recent

year of diagnosis also have a slightly lower set-point viral load

could suggest that the proportion of individuals being diagnosed in

late-stage infection is decreasing with time [80].

Previous studies investigating the heritability of viral load in

HIV have estimated the genetic effect at between 11 to 60%,

higher than the estimate of 5.7% obtained here. Three of the five

studies were done on cohorts infected with subtypes other than B;

one on subtype C [10] and two on mixed subtype populations

[47,49], making comparisons difficult. Because virulence differs

between subtypes [44–46], heritability estimates could be affected

in studies where the cohort is infected with multiple subtypes, even

when subtype is included as a variable in the model. Similarly,

both the environmental and genetic variance that determines

heritability can vary between populations, and may be particularly

divergent between studies focusing on different demographic or

risk groups (see [81] for further discussion). Considering this, some

disparity in heritability estimates may not be unexpected.

Four of the previous studies used transmission pairs (n = 28 to

n = 115) to estimate the heritability of viral load, and this could

also influence the estimates obtained. As pointed out in one of

these studies [10], the sero-discordant couples where transmission

does occur may not accurately reflect the epidemic as a whole. As

viral load is proportional to the probability of transmission,

partners who transmit HIV and thus get included in the analysis

had higher viral loads than average for the study [10]. Cohabiting

or long-term sexual partners may also share confounded

environmental factors such as diet and exposure to other

Figure 1. The estimated node effect plotted onto the
phylogeny. The estimated phylogenetic effect of each node on
log10 viral load plotted back onto the phylogeny from the 652-sample
BEAST analysis. The axis shows the time in years from the most recent
sequence, which was taken in 2009. Branches have been colored by the
scale of the effect. Clusters of branches have been collapsed to improve
readability, and are colored by the average tip effect within each
cluster. As the number of bifurcations in the tree reduces at around 17.5
years before 2009, this used as the threshold for collapsing. Nodes that
have a similar effect on viral load cluster together, as expected if some
of the variation in viral load is heritable.
doi:10.1371/journal.ppat.1004112.g001

Figure 2. Change in viral load over time due to selection. The
estimated log10 change in viral load per year due to selection and
environmental effects (see also Fig. S2).
doi:10.1371/journal.ppat.1004112.g002

Heritability of Set-Point Viral Load in HIV
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pathogens, which could affect health and thus viral load, and may

even share HLA alleles, which increases HIV transmission risk and

the between-partner correlation in viral load [82,83].

The only previous study that utilized a phylogeny-based

approach also reported a heritability estimate considerably higher

than the one obtained here. Alizon et al. [50] obtained a

significant heritability estimate of around 50% when they used the

most stringent criteria to define which samples would be taken as

set-point viral load. Heritability estimates apply only to the

population studied, so their estimate may be specific to this small

(n = 134) population of MSM individuals with exceptionally stable

viral load measures. Interestingly, when they relaxed their

definition of set-point viral load, tripling the sample size, the

heritability estimates shrank to around 11%. More generally,

heritability estimates between studies where the sequences have

different times to their respective MRCA are not readily

compared. Studies with a more distant MRCA are likely to have

higher heritability estimates as we expect the variance of the

phenotype at the tips to increase with increasing time to the

MRCA.

Given that viral genotype is influencing viral load, the question

arises as to the source of this effect in the viral genome. The

analysis has been performed on the pol gene, where both drug

resistant and naturally occurring variation is known to affect

replicative capacity [84]. It is also possible that this between-

lineage variation (Fig. 1) could be a distal effect that may map to

one or more other genes, such as env [85], that we are detecting

through its linkage with variants in the pol gene. With increasing

availability of full-genome datasets it may be possible to address

that question directly in future.

The analysis performed here avoided issues associated with

using multiple subtypes, transmission pairs, or restricted

samples by including as many cases as possible. The aim was

to minimize bias, but this clearly would be expected to

introduce a substantial amount of noise and depends on the

availability of large datasets. In fact twenty-fold more

individuals were included than the largest previous dataset

with a significant heritability estimate [50]. Nevertheless, this

approach could allow some viral loads to be classified as set-

point when they were actually taken during the acute stage,

prior to the onset of AIDS, while on ART, or during a

transient rise in viral load. The data cleaning methods utilized

were able to exclude several cases that may have fallen into

these categories, but this was difficult when there was only one

pre-ART measure, as applied to approximately 20% of the

dataset (1,726 cases). If many of the viral loads classified as set-

point are not actually set-point measurements, this could affect

the estimate of heritability obtained. However, when the

dataset was re-run after removing these 1,726 cases, the

heritability estimates remained significant with a mean value of

7.2% (CI 3.9–10.6%), showing that any errors made in

classifying sequences with just one pre-ART viral load do not

significantly affect the estimate.

We found no evidence that subtype B HIV is becoming more

virulent in the UK. Indeed, the relatively small heritability of

around 6% implies that host, environmental, and demographic

effects play a much larger role in determining viral load than the

virus genotype in this population and suggests that any change in

viral load due to the viral genotype would be relatively small. The

implications of a heritable viral load have been extensively

explored, especially in the context of HIV adapting towards an

‘optimal’ viral load for transmission due to selection [2,81]. Our

findings, however, imply that selection on the viral genetic

component of viral load would have very limited influence on

viral evolution.

The MCMCglmm analysis estimated a small but significant

decrease over time of 20.05 log10 copies/mL/year in the mean

value of the component of viral load determined by viral

genotype (see Text S2). At this time the change due to selection

on the virus cannot be disentangled from change to due

environmental effects we have not controlled for, such as the

background level of ART in the population, so we cannot assume

all (or even any) of this change is due to selection on the viral

genome. It should also be noted that though the viral genetic

influence on viral load seems to be causing a decrease in viral

load, this does not necessarily mean that overall viral load would

be expected to decrease. As we estimate the viral genetic

contribution to the variance in viral load to be only about 6%,

changes in any of the many host and environmental factors

influencing viral load could cause viral load to remain constant or

even increase.

Previous cohort-based studies of viral load data have indeed

estimated an increase in the phenotypic value. In an analysis based

on 1,584 individuals with viral load data from the 22 CASCADE

cohorts, Dorrucci et al. [36] estimated an increase in set-point of

0.044 log10 copies/mL/year, leading to an increase in set-point

viral load of more than a log over 30 years. Herbeck et al. [37]

performed a meta-analysis based on eight previous studies

investigating change in viral load, which generated a more modest

estimate of 0.013 log10 copies/mL/year and an overall increase of

0.39 log10 copies/mL in 30 years. These changes have led to

suggestions that the virus may have evolved to become more

virulent [36,37], but this was not directly analyzed and is clearly

not the case in our study. However, a much larger fraction of the

phenotypic value of viral load in our model is determined by the

fixed effects including sex, age and time from diagnosis to first viral

load which have certainly not remained constant over the course

of the epidemic, so the two observations by no means necessarily

conflict. The studies included by Herbeck et al. range from

20.013 to 0.056 log10 copies/mL/year in their estimates, with the

largest study reporting a significant decline of 20.013 log10

copies/mL/year. This suggests that changes in viral load are

difficult to quantify and may be quite population specific, with

different environmental effects and selection pressures working in

each.

Our findings indicate that the genotype of HIV subtype B in the

UK has a small but significant effect on viral load, and suggest that

the virulence of HIV has not increased. The use of this novel

method in other situations where sequence data are available

could allow estimation of heritability where it has not previously

been possible.

Methods

8,700 initial subtype B sequences from the UK HIV RDB had

viral load measures before starting ART available from UK

CHIC. Sequences were aligned using the Stanford HIVdb

Program [86], with manual checks for high levels of ambiguity

and poor quality. To maintain both the representativeness of the

HIV epidemic in the UK and as large a sample size as possible to

improve power, a liberal definition of set-point viral load was

chosen. If multiple pre-ART viral load measures were available for

a patient, the first viral load was generally taken as the ‘set-point’

viral load. To exclude viral loads taken in AIDS, while the patient

was on unreported ART, or while the patient was still in the acute

phase of the disease, exclusion rules were applied. Unusually low

or high viral load measures (,400 copies/mL or .16106 copies/
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mL) were inspected for evidence of unreported ART use, acute

infection, or onset of AIDS, and excluded if any of these were

suggested. A full description of the rules used to discard records

and the number of records removed can be found in Table S2.

Set-point viral load values were log10 transformed before the

analysis to make the distribution approximately normal. 80% of

the patients included in our dataset had the viral load used as set-

point taken within three years of HIV diagnosis. More information

about the dates of HIV diagnosis and set-point viral load tests is

available in Text S3.

Patients with accepted viral loads and at least 840 nucleotides of

pol sequence (PR and partial RT coding regions) were analyzed. A

total of 119 identical sequences from different patients were also

removed, as they are likely to include multiple sequences from the

same individual submitted under different identifiers. This left

8,483 subtype B sequences with matched viral loads. Sequences

were stripped of codons in positions associated with drug-

resistance mutations [87,88] before phylogenetic analysis. The

analysis was repeated on sequences not stripped of resistance-

associated codons, but no significant differences in heritability

estimates were observed. To provide an unbiased root for the tree,

38 subtype reference pol sequences (subtypes A-K) from the Los

Alamos HIV Database (www.hiv.lanl.gov) were used as an

outgroup.

The large size of the dataset limited the methods available to

create the phylogenies. RAxML [65,66] is an ML-based phylo-

genetic program designed to handle large alignments and produce

accurate phylogenies by conducting a thorough topology search

[89] and also performing bootstraps. We implemented RAxML on

the Edinburgh Compute and Data Facility computer cluster. 100

bootstraps for each phylogeny were generated using the

parallelized version of RAxML on 16 processors with a run time

of 30 hrs. A comprehensive ML tree search was performed using

the threaded version of RAxML on 12 processors for an average of

100 hrs, and the bootstrap-support values were then written onto

the ML tree.

Pipeline
A new piece of software, TreeCollapseCL 4 (available at http://

hiv.bio.ed.ac.uk), was developed to aid in preparing the phylog-

enies for further analysis and investigation of the data. Using

TreeCollapseCL 4, each phylogeny was rooted and the average

length of the tree was calculated from the tips to the MRCA of the

UK sequences in the dataset (the second node from the root).

Branch length to the root was not calculated because the distance

from the root to the MRCA of the UK HIV RDB sequences can

be severely affected by the choice of outgroup used.

The sampled viral sequences and all of the internal nodes of the

phylogeny were incorporated into a genetic relatedness matrix

from which the inverse was calculated using the R [68] package

MCMCglmm [69].

The phylogenetic covariance of two individuals on a phylogeny

was assumed to be proportional to the distance between their

MRCA and the root [59]. Thus the covariance of an individual

with itself is its distance from the root in units of substitutions per

site per year. In phylogenetic comparative methods that use

ultrametric trees, the distance between the tips and the root is

often rescaled to one unit. Although the units are arbitrary, the

variance explained by the phylogeny is directly interpretable as the

variance explained in the sample of individuals used in the

analysis. However, when trees are not ultrametric, as in this case,

the root-to-tip distances vary. In this instance we standardized by

the average distance from root to tip of 0.14 substitutions per site

per year calculated earlier by TreeCollapseCL 4.

Preliminary runs were carried out on the dataset in ASReml in

order to identify the fixed effects to include in the final model. Age

at the sample date taken for set-point viral load, sex, ethnicity, time

from HIV diagnosis to the set-point viral load sample date, and

year of HIV diagnosis (as a continuous effect) were included in the

preliminary models. All of the terms were found to be highly

significant (p,0.001) and therefore all were included in the final

model. Country of origin and year of HIV diagnosis (as a

categorical effect) were also included as random effects along with

the phylogeny. Year of HIV diagnosis was included as a

continuous fixed effect to model the linear change in set-point

viral load and as a categorical random effect to account for any

random deviations around this trend from year to year. As country

of origin has many discrete levels, it was included as a random

effect in order to estimate the variance of their effects.

The significance of the effect of the phylogeny in explaining the

variance was assessed by first running the model without the

phylogeny as a ‘null’ model and then including the phylogeny. A

log-likelihood ratio test with one degree of freedom was then used

to test whether the model with the phylogeny was significantly

better at explaining the variation in viral load than the null model.

As ASReml assumes all pedigree information provided is

correct, analyses were repeated using TreeCollapseCL 4 to

collapse splits with bootstrap-support values less than 90% down

to polytomies. To further evaluate how uncertainty in the tree

could affect our heritability estimates, one hundred bootstrapped

trees were generated in RAxML and analyzed. Because of the

close phylogenetic relationship between the subtype B and D in

the pol region bootstrapped subtype D sequences can sometimes

cluster within the B clade, making it necessary to remove the

subtype D Los Alamos sequences from the phylogeny in order to

root all 100 trees by the same outgroup.

Each analysis was performed in duplicate, with the sequences

being run through RAxML and the analysis pipeline twice. The

significance threshold used was adjusted using a Bonferroni

correction for the number of replicates.

In order to investigate whether set-point viral load has changed

over time, we estimated the amount of change in viral load due to

selection. This can be estimated using Markov chain Monte Carlo

methods to calculate the total contribution of between-lineage and

within-host selection, though we cannot distinguish all change due

to within-host selection from environmental factors (see Text S2

for more detail).

In addition, to further investigate the phylogenetic effects on

viral load, a time-scaled phylogeny was produced using BEAST, a

Bayesian phylogenetic program [67]. Because the complexity of

the analysis performed by BEAST limits the number of samples

which can be run in a reasonable time-frame, a sub-sample of the

main dataset was used.

After collapsing nodes with bootstrap support values less than

90%, 965 sequences remained in un-collapsed clusters of fifteen or

more sequences. A random subsample of 652 of these sequences

was taken for analysis in BEAST. BEAST was run with a relaxed

log-normal clock and a constant population size for 100,000,000

steps, sampling every 10,000 steps. All runs were performed in

duplicate, and after 10% burn-in was removed the resulting files

were combined using an in-house script. A summary tree was then

generated using the BEAST program TreeAnnotator, and run in

ASReml to obtain heritability estimates.

Finally, in order to validate the heritability estimates produced

by our pipeline, we followed the method of Alizon et al. [50] (see

Text S1) to perform a simulation analysis where viral loads were

simulated down trees under known heritabilities.
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Accession numbers
As submission of the entire UK HIV Drug Resistance Database

online would risk breaching patient confidentiality by allowing

transmission networks to be identified, following Kouyos et al. (J

Infect Dis, 2010) and Leigh Brown et al. (J Infect Dis, 2011) a

random sample of 10% of the database has been submitted to

GenBank under accession numbers JN100661-JN101948.
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Supporting Information

Figure S1 The effect of collapsing poorly-supported nodes. A

sub-section of the full RAxML tree is shown before (A) and after

(B) collapsing nodes with bootstrap support less than 90% down to

polytomies. Branch length from root to tip nodes is preserved after

collapsing.

(TIF)

Figure S2 The log10 change in viral load per year due to

selection. The estimated log10 change in viral load per year due to

between-lineage selection (shaded) and within-host selection and

environmental effects (unshaded). Though the change due to

between-lineage selection was not significantly different from what

could be expected through drift, the change due to within-host

selection and environmental effects was significant.

(TIF)

Table S1 Mean fixed effect estimates.

(PDF)

Table S2 Details of sequences removed during data cleaning.

(PDF)

Text S1 Supplementary methods detailing the simulation

performed to verify the heritability estimate obtained.

(PDF)

Text S2 Within-host and between-lineage selection analysis and

simulations.

(PDF)

Text S3 Additional information about time of diagnosis and

viral load test date.

(PDF)
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