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ABSTRACT

In this paper, we present new results from our research into the vul-
nerability of a speaker verification (SV) system to synthetic speech.
We use a HMM-based speech synthesizer, which creates synthetic
speech for a targeted speaker through adaptation of a background
model and both GMM-UBM and support vector machine (SVM)
SV systems. Using 283 speakers from the Wall-Street Journal (WSJ)
corpus, our SV systems have a 0.35% EER. When the systems are
tested with synthetic speech generated from speaker models derived
from the WSJ journal corpus, over 91% of the matched claims are
accepted. We propose the use of relative phase shift (RPS) in or-
der to detect synthetic speech and develop a GMM-based synthetic
speech classifier (SSC). Using the SSC, we are able to correctly clas-
sify human speech in 95% of tests and synthetic speech in 88% of
tests thus significantly reducing the vulnerability.

Index Terms— Speech synthesis, Speaker recognition, Security

1. INTRODUCTION

Synthetic speech potentially poses an imposture problem, that is a
deception based on voice characteristics. An example is in remote or
on-line authentication using speaker verification (SV), where a syn-
thesized speech signal is substituted in order to wrongly gain access
to person’s account. In addition, synthetic speech also poses a po-
tential problem when a SV system is used to confirm origination of
a speech signal from a particular individual. In this case, the system
might confirm origination when in fact the speech signal is synthetic.
In both of these examples, the speech model for the synthesizer must
be targeted to a specific person’s voice.

Until recently, developing a text-to-speech (TTS) or speech syn-
thesizer for a targeted speaker required a large amount of speech
data from a carefully prepared transcript in order to construct the
speech model. However, with a state-of-the-art HMM-based speech
synthesis [1], the model can now be adapted from an average model
(derived from other speakers) or a background model (derived from
one speaker) using only a small amount of speech data. In addition,
recent experiments have also demonstrated that speaker-adaptive,
HMM-based speech synthesis is robust to non-ideal training data.
In [2] a high-quality voice was built from audio collected off of the
Internet. The fact that small amounts of non-ideal training data can
be used to construct high-quality synthetic speech, poses challenges
to SV systems. The problem of imposture against SV systems using
synthetic speech was first published over 10 years ago by Masuko,
et. al. [3] and has been more recently studied in [4, 5] due to major
advances in both SV and TTS systems.

This paper is a follow-on to our previous research on both the

imposture problem and methods to detect synthetic speech. In [4],
we utilized a very small corpus of HMM-based synthetic speech sig-
nals (9 speakers). Using a GMM-UBM SV system, we found that all
synthetic speech signals were accepted as their human counterparts.
We also proposed several methods to detect synthetic speech, in-
cluding distance measures of dynamically time-warped MFCC fea-
tures and error rates in automatic speech recognition systems. These
approaches, however, were not able to consistently detect synthetic
speech. In [5], we significantly expanded the corpus of synthetic
speech signals to 283 speakers [based on the Wall-Street Journal
(WSJ) corpus] and re-evaluated using the GMM-UBM system. We
found over 90 of synthetic speech signals were accepted as their hu-
man counterparts. We also retested the proposed detection methods
as well as a previously-proposed method, the average inter-frame
difference of log-likelihood [6]. We found that all these methods
failed to consistently detect synthetic speech using this corpus. This
paper extends the work in the following ways. First, we have now
implemented a state-of-the-art SV system based on support vector
machine (SVM) using Gaussian supervectors [7] and evaluated it for
synthetic speech signals. Second, we propose a promising method to
detect synthetic speech based on relative phase shift (RPS) features.

This paper is organized as follows. In Section 2, we describe
how we partition the WSJ corpus in order to train the TTS and SV
systems and test the SV system for baseline (human speech) results.
In Section 3, we briefly describe the SV systems used in our research.
In Section 4, we describe the evaluation and provide results using the
Wall-Street Journal (WSJ) corpus and its synthesized counterpart. In
Section 5, we describe the RPS-based approach for detecting syn-
thetic speech and provide preliminary results. Finally, we conclude
the article in Section 6.

2. DATA SETS

As in [5], we use the WSJ corpus from LDC [8]. Although the WSJ
corpus is not usually used for evaluating SV systems, it contains
several hundred speakers and sufficiently long signals required for
training both the TTS and SV system [8]. From the corpus, we chose
the pre-defined official training data set (known as SI-284) that in-
cludes both WSJ0 and WSJ1. The SI-284 set has a total of 81 hours
of speech data uttered by 284 speakers, however, one speaker was
eliminated due to a poor recording resulting in 283 speakers. The
material was partitioned into three sets A, B, and C. Referring to
the second row in Table 1, Set A was used to train the TTS system,
i.e., constructing an average voice model and for adapting the aver-
age voice model to the 283 target speakers. The details of the TTS
systems used are described in [2, 5] Since the recording durations are
variable in the WSJ corpus, we trained the TTS system using differ-
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ent durations. Set B was used to train the SV system, i.e. construct-
ing the UBM and MAP-adapting the UBM as well as train the syn-
thetic speech classifier (SSC). Note that the average voice model and
UBM are trained on different subsets from the same corpus, since we
aim avoid cross-corpus negative effects. However, in practice both
the average voice model and UBM should be derived from different
corpora; due to our limited access to appropriate speech corpora we
were not able to achieve this. Set C was used for testing the SV and
testing the SSC under human speech. Referring to the third row in
Table 1, Set B was used to generate synthetic speech for training the
SSC and Set C was used to generate synthetic speech for testing the
SV system and the SSC system.

Table 1. Partitioning of the Wall Street Journal (WSJ) corpus into
datasets used in the research to train the text-to-speech (TTS) sys-
tem, train/test the speaker verification (SV) system, and train/test the
synthetic speech detection (SSC) system.

Set A Set B Set C
Human speech train TTS train SV test SV
(from dataset) train SSC test SSC
Synthetic speech train SSC test SV
(generated from dataset) test SSC

3. SPEAKER VERIFICATION SYSTEMS

Our SV systems are based on the well-known GMM-UBM described
in [9] and the support vector machine using Gaussian supervectors
described in [7]. We briefly review these systems and our implemen-
tation.

3.1. System Training

For both SV systems, feature vectors X = {x1,x2, . . . ,xT } are ex-
tracted every 10 ms using a 25 ms hamming window and composed
of 15 MFCCs, 15 delta MFCCs, log energy, and delta-log energy as
elements.

Training the GMM-UBM SV system is composed of two stages,
shown in Fig. 1(a) and (b). The SVM using Gaussian supervectors
SV system also includes these two stages and two additional stages
shown in Fig. 1(c) and (d). In the first stage, a GMM-UBM consist-
ing of the model parameters λUBM = {wi, ηi,Σi} is constructed
from the collection of speakers’ feature vectors. Here, we assume
M component densities in the GMM-UBM and wi, ηi, and Σi rep-
resent respectively the weight, mean vector, and diagonal covariance
matrix of the i-th component density where 1 ≤ i ≤M . In practice
the GMM-UBM is constructed from non-target speakers.

In the second stage, feature vectors are extracted from target
speakers’ utterances. We assume the availability of several utter-
ances per speaker recorded (preferably) under different channel con-
ditions in order to improve the speaker modeling and robustness of
the system. Feature vectors from each utterance are used to MAP-
adapt only the mean vectors of the GMM-UBM to form speaker- and
utterance-dependent models λs,u = {wi, µs,u,i,Σi}where µs,u,i is
the MAP-adapted mean vector of the i-th component density from
speaker s and utterance u.

In the third stage, the mean vectors µs,u,i are then diagonally-
scaled according to

ms,u,i =
√
wiΣ

−1/2
i µs,u,i (1)

{X}

(non-target

speakers)

EM

Algorithm
λ
UBM

{w
i
,η
i
,Σ
i
}

(a) Stage 1: UBM

λ
UBM

{X
s,u
}

(target

speakers)

MAP

Adaptation
λ
s,u

{w
i
,μ
s,u,i
,Σ
i
}

(b) Stage 2: MAP-adaptation

Diagonal

Scaling &

Stacking

μ
s,u,i

w
i
,Σ
i

m
s,u

(c) Stage 3: Supervectors

{m
s,u

}

(labeled

as +/– 1)

SVM

Optimization
ν
s

{a
s,n

,b
s
}

(d) Stage 4: SVM Training

Fig. 1. Stages of training the SV systems. The GMM-UBM SV
system is trained with (a)-(b) and the SVM SV system is trained
with (a)-(d). Although the GMM-UBM is normally derived from
non-target speakers, as described in Section 2, we have used target
speakers.

and stacked to form a Gaussian supervector for a speaker’s given
utterance

ms,u =

 ms,u,1

...
ms,u,M

 . (2)

In the fourth stage, the target speaker’s supervectors are labeled as
+1 and all other speakers’ supervectors as−1. Parameters (weights,
an and bias, b) of the SVM using a linear kernel are computed for
each speaker through an optimization process. As derived in [7],
an appropriately-chosen distance measure between the mean vectors
µs,u,i, results in a corresponding linear kernel involving the super-
vectors in (2) composed of diagonally-scaled mean vectors (1).

In conventional GMM-UBM SV systems, we normally assume
a single training signal (or several utterances concatenated to form
a single training signal) so that the speaker model is simply λs =
{wi, µs,i,Σi}. For the SVM, the speaker model is denoted νs =
{as,n, bs} where 1 ≤ n ≤ N and N is the total number of super-
vectors.

3.2. System Testing

In system testing we are given an identity claim C and feature vec-
tors X from a test utterance and must accept or reject the claim. For
the GMM-UBM system, we compute the log-likelihood ratio

Λ(X) = log p(X|λC)− log p(X|λUBM). (3)

and accept the claim if

Λ(X) ≥ θ (4)

where θ is the decision threshold. In the SVM system, the super-
vector mtest is computed from the feature vectors X by essentially
repeating stages 2 and 3 from training. We then compute

y(X) =
∑
n∈S

aC,ntC,nm
T
testmC,n + bC (5)

and accept the claim if y(X) ≥ 0. We denote S as the set of in-
dices of the support vectors and tC,n as the labels associated with
the supervectors.



Table 2. SV system results.
GMM-UBM SVM

EER (human speech) 0.35% 0.35%
min DCF (human speech) 4.04e-3 2.36e-3
accepted claims from 259/283 = 271/283 =
synthetic speech 91.5% 95.8%

3.3. Performance

The above systems have been implemented and tested using the
NIST2002 one-speaker detection using cellular data. Following the
evaluation protocol, the GMM-UBM system has 11.3% EER and
0.112 min DCF while the SVM system has 11.7% EER and 0.113
min DCF.

4. EXPERIMENTS AND RESULTS

Our simulations and tests are based on the WSJ corpus (described
in Section 2 as well as the synthetic speech signals for target speak-
ers generated from this corpus. For the GMM-UBM system we have
trained on≈90s speech signals and tested using≈30s signals. Train-
ing signals for the SVM system were segmented into eight utterances
per speaker. Test results for human speech signals are given in rows
2 and 3 of Table 2. The simulations for human speech were designed
so that each test utterance has an associated true claim and 282 false
claims yielding 2832 tests. The unrealistically low EERs (0.35%)
are due to the ideal nature of the recordings in the WSJ corpus and
the accuracy of the SV systems. We note that both systems have
about the same performance.

The simulations for synthetic speech were designed so that each
test utterance has an associated matched claim yielding 283 tests. In
a realistic imposture scenario, an attacker will generate a synthetic
speech signal targeted at a specific speaker and make a claim only
for that speaker, i.e. matched claim. Using the decision process out-
lined in Section 3.2, the systems were tested using the synthetic test
signals and a matched claim of identity resulting in 283 tests. For
the GMM-UBM system, the decision threshold is chosen as that for
EER under human speech signal tests. Row 4 of Table 2 shows the
results where we see over 90% of synthetic speech signals with an
associated matched claim, will be accepted by the systems. Of par-
ticular interest in this paper, is the result that the SVM using Gaus-
sian supervectors accepts even more claims using synthetic speech
than the GMM-UBM despite both systems having the same perfor-
mance using human speech. As we described in our earlier papers
and verified with this new work, significant overlap occurs in the
score distributions for human speech and synthetic speech. Thus ad-
justments in decision thresholding or standard score normalization
techniques cannot differentiate between true and matched claims
originating from human and synthesized speech.

5. DETECTION OF SYNTHETIC SPEECH USING
RELATIVE PHASE SHIFT

Acoustic differences between the human and synthetic speech sig-
nals are audible even though the synthetic speech is of high-quality.
Informal listening tests suggest human listeners can easily and con-
sistently detect synthetic speech. Our previous attempts at automatic
detection of synthetic speech have not been successful [4, 5]. In this
work, we propose a new method based on differences in the relative

Fig. 2. Phasegrams of a voiced speech segment for five continuous
vowels. a) Instantaneous phases, b) relative phase shift, and c) signal
waveform.

phase shift (RPS) [10] between human and synthetic speech signals.
We summarize RPS below.

5.1. Relative Phase Shift

RPS turns instantaneous phases from two harmonics into a relative
measure against a common reference. This relative measure removes
the linear phase component and allows phase structure to be more
easily elucidated. To derive the RPS, we assume a harmonic model
for voiced segments of the form

s(t) =
∑
k

Ak(t) cos[ϕk(t)] (6)

where Ak are the amplitudes and

ϕk(t) = 2πkf1t+ θk (7)

is the instantaneous phase of the kth harmonic; we denote the funda-
mental frequency as f1 and the initial phase as θk. The instantaneous
phase depends on the time instant and harmonic (encapsulated in the
linear phase term 2πkf1t). The initial phase shift θk is constant
regardless of the time instant while the (periodic) waveform shape
is stable (local stationarity assumption). Thus the waveform shape
depends only on the differences between the initial phase shifts.

If we assume the fundamental as our reference and for simplicity
θ1 = 0, we can solve for θk (now called the RPS) by equating the
analysis time instants ta in (7) between the kth harmonic and the
reference fundamental:

ϕ1(ta)

2πf1
=

ϕk(ta)− θk
2πfk

(8)

or

θk = ϕk(ta)− kϕ1(ta). (9)

For a voiced segment, Figure 2(a) shows the instantaneous phase and
Figure 2(b) shows the RPS where in the latter, we more easily see
the phase-related structure.

In order to properly parameterize the RPS values to discriminate
between human and synthetic speech, three important issues were
addressed [11]:



• Due to the variable number of harmonics found in a prede-
fined frequency range, the RPS vector has a varying dimen-
sion. This problem is solved by mel-filtering the RPS values
with a constant number of filters.

• In order to avoid discontinuities, RPS values are unwrapped.
The resulting envelope is differentiated in order to avoid am-
biguity problems due to unwrapping.

• The Discrete Cosine Transform (DCT) is also used to further
reduce the dimensionality.

5.2. RPS Modelling and Detection of Synthetic Speech

We modeled RPS of human and synthetic speech using speaker-
dependent GMMs. In particular, 20 RPS-based features (differen-
tiated and unwrapped RPS) have been computed every 10 ms over
a 4 kHz bandwidth for voiced speech segments. The vector mean is
removed before the DCT and appended as a element, resulting in 21
coefficients per RPS feature vector. We used 32 component densi-
ties in the GMMs and trained the classifier with varying lengths of
voiced signal segments using Set B in Table 1. The human/synthetic
speech decision is simply based on the log-likelihood ratio

ΛRPS(Xs) = log p(Xs|λhumans)− log p(Xs|λsynths
) (10)

where Xs represents the sequence of RPS feature vectors for speaker
s, λhumans is the GMM for human speech RPS features for speaker
s, and λsynths

is the GMM for synthetic speech RPS features for
speaker s. The classification is performed after speaker verification,
where a hypothesis for speaker identity is available and the approri-
ate synthetic and human speech models are selected based on this hy-
pothesis. The speech signal is classified as human if ΛRPS(Xs) > 0,
otherwise it is classified as synthetic.

In our research, we tested the classifier using the human and
synthetic speech speech signals from Set C in Table 1 after the SV
system accepts a claim. The accuracy to detect human speech us-
ing the SSC trained using 10 s of voiced segments per speaker is
95% while that for synthetic speech is 88%. This is a marked im-
provement over our previous attempts to detect synthetic speech. On
the other hand, the SSC incorrectly classifies about 4.2% of human
speech as synthetic.

6. CONCLUSIONS

In this paper, we have evaluated two speaker verification systems,
1) Gaussian Mixture Model-Universal Background Model (GMM-
UBM) and 2) support vector machine (SVM) using Gaussian super-
vectors using 283 human speech signals from the Wall Street Jour-
nal corpus and 283 synthetic speech signals derived from the corpus.
While both systems have very low equal error rates (EERs), when
presented synthetic speech, the GMM-UBM system accepts 92% of
matched claims and the SVM accepts 96% of matched claims. Thus
the speaker similarity/identity of synthetic speech is high enough to
allow these synthesized voices to pass for true human claimants.
These results suggest that high-quality synthetic speech may pose
security issues for speech-based remote/online authentication or in-
correct identity confirmation from a speech signal. We proposed a
GMM-based classifier to detect synthetic speech based on the rel-
ative phase shift of voiced speech segments. Our results show we
can detect synthetic speech up to 88% of the time although at the
same time, 4.2% of the human speech will be incorrectly classified
as synthetic.
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