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ABSTRACT

In this paper, we introduce a newly-created corpus of whis-
pered speech simultaneously recorded via a close-talking
microphone and a non-audible murmur (NAM) microphone
in both clean and noisy conditions. To benchmark the cor-
pus, which has been freely released recently, experiments on
automatic recognition of continuous whispered speech were
conducted. When training and test conditions are matched,
the NAM microphone is found to be more robust against
background noise than the close-talking microphone. In
mismatched conditions (noisy data, models trained on clean
speech), we found that Vector Taylor Series (VTS) compen-
sation is particularly effective for the NAM signal.

Index Terms— whisper recognition, non-audible mur-
mur(NAM), silent speech interface (SSI), vector Taylor series
(VTS), noise robustness

1. INTRODUCTION

Although Automatic Speech Recognition (ASR) is well de-
veloped and highly effective in carefully-targeted applica-
tions, here remain situations in which people have difficulty
in using ASR technology. It may sometimes be socially-
unacceptable or embarrassing to speak to a machine loudly
and clearly in the presence of others. Or, the performance
of ASR systems may degrade below useful levels in noisy
conditions, particularly if the user cannot speak loudly. One
approach to these problems is to perform ASR from signals
other than the conventional acoustic wave acquired using
a microphone; when the alternative signal can be acquired
without the user speaking in the normal way, this is some
called a silent speech interface (SSI).

Silent speech interfaces enable the human-machine speech
communication to take place without the necessity of emitting
an audible acoustic signal. To date, several different types of
technology have been used for the SSI systems [1, 2]. These
can be very effective in situations where normal microphones
may not work very well.

A non-audible murmur (NAM) microphone is a kind of
special microphone which can be used as the sensing device
of a SSI system. The NAM microphone is a special body-

conductive microphone [3]. It can be used to detect extremely
quiet speech (NAM), that even listeners around the speaker
can hardly hear. NAM speech tends to be unvoiced, like whis-
pering. The best position to place the NAM microphone is
just behind the ear [4]. It can be used to detect various kinds of
speech, including whispering and normal speech, conducted
through the soft tissue of the head [5]. It is more robust to en-
vironmental noise than an ordinary microphone, because of
its noise-proof structure. Compared to other kinds of SSI sys-
tems, which may involve electrodes or other sensing devices,
a NAM microphone-based SSI system is non-intrusive, cheap
and convenient.

In this paper, we compare the performance of the whis-
pered speech recognition for a NAM microphone and an ordi-
nary close-talking microphone. To do this, we recorded a new
whispered speech database in English, which has been pub-
licly released. We created ASR benchmarks for this corpus
using standard techniques such as heteroscedastic linear dis-
criminant analysis (HLDA) projection and minimum phone
error (MPE) training. Although the NAM microphone has a
noise-proof construction, it may be still somewhat affected
by environmental noise and the resulting acoustic mismatch
could decrease ASR accuracy, if the acoustic models were
trained on clean data. Therefore we also applied vector Taylor
series (VTS) compensation [6, 7] to the NAM clean-speech
model. The experimental results show that VTS compensa-
tion is highly effective for compensating the mismatch be-
tween the NAM clean model and the NAM noisy test data.

Sections 2 and 3 of this paper describe our whispered
speech database recorded with two microphones in parallel;
a brief overview of techniques examined is provided. In sec-
tion 4, the experimental results are presented and a summary
is given in section 5.

2. THE PARALLEL WHISPERED SPEECH
DATABASE

We have created a parallel whispered speech database recorded
simultaneously via a NAM microphone which uses urethane-
elastomer to create a close contact with the skin [5] and an
omni-directional headset-mounted condenser microphone (a
DPA 4035). The database comprises 420 sentences (about
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Fig. 1. “Please call Stella”, recorded in clean conditions by
headset microphone.
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Fig. 2. “Please call Stella”, recorded in clean conditions by
NAM microphone.

943 words), which were selected from newspaper text, uttered
by a young female speaker. It is divided into two sections:
one recorded in clean conditions and the other one in pre-
recorded cafeteria noise played over a loudspeaker at 65 dB
[A] (resulting in SNR of approximately 10 dB). Both sections
of the corpus were recorded in a soundproof hemi-anechoic
chamber (noise floor around 25 dB [A]) at 96kHz sampling
rate and 24 bit sample depth into a Pro Tools HD system.

Figures 1 and 2 illustrate the general properties of the
data recorded in clean conditions. From these spectrograms,
it can be seen that the high frequency components captured by
the NAM microphone are substantially attenuated compared
to the headset microphone. Figures 3 and 4 show spectro-
grams for the noisy condition. It can be seen that the headset
microphone captures much more background noise than the
NAM microphone; the NAM microphone does capture some
background noise, despite its noise-proof construction.

This corpus has been released and is available freely at
http://homepages.inf.ed.ac.uk/jyamagis/release/CSTR-NAM-
TIMIT-Plus-ver0.81.tar.gz The released corpus includes not
only Herald sentences but also TIMIT sentences for further
analysis and research.

3. WHISPERED SPEECH RECOGNITION

For benchmarking, standard algorithms including heteroscedas-
tic linear discriminant analysis (HLDA) projection and mini-
mum phone error (MPE) training were applied.

Although the NAM microphone is relatively insensitive
to the external noise [8], some background noise may be still
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Fig. 3. “Please call Stella”, recorded in noisy conditions by
headset microphone.
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Fig. 4. “Please call Stella”, recorded in noisy conditions by
NAM microphone.

captured by the NAM microphone and it will seriously impact
the accuracy of the recogniser, especially in the mismatched
condition. Techniques to improve the robustness of ASR en-
gines can be applied to both feature and model domains. As a
preliminary study, here we only use model-based vector Tay-
lor series (VTS) compensation to handle the mismatch intro-
duced by the noise. In this work, the mismatch function for
static features in cepstral domain used by VTS is [7]

y = x + h + C log
(
1 + exp

(
C−1(n− x− h)

))
= f (x,n,h) (1)

where x and y are the clean and noise distorted speech, h and
n stand for the channel distortion and additive noise respec-
tively. By applying the first order VTS expansion and taking
expectation with respect to the static parameters of Gaussian
component m, the updated static parameters are obtained as

µµµmy = f(µµµmx ,µµµh,µµµn) (2)

ΣΣΣmy = GmΣΣΣmx GT
m + (I−Gm) Σn (I−Gm)

T (3)

where µµµn,ΣΣΣn are the mean and covariance of additive noise,
and µµµh denotes the mean of channel distortion. Gm is the
Jacobian matrix as ∂f(·)

∂x |µµµm
x ,µµµn,µµµh

. The dynamic parameters
are derived by the continuous time approximation [9].

4. EXPERIMENTS

4.1. Experimental conditions

Since the database is small, we used 5-fold cross validation in
all of our experiments: in each fold, 336 sentences were used



as the training set and 84 sentences as the test set. The original
recordings were at 96kHz but were down-sampled to 8kHz in
the experiments. The reasons for trying an 8kHz sampling
rate include severely attenuated high-frequency components
(above 4 kHz) of the signal captured by the NAM microphone
due to the lack of lip radiation and the low-pass characteristics
of soft tissue [10].

In all experiments, HTS tools [11] version 2.2 were used
for training acoustic models and decoding. When comparing
NAM and headset microphones, we used two types of feature
vector: 12th-order MFCCs and log energy plus their delta and
acceleration coefficients; 12th-order PLPs and the 0th PLP
coefficient plus their delta and acceleration coefficients. Cep-
stral Mean Normalisation (CMN) and pre-emphasis were also
applied to both feature types. However, for VTS experiments,
we only use 12-order MFCC features with the 0th MFCC
coefficient appended their delta and acceleration coefficients
without CMN. 1

The acoustic modelling unit was triphones, each modelled
by a left-to-right continuous density hidden Markov model
(CDHMM), with 3 emitting states. A decision tree-based
clustering method using the minimum description length
(MDL) stopping criterion [12] was applied to control model
complexity and deal with sparsity.

Given that our data are limited, the number of Gaussian
mixture components in the acoustic models for recognition
and VTS compensation was set at 3. Before estimating
the HLDA transform, an acoustic model with 52-dimension
feature vectors (i.e., with third differential coefficients ap-
pended) was estimated first. After applying the estimated
HLDA transform, the acoustic model was projected back
to 39 dimensions. MPE training was based on the model
obtained after HLDA projection.

A bigram language model for a 126k-word vocabulary
(this is the size of the dictionary we used) trained on the com-
plete text of the parallel database by SRILM toolkit [13] was
used in our system. The dictionary which we used was an
English lexicon called Combilex [14].

4.2. Whispered Speech Recognition using NAM and
headset microphones

The experiments in this section are for matched conditions,
where the training data and test data are either both clean, or
both noisy. All results are the averages over 5 folds of cross-
validation.

Table 1 shows word accuracy in clean conditions. We can
see that HLDA projection and MPE training are very effec-
tive in whispered speech recognition using either microphone
type. The best performance under clean conditions using the
headset microphone is slightly better than for the NAM mi-
crophone, 3–4 percent absolute higher.

1This feature configuration is chosen to fit into the VTS code.

Table 1. Word accuracy (%) in clean conditions.

MFCC E D A Z( T) PLP 0 D A Z( T)
Method headset NAM headset NAM
Baseline 80.2 75.4 76.7 76.5

+ HLDA 80.4 76.6 79.8 76.6
+ MPE 80.9 77.3 81.4 78.3

Table 2. Word accuracy (%) in noisy conditions.

MFCC E D A Z( T) PLP 0 D A Z( T)
Method headset NAM headset NAM
Baseline 58.6 65.2 53.3 68.9

+ HLDA 61.2 72.9 59.2 74.9
+ MPE 66.5 74.7 65.2 76.3

Table 2 shows the performance in noisy conditions.
Again, HLDA projection and MPE training all improve word
accuracy. We now see that the headset microphone is more
sensitive to background noise than the NAM microphone.
PLP features provide the best word accuracy for the NAM
microphone. The most striking result is that the word ac-
curacy of the NAM microphone using PLP features, HLDA
projection and MPE training is comparable to the accuracy in
clean conditions (76.3% vs. 78.3%) .

4.3. VTS compensation of the NAM clean acoustic model

The experiments reported above used training data and test
data in matched conditions for both the headset and NAM
microphones. The next experiment concerns robustness to
mismatch between training and test conditions. We use an
acoustic model trained on NAM speech from clean condi-
tions, to recognise NAM speech from noisy conditions, and
examine the benefits of applying VTS compensation to the
clean model. Note that the noisy speech data in this experi-
ment is not artifically corrupted one but real noisy data In this
experiment, waveforms with a sampling rate of 8kHz were
used, with MFCC features. Note that ’MFCC 0 D A’ was
used for the VTS compensation instead of ’MFCC E D A Z’,
because of VTS assumes this feature theoretically.

Table 3 shows results with and without VTS compensa-
tion. Comparing the first and second rows, we can see that
the NAM clean acoustic model is still very much affected by
acoustic mismatch, despite its noise-proof construction, with
a decrease in recognition accuracy from 76.1% to just 15.1%.
We then applied VTS noise compensation for the mismatched
system. We initialised the noise model parameter µµµn,µµµh and
ΣΣΣn by the first and last 20 frames of each utterance which
were assumed to be silence, and the first round of decoding
was performed. The hypothesis was then used to update the
noise model, and another decoding pass was conducted. The
procedure was repeat which gave the final results of VTS in



Table 3. Results of applying model compensation to the NAM
clean acoustic model. ’MFCC 0 D A’ was used for the VTS
compensation instead of ’MFCC E D A Z’, because of VTS
assumes this feature theoretically.

MFCC 0 D A
Test data Compensation. Word Accuracy (%)
clean data no 76.1
noise data no 15.1
noise data VTS 64.9

Table 3 as 64.9%. This result shows that for NAM micro-
phone, VTS is still very effective in the mismatch condition
introduced by noise.

5. CONCLUSIONS AND FUTURE WORK

We have introduced a new corpus of whispered speech
recorded simultaneously via a close-talking headset micro-
phone and a non-audible murmur (NAM) microphone, under
both clean and noisy conditions. We have provided bench-
mark recognition results for this corpus.

When the training and test conditions are matched, the
NAM microphone was found to be more robust against back-
ground noise than the close-talking microphone (word accu-
racy of 76.3% vs 66.5%). This is consistent to the results
reported in literatures. The recognition accuracies of NAM
noisy data using a NAM clean model with and without vec-
tor Taylor series (VTS) compensation were compared to ex-
amine the impact of acoustic mismatch. It was found that,
although acoustic mismatch has a very substantial impact on
NAM recognition accuracy, VTS compensation could very ef-
fectively mitigate this. It implies that VTS is effective even
for the body conductive noisy speech to be used for the SSI
system, and this is the main contribution of this paper. Future
work may include larger scale collection of NAM speech data
uttered by many speakers in various types of noise at various
SNRs.
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