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ABSTRACT

Recent research has demonstrated the effectiveness of vocal trac-
t length normalization (VTLN) as a rapid adaptation technique for
statistical parametric speech synthesis. VTLN produces speech with
naturalness preferable to that of MLLR-based adaptation techniques,
being much closer in quality to that generated by the original av-
erage voice model. However with only a single parameter, VTLN
captures very few speaker specific characteristics when compared
to linear transform based adaptation techniques. This paper pro-
poses that the merits of VTLN can be combined with those of lin-
ear transform based adaptation in a hierarchial Bayesian framework,
where VTLN is used as the prior information. A novel technique for
propagating the gender information from the VTLN prior through
constrained structural maximum a posteriori linear regression (C-
SMAPLR) adaptation is presented. Experiments show that the re-
sulting transformation has improved speech quality with better nat-
uralness, intelligibility and improved speaker similarity.

Index Terms— Statistical parametric speech synthesis, hidden
Markov models, speaker adaptation, VTLN, MLLR

1. INTRODUCTION

The ability to transform voice identity in text-to-speech synthesis
(TTS) has been an important area of research with applications in the
medical, security and entertainment industries. One specific appli-
cation that has seen considerable interest by the research community
is that of personalized speech-to-speech translation, which can help
overcome the language barrier, especially on a mobile device. It is
crucial to this kind of application that the speaker characteristics are
introduced into the output speech from the very first utterance spo-
ken by a speaker. Hence, speaker characteristics need to be estimated
from very little adaptation data.

Statistical parametric synthesis [1] using hidden Markov models
(HMM) has proven to be a particularly flexible and robust framework
for performing speaker transformation, leveraging off a range of s-
peaker adaptation techniques [2] previously developed for automatic
speech recognition (ASR). Maximum likelihood linear transforma-
tion (MLLT) based adaptation techniques entail linear transforma-
tion of the means and variances of an HMM to match the charac-
teristics of the speech for a given speaker. These techniques require
a considerable amount of adaptation data (of the order of tens of
utterances) for reasonable adaptation performance. Rapid adapta-
tion techniques like vocal tract length normalization (VTLN) have
also been successfully applied to statistical parametric speech syn-
thesis [3]. By contrast, this technique requires very little adaptation
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data as it estimates only a single parameter. This system preserves
the naturalness of the average voice, albeit capturing very few s-
peaker characteristics. It follows that combining the linear transfor-
m based adaptation techniques with VTLN could result in improved
naturalness of synthesized speech whilst also being effective at cap-
turing the speaker characteristics. This provides a means to rapidly
adapt synthesized speech with a balanced trade-off between natural-
ness and speaker similarity.

VTLN is a widely used speaker normalization technique in AS-
R [4,5]. It is inspired from the observation that the vocal tract length
(VTL) varies across different speakers in the range of around 18 cm
in males to around 13 cm in females. The formant frequency posi-
tions are inversely proportional to VTL, and hence can vary around
25% [6]. Although implementation details differ, VTLN is general-
ly characterized by a single parameter that warps the spectra towards
that of an average vocal tract in much the same way that maximum
likelihood linear regression (MLLR) transforms can warp towards
an average voice. The same technique can also estimate the speaker
characteristics of a target speaker, and hence transform the average
voice into the speech of the target speaker. Initial investigations of
VTLN for statistical parametric speech synthesis were performed by
Saheer et. al. [7].

Breslin et. al. [8] showed that VTLN can be combined with con-
strained MLLR (CMLLR) for rapid adaptation in ASR. In that work,
a count smoothing framework is used to incorporate the prior infor-
mation. Structural maximum a posteriori (SMAP) based adaptation
techniques also use prior information for transform estimation [9].
The SMAP technique uses a family of elliptically symmetric distri-
butions including the matrix variate normal prior density as a prior
distribution [10] and uses a tree structure to propagate this prior to
different classes of transforms. Yamagishi et. al. [2] showed that
due to the presence of hierarchial prior, constrained SMAP linear re-
gression (CSMAPLR) is a more robust adaptation framework when
compared to CMLLR in statistical parametric speech synthesis.

Although CSMAPLR uses the identity matrix as a hyper param-
eter of the prior distribution at the root node, in a similar spirit to the
work of Breslin et. al. [8], the hyper parameter at the root node may
be replaced by a VLNT transform. The structural framework help-
s propagate the prior information affected by the VTLN transform
through the various levels of the regression tree effectively. The tree
structure is generated using linguistic information; hence, the prop-
agated prior information should reflect the connection and similar-
ity of the distributions of linguistic information. Using the VTLN
matrix as the initial prior information for the root node of the C-
SMAPLR transform could result in the propagation of speaker char-
acteristics and improved speaker adaptation even when very little
data is available.
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2. THEORY

2.1. VTLN in Statistical Parametric Speech Synthesis

The main components involved in VTLN are a warping function, a
warping factor and an optimization criterion. Typically, the warping
function has only a single variable α as the warping factor, which
is representative of the ratio of the VTL of a speaker to an aver-
age VTL. In ASR, where a mel or bark spaced filter bank is used,
the warping function tends to be linear or piecewise-linear, and is
normally applied directly to the filter-bank. By contrast, feature ex-
traction for TTS systems tends not to use a filter-bank analysis as
it renders signal reconstruction difficult. Rather, the feature com-
monly used in TTS is the mel-generalized cepstrum (MGCEP) [11],
which makes use of a bilinear transform to achieve a frequency
warp1. Since MGCEP already includes a bilinear transform, a bi-
linear transform-based VTLN proposed by Pitz and Ney [12] can be
implemented as a zero-overhead modification of the MGCEP rep-
resentation. The bilinear transform of a simple first-order all-pass
filter with unit gain leads to a warping of the frequency ω into ω̃ in
the complex z-domain as follows:

z̃−1 =
z−1 − α
1− αz−1

, |α| < 1 (1)

where z−1 = e−jω , z̃−1 = e−jω̃ , and α is the warping factor. We
define the m-th mel-cepstral coefficient, that is, frequency warped
cepstrum, c̃m in MGCEP as

c̃m =
1

2πj

∮
C

logX(z̃) z̃m−1dz̃ (2)

logX(z̃) =

∞∑
m=−∞

c̃m z̃
−m (3)

Since the frequency warping is X(z̃) = X(z), we have a linear
transformation in the cepstral domain ck:

c̃m =

∞∑
k=−∞

1

2πj

∮
C

z̃−kzm−1dz̃ ck (4)

=
∑
k

Amk(α) ck (5)

where Amk(α) is the m-th row k-th column element of the warp-
ing matrix Aα consisting of the warping factor α and the Cauchy
integral formula yields [12]:

Amk(α) =
1

2πj

∮
C

z̃−kzm−1dz̃ (6)

=
1

2πj

∮
C

(
z − α
1− αz

)−k
zm−1 dz̃ (7)

=
1

(k − 1)!

k∑
n=max(0,k−m)

(
k
n

)

× (m+ n− 1)!

(m+ n− k)!
(−1)nα2n+m−k. (8)

We may represent the linear transformation in the vector form xα =
Aαx, where xα = (c̃1, · · · , c̃M )> and x = (c1, · · · , cK)> if we
truncate the original and warped mel-cepstral coefficients at K-th
and M -th dimensions. The transform may also be directly applied

1Spectral analysis in MGCEP also uses a generalized logarithmic func-
tion, which has the effect of varying the analysis between an all-pole and a
cepstral model, according to a second parameter.

to the dynamic features of the cepstra. The transformation matrix is
block diagonal with repeatingAα matrix. The maximum likelihood
criterion can be adopted for the optimisation of the warping factor
α [6]:

α̂s = argmax
α

P (xαs | Θ, αs, ws) (9)
where xαs represents features warped with the warping factor αs
for speaker s; Θ represents average voice models, ws represents the
word sequence corresponding to features and α̂s represents the op-
timal warping factor for speaker s. VTLN can also be implemented
as an equivalent feature-space MLLT usingAα; such representation
enables use of the EM algorithm for finding optimal warping fac-
tors. The main advantage of using the EM algorithm over, say, a
grid search is that the resulting warping factor estimation has fin-
er granularity of α values, and efficient implementation in time and
space. The EM algorithm can be embedded into HMM training uti-
lizing the same sufficient statistics as CMLLR [5], which transforms
the spectral features as follows

x̃ = Ax+ b = Wξ. (10)
where ξ = [x>, 1]>, andW = [A, b]. Note that, the matrixA and
bias vector b of the CMLLR transform are far less constrained than
those for VTLN.

2.2. CSMAPLR

CSMAPLR is a robust framework to estimate the CMLLR trans-
formsW based on the SMAP criterion [9]:

Ŵ s = argmax
W

P (x | Θ, W s, ws)P (W s) (11)

where W s refers to the set of CMLLR transforms for the target s-
peaker s. P (xs | Θ,W s, ws) is a likelihood function for W s and
P (W s) is a prior distribution of the transform W s. Matrix variate
normal distributions are used as the prior distribution P (W ):

P (W ) ∝ |Ω|−
L+1
2 |Ψ|−

L
2

exp

[
−1

2
tr(W −H)>Ω−1(W −H)Ψ−1

]
(12)

where Ω ∈ RL×L, Ψ ∈ R(L+1)×(L+1) and H ∈ RL×(L+1) are
the hyperparameters of the prior distribution. In the SMAP criteri-
on, the tree structures of the distributions effectively control these
hyperparameters. The whole adaptation data is used to estimate a
global transform at the root node of the tree based on the ML cri-
terion and it is propagated to the child nodes as a hyperparameter
H . The transforms at each child node are estimated using the corre-
sponding adaptation data and hyperparameters propagated with the
MAP criterion. This process is continued recursively from the root
node to all the leaf nodes of the tree structure.

In the CSMAPLR estimation, the hyperparameter Ψ is fixed to
the identity matrix and Ω to a scaled identity matrix, Ω = τbIL. τb
is a positive scalar that controls the scale factor for the prior propa-
gation and IL is L×L. The hyperparameter of the prior distribution
H is normally set to Ŵ s of the parent node apart from the root n-
ode of the tree structure, which use an identity matrix, that is, no
occupancy and statistics smoothing.

2.3. Using VTLN as CSMAPLR Prior

The VTLN transformation presented in this paper can be considered
as a very constrained form of CMLLR/CSMAPLR. The single pa-
rameter normally gives some measure of the vocal tract length, but
more concretely is known to be highly correlated with basic speak-
er characteristics such as gender and as such can act as a prior for



speaker independent modelling. In fact the CSMAPLR adaptation
technique can use any arbitrary prior information (instead of the i-
dentity matrix) at the root node of the tree structure. This prior infor-
mation can easily be replaced with the VTLN transformation matrix.
At the root node, we may set the hyperparameterH as

HVTLN = [Aα,0] (13)

whereAα is the VTLN transformation matrix described by α and 0
is a zero bias vector. The VTLN prior may be used for the dynamic
features of the cepstra; in this case the hyperparameter matrix H
is a block diagonal matrix with repeating Aα matrix and zero bias
vector. While propagating the prior information through the lower
nodes of the tree, τb is the scale factor determining the influence of
the VTLN prior on the CSMAPLR adaptation technique. The value
of the scale factor can be empirically estimated depending on the
availability of adaptation data.

The characteristics estimated by VTLN when propagated to the
nodes of the tree structure are expected to improve the speaker spe-
cific transform estimation for CSMAPLR. More specifically, VTLN
has been shown to be closer to the average voice, and hence better
in naturalness [3] and CSMAPLR is known to bring in better speak-
er similarity when very little adaptation data is available. A-priori,
combination of these two is expected to give improved performance
with respect to naturalness and speaker similarity.

3. EVALUATIONS WITH VTLN AS PRIOR
3.1. Experimental Setup

The HMM speech synthesis system (HTS) [1] is used for generating
the statistical parameters for speech synthesis. HTS models spec-
trum, logF0, band-limited aperiodic components and duration in
the unified framework of hidden semi-Markov models (HSMMs).
The STRAIGHT vocoder is used to synthesize speech from the pa-
rameters generated using HTS. The HMM topology is five-state and
left-to-right with no skip states. Speech features are 59th-order mel-
cepstra, logF0, 25-dimensional band aperiodicity, and their delta
and delta-delta coefficients, extracted from 48kHz recordings with a
frame shift of 5ms. The speaker dependent model is built using a UK
English speech corpus (RJS) including 5 hours of clean speech data
uttered by an RP professional narrator. The evaluation experiments
are performed on another UK English test speaker (Roger). Subjec-
tive listening tests are performed by 17 subjects using the Blizzard
challenge 2010 test sentences for naturalness, speaker similarity and
intelligibility with different amounts of adaptation data and different
values of the scale factor.

The subjective tests are based on mean opinion scores (MOS)
of naturalness and ABX scores for speaker similarity. The synthe-
sized utterances are rated on a 5-point scale, 5 being “completely
natural” and 1 being “completely unnatural”. The model (speak-
er used to train the model) and the target speaker are given as the
two reference speakers in the ABX test for finding speaker similari-
ty. Only the spectral stream is transformed with different adaptation
techniques; other streams (logF0, bndap and duration) are unadapt-
ed or the same as generated for the speaker used to train the model.
The subjective evaluations are also performed for intelligibility us-
ing semantically unpredictable sentences where subjects listen to the
speech utterances and are asked to type the corresponding text. The
score for intelligibility is based on the word error rate (WER) for the
text entered by the listeners. In addition, objective evaluation based
on the mel-cepstral distance (MCD) was also carried out. The MCD
is the Euclidean distance between the synthesized cepstra and those
derived from the natural speech, and can be viewed as an approxi-
mation to the log spectral distortion measure according to Parserval’s
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Fig. 1: Mel-cepstral distances of VTLN, CSMAPLR, and the pro-
posed VTLN-CSMAPLR.

theorem. One hundred sentences were synthesized for objective e-
valuations for the test speaker.

3.2. Objective Evaluation

The values of the MCD for different amounts of adaptation data
are plotted in the Figure 1, in which VTLN, CSMAPLR, and VTL-
N+CSMAPLR were evaluated. The objective results show that 1) the
VTLN technique works best in comparison to others when one adap-
tation sentence is used (around 7dB) whereas its performance does
not improve if more than one sentence is used for the adaptation and
that 2) the CSMAPLR improves the MCD to around 5dB when the
number of adaptation sentences is more than five. However, the per-
formance of the CSMAPLR technique rapidly becomes worse when
the number of adaptation sentences is less than five, reaching around
9.5dB MCD with only one adaptation utterance. Finally, the objec-
tive results clearly show that the proposed VTLN-CSMAPLR tech-
nique alleviates this issue of the CSMAPLR technique and improves
the performance when the number of adaptation sentences is less
than five. We can see that even if the number of adaptation sentences
is just two, the performance of the VTLN-CSMAPLR technique out-
performs the VTLN technique; its distortion is around 6dB.

3.3. Subjective Evaluation

The listening tests were performed with 1, 10 and 100 adaptation
sentences. The evaluation results of the listening tests are shown in
Figure 2. From the speaker similarity results, we can see that when
the number of adaptation sentences is one, only VTLN and VTLN-
SMAP are judged to be similar to Roger and CSMAPLR is judged to
be similar to neither Roger nor RJS. When the number of adaptation
sentences is ten, only CSMAPLR are judged to be similar to Roger.
There is no significant difference among the methods with 100 adap-
tation sentences. From the results on naturalness, we see that VTLN
does not improve naturalness even if more data is used. Howev-
er, VTLN and VTLN-CSMAPLR both give better results than C-
SMAPLR with one adaptation sentence. From the intelligibility e-
valuation, we observe that there is no significant difference between
VTLN and VTLN-CSMAPLR with 1, 10 and 100 sentences, but, on
the other hand, we can see that CSMAPLR has significantly degrad-
ed intelligibility with one adaptation sentence.

4. CONCLUSIONS

We conclude that the VTLN prior can significantly improve the C-
SMAPLR adaptation performance when the adaptation data is very
limited and unlike VTLN, can scale up to the performance of C-
SMAPLR with more adaptation data. This paper has presented a
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C CSMAPLR 100
D VTLN 1
E VTLN 10
F VTLN 100
G VTLN-CSMAPLR 1
H VTLN-CSMAPLR 10
I VTLN-CSMAPLR 100

Significance at 1% level for similarity
A B C D E F G H I

A - 0 0 0 0 0 0 0 0
B 0 - 0 0 0 1 0 0 0
C 0 0 - 0 0 0 0 0 0
D 0 0 0 - 0 1 0 0 0
E 0 0 0 0 - 0 0 0 0
F 0 1 0 1 0 - 0 0 0
G 0 0 0 0 0 0 - 0 0
H 0 0 0 0 0 0 0 - 0
I 0 0 0 0 0 0 0 0 -

Significance at 1% level for naturalness
A B C D E F G H I

A - 1 1 1 1 1 1 1 1
B 1 - 0 0 0 0 1 0 0
C 1 0 - 0 0 0 1 0 0
D 1 0 0 - 0 0 1 0 0
E 1 0 0 0 - 0 1 0 0
F 1 0 0 0 0 - 1 0 0
G 1 1 1 1 1 1 - 1 1
H 1 0 0 0 0 0 1 - 0
I 1 0 0 0 0 0 1 0 -

Significance at 1% level for WER
A B C D E F G H I

A - 1 1 1 1 1 1 1 1
B 1 - 0 0 0 0 0 0 0
C 1 0 - 0 0 0 0 0 0
D 1 0 0 - 0 0 0 0 0
E 1 0 0 0 - 0 0 0 0
F 1 0 0 0 0 - 0 0 0
G 1 0 0 0 0 0 - 0 1
H 1 0 0 0 0 0 0 - 0
I 1 0 0 0 0 0 1 0 -

Fig. 2: Listening tests results. There are three columns of plots and tables which are, from left to right, similarity to original speaker, mean
opinion score for naturalness, and intelligibility. The similarity is an ABX plot with whiskers for 95% confidence interval. Here systems are
permuted differently for readability. Naturalness plot on the upper row is a box plot where the median is represented by a solid bar across a
box showing the quartiles and whiskers extend to 1.5 times the inter-quartile range. The system-symbol correspondence is shown in the first
table in the bottom row. The rest of the tables in the bottom row indicate significant differences between pairs of systems, based on Wilcoxon
signed rank tests with alpha Bonferoni correction (1% level); ‘1’ indicates a significant difference.

novel idea for combining the merits of CSMAPLR and VTLN adap-
tation, resulting in an improved adaptation technique. An efficient
algorithm was presented to use the VTLN transformation matrix as
prior information for the existing CSMAPLR adaptation. Perfor-
mance improvements were shown, especially when very little adap-
tation data was available. The future work is to perform more de-
tailed evaluations in different scenarios and to use multiple VTLN
transforms as priors for different phoneme classes instead of a single
VTLN transform at the root node.
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