

Edinburgh Research Explorer

Using Static Graphs in Planning Domains to Understand Domain
Dynamics

Citation for published version:
Wickler, G 2013, Using Static Graphs in Planning Domains to Understand Domain Dynamics. in
Proceedings of Knowledge Engineering for Planning and Scheduling (KEPS 2013): Part of 23rd
International Conference on Autmated Planning and Scheduling (ICAPS) Rome, Italy, June 2013.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of Knowledge Engineering for Planning and Scheduling (KEPS 2013)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/using-static-graphs-in-planning-domains-to-understand-domain-dynamics(3b22f678-d3ed-42a9-ad48-ca7f8f829b24).html

Using Static Graphs in Planning Domains to Understand Domain Dynamics∗

Gerhard Wickler
Artificial Intelligence Applications Institute

University of Edinburgh
Edinburgh, Scotland

Abstract
This paper describes a method for analyzing STRIPS-like
planning domains by identifying static graphs that are im-
plicit in the set of operators defining a planning domain. A
graph consisting of nodes and possibly directed edges is a
common way to construct representations for many problems,
including computational problems and problems of reasoning
about action. Furthermore, there may be objects or properties
related to the nodes of such a graph that may be modified
by the operators in ways restricted by the graph. The formal
definition of shift operators over static graphs as a domain
feature is the main contribution of this paper.
Such an analysis could be used for verification and valida-
tion of the planning domain when it is presented to the do-
main author who may or may not agree with the result of
the analysis. The method described relies on domain fea-
tures that can also be extracted automatically, and it works
on domains rather than problems, which means the result is
problem-independent. However, if problems are given further
analysis may be perfomed. The method has been evaluated
using a small number of planning domains drawn from the
international planning competition.

Introduction
Specifying a planning domain and a planning problem in a
formal description language defines a search space that can
be traversed by a state-space planner to find a solution plan.
It is well known that this specification process, also known
as problem formulation [Russell and Norvig, 2003], is es-
sential for enabling efficient problem-solving though search
[Amarel, 1968]. However, the most efficient representation
is often hard to understand, verify and maintain. One way
to ensure the correctness of a problem specification is to en-
force consistency. Obviously this does not guarantee cor-
rectness, but it may highlight problems to the knowledge
engineer.

Consistency can be enforced if the representation contains
some redundancy. We have described a set of domain fea-
tures [Wickler, 2011] that can be used to assist during the

∗This work has been sponsored by the Engineering and
Physical Sciences Research Council (UK) under grant number
EP/J011800/1. The University of Edinburgh and research spon-
sors are authorized to reproduce and distribute reprints and online
copies for their purposes notwithstanding any copyright annotation
hereon.

verification and validation of planning domains by exploit-
ing information implicit in the planning domain. The fea-
tures are: domain types, relation fluency, inconsistent effects
and reversible actions. These features can be efficiently and
automatically extracted from a planning domain. If the plan-
ning domain also contains an explicit specification of these
features then these represent redundant information that can
be compared and used to enforce consistency, by which we
mean that the feature values specified by the knowledge en-
gineer should be the same as the ones that can be automat-
ically extracted. Hopefully, this will lead to a planning do-
main that is in line with what the knowledge engineer in-
tended to represent.

Knowledge Engineering
Knowledge engineering (KE) for planning domains is a
topic that has received relatively little attention in the AI
planning community and much work is still needed in the
area. However, with planners becoming more efficient, the
problems they can solve in reasonable time are becoming
larger, and so the planning domains may be larger and more
complex to engineer.

KE Methodology
The design process for planning domain models is similar to
the knowledge engineering process followed for other types
of software models. The baseline phases for planning do-
mains described in [Vaquero et al., 2011] are the following:

1. requirements specification

2. knowledge modeling

3. model analysis

4. deployment to planner

5. plan synthesis

6. plan analysis and post-design

The work described in this paper focusses on the third
phase, model analysis, which includes the verification and
validation of the planning domain model.

One of the most advanced systems in this area is GIPO
[Simpson, 2007] which includes support for the complete
KE process, including model analysis. GIPO goes well be-
yond simple syntactic checks, verifying the consistent use

uhiroeh
Typewritten Text
Wickler, G. (2013). Using Static Graphs in Planning Domains to Understand Domain Dynamics. In Proceedings of Knowledge Engineering for Planning and Scheduling (KEPS 2013), Part of 23rd International Conference on Autmated Planning and Scheduling (ICAPS) Rome, Italy, June 2013.

uhiroeh
Typewritten Text

uhiroeh
Typewritten Text

uhiroeh
Typewritten Text

of a type hierarchy and predicate templates, as well as more
advanced features such as invariants. It also includes a tool
that visualizes domain dynamics for the knowledge engi-
neer. Another graphical system supporting KE for planning
domains is itSIMPLE [Vaquero et al., 2007]. Static support
for model analysis is mostly visual, using multiple views
which can also be interpreted as a kind of redundancy.

The target output in most KE systems for planning is
the Planning Domain Definition Language (PDDL) [Fox and
Long, 2003], which has become a de-facto standard for spec-
ifying STRIPS-like planning domains and problems with var-
ious extensions. PDDL allows for the specification of some
auxiliary information about a domain, such as types, but this
information is optional.

Domain Features
Amongst the features mentioned above, domain types have
received significant attention in the planning literature. A
rigorous method for problem formulation in the case of plan-
ning domains was presented in [McCluskey and Porteous,
1997]. In the second step of their methodology types are ex-
tracted from an informal description of a planning domain.
Types have been used as a basic domain feature in TIM [Fox
and Long, 1998]. Their approach exploits functional equiv-
alence of objects to derive a hierarchical type structure. This
work has later been extended to infer generic types such as
mobiles and resources that can be exploited to optimize plan
search [Coles and Smith, 2006].

The distinction between rigid and fluent relations [Ghal-
lab et al., 2004] is common in AI planning and will be dis-
cussed below. Inconsistent effects of different actions are ex-
ploited in the GraphPlan algorithm [Blum and Furst, 1995]
to define the mutex relation. However, this is applied to
pairs of actions (i.e. fully ground instances of operators)
rather than operators. Reversible actions, as a domain fea-
ture, are not related to regression of goals, meaning this fea-
ture is unrelated to the direction of search (forward from the
initial state or regressing backwards from the goal). A for-
mal treatment of reversibility of actions (or operators) does
not appear to feature much in the AI planning literature, de-
spite the fact that reversible actions are common in planning
domains. However, in generic search problems they are a
common technique used to prune search trees [Russell and
Norvig, 2003].

Preprocessing of planning domains is a technique that has
been used to speed up the planning process [Dawson and
Siklossy, 1977]. Perhaps the most common preprocessing
step is the translation of the STRIPS (function-free, first-
order) representation into a propositional representation. An
informal algorithm for this is described in [Ghallab et al.,
2004, section 2.6]. A conceptual flaw in this algorithm
(highlighted by the analysis of inconsistent effects) was de-
scribed in [Wickler, 2011].

Static and Fluent Relations
A domain feature that is useful for the analysis of planning
domains concerns the relations that are used in the definition
of the operators. The set of predicates used here can be di-
vided into static (or rigid) relations and fluent (or dynamic)

relations, depending on whether atoms using this predicate
can change their truth value from state to state.

Definition 1 (static/fluent relation) Let O =
{O1, . . . , On(O)} be a set of operators and let
P = {P1, . . . , Pn(P)} be a set of all the predicate
symbols that occur in these operators. A predicate Pi ∈ P
is fluent iff there is an operator Oj ∈ O that has an effect
that uses the predicate Pi. Otherwise the predicate is static.

The algorithm for computing the sets of fluent and static
predicate symbols is trivial and hence, we will not list it here.

There are at least two ways in which this information can
be used in the validation of planning problems. Firstly, if
the domain definition language allowed the domain author
to specify whether a relation is static or fluent then this could
be verified when the domain is parsed. This might highlight
problems with the domain. This use requires only a planning
domain to be provided. Secondly, if a planning problem that
uses additional relations is given, these could be highlighted
or simply removed from the initial state.

Type Information
Many planning domains include explicit type information.
In PDDL the :typing requirement allows the specification
of typed variables in predicate and operator declarations. In
problem specifications, it allows the assignment of constants
or objects to types. If nothing else, typing tends to greatly
increase the readability of a planning domain. However, it is
not necessary for most planning algorithms to work, and the
analysis techniques described here require neither a problem
nor explicit types to be given.

Type Consistency The simplest kind of type system often
used in planning is one in which the set of all constants C
used in the planning domain and problem is divided into dis-
joint types T . That is, each type corresponds to a subset of
all constants and each constant belongs to exactly one type.
This is the kind of type system we will look at here.

Definition 2 (type partition) A type partition P is a tuple
〈C, T, τ〉 where:

• C is a finite set of n(C) ≥ 1 constant symbols C =
{c1, . . . , cn(C)},

• T is a set of n(T) ≤ n(C) types T = {t1, . . . , tn(T)},
and

• τ : C → T is a function defining the type of a given
constant.

A type partition divides the set of all constants that may
occur in a planning problem into a set of equivalence classes.
However, constants are only necessary to define the types’
extension. As we shall show, the intension is implicit in the
operators that constitute the planning domain alone. The
availability of a type partition can be used to limit the space
of world states that may be searched by a planner. In general,
a world state in a planning domain can be any subset of the
powerset of the set of ground atoms over predicates P with
arguments from C.

Definition 3 (type function) Let P = {P1, . . . , Pn(P)}
be a set of n(P) predicate symbols with associated ar-
ities a(Pi) and let T = {t1, . . . , tn(T)} be a set of
types. A type function for predicates is a function

argP : P × N→ T
which, for a given predicate symbol Pi and argument num-
ber 1 ≤ k ≤ a(Pi) gives the type argP (Pi, k) ∈ T of that
argument position.

This is the kind of type specification we find in PDDL do-
main definitions as part of the definition of predicates used
in the domain, provided that the typing extension of PDDL is
used. The type function is defined by enumerating the types
for all the arguments of each predicate.

Definition 4 (type consistency) Let 〈C, T, τ〉 be a type
partition. Let Pi ∈ P be a predicate symbol and let
c1, . . . , ca(Pi) ∈ C be constant symbols. The ground first-
order atom Pi(c1, . . . , ca(Pi)) is type consistent iff τ(ck) =
argP (Pi, k). A world state is type consistent iff all its mem-
bers are type consistent.

Thus, for a given predicate Pi there are |C|a(Pi) possible
ground instances that may occur in world states. Clearly, the
set of type consistent world states is a subset of the set of all
world states. The availability of a set of types can also be
used to limit the actions considered by a planner.

Definition 5 (type function) Let O = {O1, . . . , On(O)}
be a set of n(O) operator names with associated ar-
ities a(Oi) and let T = {t1, . . . , tn(T)} be a set of
types. A type function for operators is a function

argO : O × N→ T
which, for a given operator symbol Oi and argument num-
ber 1 ≤ k ≤ a(Oi) gives the type argO(Oi, k) ∈ T of that
argument position.

Again, this is exactly the kind of type specification that
may be provided in PDDL where the function is defined by
enumeration of all the arguments with their types for each
operator definition.

Definition 6 (type consistency) Let 〈C, T, τ〉 be a type
partition. Let Oi(v1, . . . , va(Oi)) be a STRIPS opera-
tor defined over variables v1, . . . , va(Oi) with precondi-
tions precs(Oi) and effects effects(Oi), where each pre-
condition/effect has the form Pj(vPj ,1, . . . , vPj ,a(Pj)) or
¬Pj(vPj ,1, . . . , vPj ,a(Pj)) for some predicate Pj ∈ P . The
operator Oi is type consistent iff:

• all the operator variables v1, . . . , va(Oi) are mentioned in
the positive preconditions of the operator, and

• if vk = vPj ,l, i.e. the kth argument variable of the op-
erator is the same as the lth argument variable of a pre-
condition or effect, then the types must also be the same:
argO(Oi, k) = argP (Pj , l).

The first condition is often required only implicitly (see
[Ghallab et al., 2004, chapter 4]) to avoid the complication
of “lifted” search in forward search.

Derived Types The above definitions assume that there is
an underlying type system that has been used to define the
planning domain (and problems) in a consistent fashion. We
shall continue to assume that such a type system exists, but
it may not have been explicitly specified in the PDDL def-
inition of the domain. We shall now define a type system
that is derived from the operator descriptions in the planning
domain.
Definition 7 (type name) Let O = {O1, . . . , On(O)} be a
set of STRIPS operators. Let P be the set of all the predicate
symbols used in all the operators. A type name is a pair
〈N, k〉 ∈ (P ∪O)× N.

A type name (a predicate or operator name and an argu-
ment number) can be used to refer to a type in a derived
type system. There usually are multiple names to refer to
the same type. The basic idea behind the derived types is to
partition the set of all type names into equivalence classes. If
a planning problem is given, the constants occurring in such
a problem can then be assigned to the different equivalence
classes, thus treating each equivalence class as a type.
Definition 8 (O-type) Let O = {O1, . . . , On(O)} be a set
of STRIPS operators over operator variables v1, . . . , va(Oi)

with conds(Oi) = precs(Oi)∪ effects(Oi) and all operator
variables mentioned in the positive preconditions. Let P be
the set of all the predicate symbols used in all the operators.
An O-type is a set of type names. Two type names 〈N1, i1〉
and 〈N2, i2〉 are in the same O-type, denoted 〈N1, i1〉 ≡O

〈N2, i2〉, iff one of the following holds:
• N1(v1,1, . . . , v1,a(N1)) is an operator with precondition

or effect N2(v2,1, . . . , v2,a(N2)) ∈conds(N1) which share
a specific variable: v1,i1 = v2,i2 ,

• N2(v2,1, . . . , v2,a(N2)) is an operator with precondition
or effect N1(v1,1, . . . , v1,a(N1)) ∈conds(N2) which share
a specific variable: v1,i1 = v2,i2 , or

• there is a type name 〈N, j〉 such that 〈N, j〉 ≡O 〈N1, i1〉
and 〈N, j〉 ≡O 〈N2, i2〉.

Definition 9 (O-type partition) Let (si, g, O) be a STRIPS
planning problem. Let C be the set of all constants used in
si. Let T = {t1, . . . , tn(T)} be the set of O-types derived
from the operators in O. Then we can define the function
τ : C → T as follows:
τ(c) = ti : ∀R(c1, . . . , ca(R)) ∈ si : (cj = c)⇒ 〈R, j〉 ∈ ti

Note that τ(c) is not necessarily well-defined for every
constant mentioned in the initial state, e.g. if a constant is
used in two relations that would indicate different derived
types (which rely only on the operator descriptions). In this
case the O-type partition cannot be used as defined above.
However, if appropriate unions of O-types are taken then
this results in a new type partition for which τ(c) is defined.
In the worst case this will lead to a type partition consisting
of a single type. Given that this approach is always possible,
we shall now assume that τ(c) is always defined.
Definition 10 Let T = {t1, . . . , tn(T)} be the set ofO-types
for a given set of operators O and let P = {P1, . . . , Pn(P)}
be the predicates that occur on operators from O. We can
easily define type functions argP and argO as follows:

argP (Pi, k) = ti : 〈Pi, k〉 ∈ ti and
argO(Oi, k) = ti : 〈Oi, k〉 ∈ ti

Proposition 1 Let (si, g, O) be a STRIPS planning problem
and let 〈C, T, τ〉 be the O-type partition derived from this
problem. Then every state that is reachable from the initial
state si is type consistent.

To show this we first show that the initial state is type
consistent. Since the definition of τ is based on the argument
positions in which they occur in the initial state, this follows
trivially.

Next we need to show that every action that is an instance
of an operator in O is type consistent. All operator variables
must be mentioned in the positive preconditions according to
the definition of an O-type. Furthermore, if a precondition
or effect share a variable with the operator, these must have
the same type since≡O puts them into the same equivalence
class.

Finally we can show that, if action a is applicable in a
type consistent state s, the resulting state γ(s, a) must also
be type consistent. Every atom must come either from s
in which case it must be type consistent, or it comes from a
positive effect, which, given the type consistency of ameans
it must also be type consistent. �

This shows that the type system derived from the operator
definitions is indeed useful as it creates a state space of type
consistent states. Note that the definition of the type system
does not require the initial state that is part of the problem,
but uses only the operators. The initial state is only nec-
essary for the proposition, as is spans a state-space about
which we can make a claim in the above proposition.

Advanced Features
In this section we shall define some more abstract features
that can be used to achieve an understanding of a planning
domain that is, perhaps, more human-like. The formal def-
inition of these features represent the main contribution of
this paper.

Static Graphs
We have now formally defined a type system that we can
derive from a planning domain, and we have defined what
it means for a predicate used in a planning domain to be
static. Together, these two features form the basis for the
static graphs that we will identify in a given planning do-
main. We shall use the dock worker robots (DWR) domain
defined in [Ghallab et al., 2004] to illustrate the concepts
defined in this section.

Many planning domains fall into the general category of
transportation domains. That is, they define a network of
locations that are connected by paths that can be traversed
by vehicles. Often there are other types of movable objects
that need to be brought into a given configuration, defined by
the goal of a planning problem over such a domain. The path
network that is part of the planning problem is usually fixed,
meaning it cannot be changed by actions in the domain. It
forms a graph that can be analyzed independent from the
state of the world, i.e. the location of vehicles and other
movable objects.

The following definition attempts to capture this notion:

Definition 11 (static graph relation) Let O =
{O1, . . . , On(O)} be a set of STRIPS operators. Let
P = {P1, . . . , Pn(P)} be a set of n(P) predicate symbols
with associated arities a(Pi) used in all the operators. Then
we say that Pi is a static graph relation if and only if:

• Pi is a static relation;
• Pi is a binary relation: a(Pi) = 2; and
• the two arguments of Pi are of the same (derived) type:
argPi

(1) = argPi
(2).

Note that this definition relies only on information that
can be computed from the planning domain specification,
i.e. no planning problem and no hint from the knowledge en-
gineer as to what relation might define a graph is required. In
the DWR domain, the only relation that satisfies these con-
ditions is the adjacent-relation, and this the relation that
defines the network of locations between which the robots
can move. Given a static graph relation, it is straight-forward
to define the graph that is defined by this relation.

Definition 12 (static graph) Let (si, g, O) be a STRIPS
planning problem and let 〈C, T, τ〉 be the O-type partition
derived from this problem. Let Pi be a static graph relation
for the set of operators O. Then Pi defines a static graph
GPi

= (V,E) consisting of nodes (vertices) V and directed
edges E, where:

• V = {c ∈ C|τ(c) = argPi
(1) = argPi

(2)}; and
• E = {(c, c′)|Pi(c, c

′) ∈ si}.
Thus, in the DWR example, the adjacent-relation de-

fines a graph that consists of nodes that correspond to in-
stances of the type location and the edges are defined by
the initial state.

Note that the definition of a static graph applies to a plan-
ning problem. However, the analysis which relations can
define a static graph is problem independent, and therefore
does not have to be re-computed for each problem. It can be
computed from the set of operators defining the domain.

To exploit this analysis for verification and validation, the
knowledge engineer would have to explicitly specify which
relations are meant to represent static graphs. Furthermore,
a relation specified as a static graph relation could have more
properties that can be easily verified: it could be reflexive,
symmetric, and/or transitive, or it could even be specified to
represent a tree structure.

Finally, note that the idea of static graphs is based on loca-
tion networks as found in the DWR domain, but static graph
could represent many things, and thus this technique is more
general and not only applicable to transportation domains.

Node-Fixed Types
Given a static graph, it is often possible to identify other
types that represent objects or properties in the domain
which have a fixed relation to nodes in a static graph.

Definition 13 (node-fixed type) Let O =
{O1, . . . , On(O)} be a set of STRIPS operators and Pi

be a static graph relation for this domain, where ti is the

node type for this relation. A type tj 6= ti represents a
node-fixed type if and only if:

• there exists a static binary relation Pj; and
• Pj has one argument of type ti and the other of type tj .

The intuition for node-fixed types should be fairly obvi-
ous: these are objects that cannot move between nodes in
a static graph. In the DWR example, where the only static
graph is defined by the adjacent-relation and the nodes
are of type location, there are two node-fixed types: a
crane belongs to a location and pile (of containers) is
attached to a location. Thus, any operator that has a crane or
a pile as one of its parameters is implicitly located by these
objects.

In general, one might expect the relation Pj to be func-
tional if the node-fixed type represents a physical object that
can only be at one node. This is not necessarily the case,
however, and the node-fixed type may represent a property
(e.g. a colour) in which case instances can be associated
with multiple nodes. Similarly, the relation Pj may be func-
tional in the other direction, e.g. if there is only ever one
crane at a given location. Once a node-fixed type has been
identified the functional properties of the defining relation
can be computed fairly easily for a given planning problem,
which will define the graph. Also, since the relation must
be static (by definition), these functional properties do not
change in the state space spanned the problem. However,
since this requires a planning problem to be given we shall
not go into it.

Finally, the intuition behind node-fixed types may
location-based, but nothing in the definition requires such
a view, and thus this technique may be applied to any type
of static graph.

Shift Operators
Given a static graph relation that defines a static graph for a
given planning problem, there are often operators that shift
objects or properties from one node in the static graph to a
neighbouring node. This is a basic way in which the under-
lying state can be changed. Of course, there is usually more
to such an operator than the simple shifting of an object or
property.

Definition 14 (shift operator) Let O be a planning op-
erator with positive preconditions pp1, . . . , p

p
n(pp), positive

effects ep1, . . . , e
p
n(ep) and negative effects en1 , . . . , e

n
n(en),

where each precondition and positive/negative effect is a
first-order atom. Let Pi be a static graph relation for the
domain containing O, where ti is the node type for this rela-
tion. Then we say that O is a shift operator wrt. node type
ti if and only if:

• O has a precondition Pi(v, v
′);

• O has a precondition pps that has an argument v (or v′);
• O has a negative effect that is equal to this precondition
pps; and

• O has a positive effect that is equal to the precondition
except where the argument v (or v′) occurs, where the
effect must have the value v′ (or v respectively).

Again, note that the definition of a shift operator relies
solely on the definition of the operator, i.e. no planning
problem is required. However, once a planning problem is
given, this analysis step can be used to compute which ob-
jects or properties can be shifted to which other node in a
static graph.

To illustrate this definition, we shall look at the move op-
erator defined for the DWR domain. This operator is defined
as follows:
(:action move

:parameters (?r ?fr ?to)
:precondition (and (adjacent ?fr ?to)
(at ?r ?fr) (not (occupied ?to)))

:effect (and (at ?r ?to) (occupied ?to)
(not (occupied ?fr)) (not (at ?r ?fr))))

The intended meaning should be fairly obvious (to
a human): the operator moves ?r, a robot, from
the location ?fr to the location ?to. Note
that the operator has two parameters that have the node
type (location) for the static graph defined by the
adjacent-relation. The verify that move is a shift oper-
ator with respect to node type location, we simply have
to find preconditions and effects according to the definition:

• the precondition (adjacent ?fr ?to) uses the
predicate that defines the static graph, thus defining the
edge along which this operators shifts;

• the precondition (at ?r ?fr) uses the variable ?fr
as its second argument, thus defining the node from which
the shifting takes place;

• (at ?r ?fr) is also a negative effect of the operator;
and finally

• the positive effect (at ?r ?to) is equal to the deleted
precondition except for the position of the second argu-
ment which is replaced by the other node given in the first
precondition, thus defining the node to which a shift takes
place.

The algorithm that identifies shift operators follows the
same procedure and simply applies the definition, attempt-
ing to find preconditions and effects that satisfy all the con-
ditions. This is expressed in the following pseudo code.

function is-shift-op(O,Pi)
for every Pi(v, v

′) ∈ pp1, . . . , p
p
n(pp) do

for every Pj(v1, . . . , vk) ∈ pp1, . . . , p
p
n(pp) do

iv ← iv such that viv = v
if iv is undefined continue
if Pj(v1, . . . , vk) /∈ en1 , . . . , enn(en) continue
for every Pj(x1, . . . , xk) ∈ ep1, . . . , e

p
n(ep) do

for ie ∈ 1 . . . k do
if iv = ie ∧ xie 6= v′ next Pj(x1, . . . , xk)
if iv 6= ie ∧ xie 6= vxie next Pj(x1, . . . , xk)

return true

The algorithm takes two parameters, an operator and a
static graph relation. It returns true if and only if the given
operator is a shift operator wrt. the argument type of the

given predicate. Note that this requires the type to be known
and well-defined, but as shown above, this kind of type can
be derived from the planning domain. The algorithm then
loops over all the precondition to find one that represents an
edge in the graph. Then it loops over the preconditions again
to find one that represents a candidate for a shifted prop-
erty. A necessary condition here is that the node from which
we are shifting occurs in the property precondition. Given
such a candidate, the algorithm tests whether the property
is deleted by the operator, another necessary condition. Fi-
nally, the algorithm tests whether a positive effect exists that
represents the shifted property, which is true if it agrees with
the property precondition in all arguments except for the one
representing the static graph node, which must be the node
to which we are shifting for the effect.

Domain Analysis
The above definitions and algorithm show how we can un-
derstand a planning domain in terms of static graphs that
will be encoded in the planning problem. As already men-
tioned, the analysis of the domain (without the problem) lets
us identify which relations represent edges and which types
represent nodes in such a static graph. Given the planning
problem itself, we may perform an analysis of the graph it-
self, where the results of this analysis will be valid for every
world state that is reachable from the initial state.

One specific property that might be interesting in such
a static graph in light of the shift operators just defined, is
whether the graph is fully connected, or if it is not, which
nodes are reachable from a given node. If we know that a
node is reachable from a node in the initial state, and we
know that a property that we can shift with a given opera-
tor holds in the initial state, then we know that this prop-
erty can be achieved in any node reachable from the node
in the initial state. In other words, we have a reachabil-
ity condition that can be evaluated in constant time. Of
course, planning graph analysis [Blum and Furst, 1995;
Hoffmann and Nebel, 2001] gives us the same information
and more, but at a much higher computational cost. This
type of analysis is very useful to guide search, but whether
it contributes to a better understanding of the problem is a
different question, and a better understanding is what aids
knowledge engineering.

There is another important difference between our analy-
sis and the planning graph techniques just mentioned. While
the latter give very good information to a heuristic search
planner, it is hard to understand the information contained
in a planning graph from a knowledge engineering point of
view. The technique described in this paper is specifically
aimed at the knowledge engineer, supporting a more intu-
itive way of understanding how a given set of operators can
manipulate a world state.

In fact, the analysis can be used to help the knowledge
engineer even more. Once an operator has been identified as
shifting a property across a network of nodes, the next ques-
tion is what other conditions there are that make the generic
problem difficult. Clearly, if the shifting was all that is go-
ing on in a domain, this would not be a hard problem. So the
remaining preconditions and effects of a shift operator must

somehow encode the difficult part.
For example, the the move operator defined for the DWR

domain constitutes a shift operator that shifts the location
of the robot as given by the at along edges defined by the
adjacent relation. Thus, for a given problem, it is
easy to compute all the possible locations at which a robot
may be in the state space. Also, paths to these locations are
easy to compute. However, the other conditions defining the
move operator specify that movement is only possible to
an unoccupied location. Thus, the problem becomes hard,
because an optimal solution involves collision avoidance in
time. Interestingly, if one continued this line of reasoning it
should be easy to see that problems involving one robot are
easy, as the occupied relation can simply be disregarded,
that is, it can dropped from the planning domain. This type
of reasoning is very much in line with the kind of analysis
shown in [Amarel, 1968], and this is what we hope to (even-
tually) achieve with this work.

Evaluation
The methodology for evaluating the technique described
above was chosen as follows. We used the DWR domain
[Ghallab et al., 2004] to develop the technique in terms
of definitions and algorithms. This was possible because
the DWR domain does encode a static network of locations
along which a robot can move. There are also other opera-
tors that do not represent shift operations. Thus, this domain
was used to provide a first correctness check.

To properly evaluate the technique we have applied it to
a small number of other planning domains. To avoid any
bias we used only planning domains that were available from
third parties, namely from the international planning compe-
tition. Since the algorithm works on domains and the results
have to be interpreted manually only a limited number of ex-
periments was possible. Note that a knowledge engineer us-
ing the approach described here to ensure the consistency of
the domain they are developing would not need to perform a
manual analysis. This manual analysis is only necessary for
this evaluation as the features we are looking at were not de-
fined with the domains. Random domains are not suitable as
they cannot be expected to encode meaningful knowledge.

The domains used for the evaluation were the simple
STRIPS versions of the following domains: movie, gripper,
logistics, mystery, mprime, and grid. The first step towards
an analysis of these domains was an analysis identifying
static and fluent relations and derived types, as none of the
domains had explicit given types as part of the domain defi-
nition. However, this will not be described here.

Static Graphs
The first domain in our analysis, the movie domain, is a very
simple domain that is almost propositional. All the predi-
cates used are unary, effectively specifying the types of ob-
jects that exist. Clearly, there is no static graph encoded here
and indeed, our algorithm does not identify any static graph
relation.

The second domain, gripper, is more promising as it con-
tains a robot that can move objects between room. Thus

the same intuition as for the DWR domain applies, and one
might expect to find at least a network of locations as a static
graph in this domain. However, the domain is defined to al-
low movement of the robot from any room to another; the
path taken by the robot is abstracted away. No other static
graph is identified by our algorithm in this domain.

The same issue occurs in the logistics domain. Again,
the connections between the different types of places are not
explicit, meaning no static graph can be identified. This is
unfortunate as the domain has different types of locations
(cities and airports), which would have provided an interest-
ing challenge for our intuition.

The next domain, mystery, is perhaps the most interesting
case here. This domain is not based on robots that have to
transport objects between locations, and it is indeed a mys-
tery what is going on in this domain at first glance. Our do-
main analysis identifies three different predicates that define
static graphs for this domain. The first predicate, orbits
is perhaps the most obvious as it can be seen as location-
related. The other static graph relations identified are eats
and attacks, which are somewhat similar and can be in-
terpreted in a meaningful way. Note that none of the three
relations identified here would be expected to be symmet-
ric, so this is quite different from the adjacency used as the
intuition behind the approach.

The mprime domain is really a variation of the mystery
domain and the analysis of static graph relations yields the
same three relations as a result.

The final domain used for the evaluation is the grid do-
main which is a classic transportation domain in which the
network of locations is explicitly specified. And indeed,
our domain analysis finds one static graph relation for this
domain, namely the relation conn which, not surprisingly,
corresponds directly to the adjacency relation in the DWR
domain.

Node-Fixed Types
The movie domain which does not contain a static graph,
cannot contain node-fixed types. The same is true for the
gripper and the logistics domain.

More interesting is the mystery domain, which had three
static graph relations. The first of these, orbits, gives
us one node-fixed type. Looking at the type definition, we
can see that this is the type used for both arguments of the
orbits-relation, which must hold by definition. Another
place where this type is used is the unary plant predicate,
which gives us an idea of type of object this is meant to be.
Finally, the type is also used as the second argument of the
harmony-relation. The other static graph relations, eats
and attacks, also define one node-fixed type each: eats
gives us a type that is also used in the unary predicate food,
whereas attacks reveals a node-fixed type that is not used
in a unary predicate, but only as the second argument in the
locale-relation.

The node-fixed types for the mprime domain are the same
as the ones for the mystery domain. What is perhaps inter-
esting here is that there is a surprising amount of static infor-
mation in both these domains, which might make a domain
analysis before planning useful.

Finally, the grid domain is less surprising here, rendering
just one node-fixed type which is used in, amongst other,
two unary relations, namely at-robot and place. The
latter can be interpreted as the node type, of course.

Shift Operators
Of course, none of the first three domains, movie, gripper
and logistics contains shift operators since there also do not
contain static graphs.

The mystery domain is again interesting in that two of
the static graph relations have operators that shift prop-
erties along the edges. Firstly, the operator succumb
shifts harmony(?v,?s1) along orbits(?s1,?s2) to
harmony(?v,?s2), and secondly, the operator feast
shifts craves(?v,?n1) along eats(?n1,?n2) to
craves(?v,?n2).

And this is where the mprime domain differs from the
mystery domain significantly. In the mprime domain there
is a shift operator also for the final static graph rela-
tion: operator drink shifts locale(?n2,?l21) along
attacks(?l21,?l22) to locale(?n2,?l22).

The last domain, the grid domain, shows itself as being
similar to the DWR domain again. It is the move opera-
tor that can be used to shift the robot from one place to
another. What is perhaps interesting here is that the prop-
erty that is shifted in this domain is represented by a unary
predicate: at-robot. This is of course a valid represen-
tational choice and, perhaps fortunately, the definitions of
static graphs and shift operators are sufficiently general to
catch this special case.

Conclusions
The work described in this paper builds on the domain anal-
ysis in terms of features described in [Wickler, 2011]. The
general approach in which this work can be used is similar
to the previous analysis: knowledge engineering could be
given the option to specify additional, redundant knowledge
that can then be used by the automatic analysis to ensure
consistency of the representation. As for previous work, the
analysis is of the domain, that is, a set of operators, not of
a planning problem. Thus, the result of the analysis is valid
for all problems referring to the analyzed domain and will
not have to be repeated.

Further analysis of a planning problem, based on the re-
sults of the domain analysis, may be performed and may
give further insights into the problem. In fact, it is often the
case that those aspects of the initial state of a planning prob-
lem that are given by the static relations have a degree of
reusability and may not change across a range of problems.
For example, in a real dock the topology is fixed and will not
change from one problem to the next.

The major difference between previous work and the tech-
nique described here is that the analysis is in terms of a fea-
ture that may or may not be present in a planning domain,
namely, static graphs that are more or less explicit in the rep-
resentation. GIPO and itSIMPLE are systems that support the
whole KE process, but neither performs an analysis in terms
of shift operators based on static graphs as we have defined

it here. A graph consisting of nodes and edges is a very
generic way of describing an aspect of a problem, and thus
we can hope to find this feature in many domains, but if not
present, this analysis obviously cannot aid the knowledge
engineering for such a domain.

Also, the analysis algorithms and the underlying defini-
tions rely on certain representational choices that are com-
monly used when formally representing knowledge, but
there may be alternatives that we have not considered that
may make the analysis fail despite the presence of static
graphs.

The DWR domain that was used to develop the ideas un-
derlying this work highlights some of the issues with the
representation that interfere with our analysis. For exam-
ple, our algorithm does not find that the move operator also
shifts the occupied-relation together with the at-relation.
This is simple because the domain uses occupied as a neg-
ative precondition, which is not captured by the definition.
The definitions could of course be adapted to this case, but it
also raises the question why this representational choice was
made and whether its negation, the free-relation, would
not be a better choice for the domain.

Similarly, the exploitation of invariants may lead to do-
main specifications for which our analysis fails.

Another interesting result from the evaluation is that most
static graphs were identified in domains that are not classic
transportation domains. While this shows that the analysis
does indeed apply to other classes of problems, it is not clear
what these classes are. However this was never our aim; our
approach is inspired by one problem class, but the defini-
tions do not make reference to specific concepts associated
with this class.

What the type of domain analysis presented in this paper
is trying to achieve is a more human-like understanding of
a planning domain without reverting to using the names of
symbols as a clue to their meaning or even the comments
in a PDDL. A graph may be just one way to achieve this.
If we could identify other sub-problems that are common
in planning domains and allow for a fast (polynomial time)
analysis, then it may just be possible to identify what exactly
it is that makes a planning problem that uses the domain
difficult, or which interaction of features is the hard part of
the generic problem. This is future work, of course.

References
Saul Amarel. On representations of problems of reasoning
about actions. In Donald Michie, editor, Machine Intelli-
gence 3, pages 131–171. Elsevier/North-Holland, 1968.
Avrim L. Blum and Merrick L. Furst. Fast planning through
planning graph analysis. In Proc. 14th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1636–
1642. Morgan Kaufmann, 1995.
Andrew Coles and Amanda Smith. Generic types and their
use in improving the quality of search heuristics. In Proc.
25th Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSIG 2006), 2006.
Clive Dawson and Laurent Siklossy. The role of preprocess-
ing in problem-solving systems. In Proc. 5th International

Joint Conference on Artificial Intelligence (IJCAI), pages
465–471. Morgan Kaufmann, 1977.
Maria Fox and Derek Long. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research, 9:367–421, 1998.
Maria Fox and Derek Long. PDDL2.1 : An extension to
PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research, 20:61–124, 2003.
Malik Ghallab, Dana Nau, and Paolo Traverso. Automated
Planning. Morgan Kaufmann, 2004.
Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253–302, 2001.
T.L. McCluskey and J.M. Porteous. Engineering and com-
piling planning domain models to promote validity and effi-
ciency. Artificial Intelligence, 95:1–65, 1997.
Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2nd edition, 2003.
R.M. Simpson. Structural domain definition using GIPO IV.
In Proc. 2nd Int. Competition on Knowledge Engineering for
Planning and Scheduling, 2007.
Tiago Stegun Vaquero, V. Romero, F. Tonidandel, and J.R.
Silva. itSIMPLE 2.0: An integrated tool for designing plan-
ning environments. In Mark Boddy, Maria Fox, and Sylvie
Thiébaux, editors, Proc. 17th International Conference on
Automated Planning and Scheduling (ICAPS), pages 336–
343, 2007.
Tiago Stegun Vaquero, José Reinaldo Silva, and J. Christo-
pher Beck. A brief review of tools and methods for knowl-
edge engineering for planning and scheduling. In Roman
Barták, Simone Fratini, Lee McCluskey, and Tiago Stegun
Vaquero, editors, Proc. Knowledge Engineering for Plan-
ning and Scheduling (KEPS), pages 7–14, 2011.
Gerhard Wickler. Using planning domain features to fa-
cilitate knowledge engineering. In Roman Barták, Simone
Fratini, Lee McCluskey, and Tiago Stegun Vaquero, editors,
Proc. Knowledge Engineering for Planning and Scheduling
(KEPS), pages 39–46, 2011.

