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Abstract. Because uncertain reasoning is often intractable, it is hard to
reason with a large amount of knowledge. One solution to this problem is
to specify a set of possible models, some simple and some complex, and
choose which to use based on the problem. We present an architecture for
interpreting temporal data, called AIID, that incrementally constructs
belief networks based on data that arrives asynchronously. It synthesizes
the opportunistic control of the blackboard architecture with recent work
on constructing belief networks from fragments. We have implemented
this architecture in the domain of military analysis.

1 Introduction

Reasoning problems in many domains, such as intelligence analysis and common-
sense reasoning, seem to require both large amounts of knowledge and reasoning
under uncertainty. For example, a military commander may try to intuit an
enemy’s intended attack based on knowledge of the likely terrain, weather, enemy
strength, and other factors, as well as actual sightings of enemy forces. Or, finding
a forgotten book can make use of (highly uncertain!) memories of where it was
last seen, places where it might have been used, and people who might have
wanted to borrow it, as well as data acquired by looking around the office. In
both cases, the reasoner is uncertain about features of the world, and can marshal
both observations and large amounts of general and domain-specific knowledge
to resolve the uncertainty.

Belief networks are a popular method for reasoning with uncertainty, but
traditionally they require specifying a complete model of the domain. Such ex-
pert systems assume that in advance a designer can winnow the set of possible
influences, which can be large, down to the few that are relevant.

This approach has two serious limitations. First, in intelligence domains, part
of the uncertainty is knowing how many influences there are. We may not know
exactly how many units are on a battlefield, for example. It is difficult to design
a complete probabilistic model for a domain without knowing how large the
domain is.

Second, in common-sense reasoning, any observation (such as a car not start-
ing) has many possible explanations, ranging from plausible (out of gas) to im-
plausible (wrong car) to downright ridiculous (starter motor stolen by aliens to
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repair spaceship). To reason with a lot of general knowledge—imagine a prob-
abilistic knowledge base as large as Cyc! [11]—it helps to be able to work with
a plausible subset. But if this subset is selected in advance, we cannot han-
dle situations where implausible rules suddenly become plausible, for example,
if the car contains unfamiliar belongings or small grey men with large eyes.
Knowledge-based systems could be both more robust and generally applicable
if they contained implausible knowledge, but were able to ignore it until new
observations called for its use.

The blackboard architecture [5,13] provides a natural framework for incre-
mentally interpreting large amounts of data. The architecture was designed for
problems that require many heterogeneous types of knowledge. Blackboard sys-
tems have a set of reasoning modules, called knowledge sources (KSs), that de-
velop hypotheses using a global data structure called a blackboard.

In this paper, we present AIID, an architecture for incrementally interpret-
ing temporal data. AIID is a blackboard architecture in which hypotheses on
the blackboard are nodes in a belief network. It extends traditional blackboard
techniques by using a principled method for representing uncertainty, and it ex-
tends traditional belief network techniques by incrementally building a model as
incoming data warrant.

The principal type of knowledge source in AIID is a network fragment, a
reusable mini-belief network from which larger networks are constructed. Us-
ing fragments, AIID can construct a network incrementally in response to data
that arrive asynchronously. Network fragments can be reused across domains.
Previous work [6,9, 10] has discussed methods for constructing belief networks
using network fragments. AIID extends this work by incorporating procedural
knowledge sources that programmatically alter the network, and by focusing on
how the growth of the network will be controlled.

In sections 2 and 3, we summarize the blackboard architecture and the ex-
isting literature on incrementally constructing belief networks. In section 4, we
describe AIID, including its blackboard, knowledge sources, and control. In sec-
tion 5, we illustrate AIID’s operation on an example. We conclude by discussing
our prototype implementation, in the domain of military analysis.

2 Blackboard Systems

Blackboard systems are knowledge-based problem solvers that work through the
collaboration of independent reasoning modules. They were developed in the
1970s and originally applied to signal-processing tasks. The first, HEARSAY-
IT [5], was used for speech recognition, employing acoustic, lexical, syntactic,
and semantic knowledge. Other systems were applied to problems as diverse as
interpretation of sonar data, protein folding, and robot control.

Blackboard systems have three main components: the blackboard itself, knowl-
edge sources (KSs), and control. The blackboard is a global data structure that
contains hypotheses or partial solutions to the problem. The blackboard is typi-



cally organized into sections by levels of abstraction. For example, HEARSAY-II
had different levels for phrases, words, syllables, and so forth.

Knowledge sources are small programs that write new hypotheses to the
blackboard. Ideally, knowledge sources interact only by posting to the black-
board. Different KSs use different types of knowledge: for example, one might
use a syntactic grammar to generate words that are likely to occur next, while
another might detect phonemes directly from the acoustic signal. While no single
knowledge source could solve the problem, working together they can, and the
blackboard model provides an organized means of collaboration.

One focus of the architecture is control [4]. The operation of a blackboard
system can be seen as search for hypotheses that explain the data at each level
of abstraction, using the KSs as operators. Rather than search bottom-up (i.e.,
from the data level to the most abstract level) or top-down, blackboard systems
can search opportunistically, dynamically rating KSs based on the current data
and on the partial solutions that exist so far.

Because hypotheses posted to the blackboard are often uncertain, systems
have needed to represent that uncertainty. Heuristic methods have generally
been used [4]: for example, HEARSAY-II used a numerical confidence score that
ranged from 1 to 100. We are not aware of a blackboard system that represents
the links between hypotheses using conditional probabilities.

3 Belief Networks

A Dbelief network is a directed graphical model that represents a probability
distribution by a graph that encodes conditional independence relationships,
and a set of conditional distributions that give a local distribution for variables
based on their parents in the graph. Belief networks are described formally in
Russell and Norvig [16].

Belief networks that describe several similar objects often have repetitive
structure. For example, in the military domain, every unit has attributes like
UNIT-TYPE (e.g., tanks, infantry, artillery) and DIRECT-FIRE-RADIUS. These
attributes have relationships that do not depend on the particular unit: for ex-
ample, tanks can shoot farther than infantry. If we simply have nodes called
UNIT-TYPE-FOR-UNIT1, DIRECT-FIRE-RADIUS-FOR-UNIT1, etc., then the hu-
mans constructing the network need to specify separate, identical CPTs for each
unit, which is impractical because there could be many units, and we do not
know in advance how many.

Several authors [6,9,10] have addressed this problem by breaking up large
belief networks into smaller subnetworks. Subnetworks have designated input
nodes—which have no conditional distribution, requiring that their distribution
be specified in a different subnetwork—and resident nodes, which do have CPTs.
A standard belief network can be created from subnetworks by unifying the input
nodes of one subnetwork with the resident nodes of another. Repetitive structure
can be specified once in a subnetwork and instantiated multiple times to exploit
redundancies in the domain.



Object-oriented Bayesian networks (OOBNSs) [9, 15] employ strong encapsu-
lation between subnetworks. Each subnetwork defines a set of output variables,
and combinations between subnetworks are made only by connecting the output
variables of one subnetwork to the input variables of another. Each subnetwork
can be seen as a single cluster node in a higher-level belief network, so that an
OOBN defines a single probability distribution over its variables. An attractive
feature of OOBNSs is that their hierarchical structure can be exploited to guide
clustering for the junction-tree algorithm, making inference more efficient. Since
the subnetworks are connected by a knowledge engineer, rather than automat-
ically, OOBNs are not a technique for incrementally building models based on
incoming evidence.

Network fragments [10] are another approach to constructing modular sub-
networks. Unlike OOBNSs, nodes can be resident in more than one fragment, so
they designate influence combination methods for combining distributions from
multiple fragments. So network fragments can combine in more unexpected ways
than in OOBNs, which precludes specialized inference algorithms, but can be
more flexible for specifying complicated belief networks.

4 Architecture

4.1 The Blackboard

The blackboard of AIID represents the system’s current beliefs about the do-
main. The blackboard contains a possibly disconnected belief network that in-
cludes previous observations, background knowledge, and hypotheses about the
data. In the military domain, the blackboard contains nodes that include sight-
ings and hypothesized locations of enemy units, locations of key terrain, and hy-
potheses about the enemy’s tactics and strategy. A sample blackboard is shown
in figure 1.

As in the subnetwork literature, we use a first-order extension to belief net-
works to represent multiple similar entities more conveniently, analogous to the
extension of propositional logic to predicate logic. Instead of naming the ran-
dom variables by a single atom, e.g. UNIT-MASS, each node has a node-type,
for example, UNIT-MASs, and a set of arguments, for example, “Tank Regiment
1.” Logic variables can be used as arguments in KSs to describe a relationship
that does not depend on the particular argument values. The combination of a
node-type and arguments uniquely specifies a node on the blackboard.

Information on the blackboard can occur on different temporal scales. For ex-
ample, we can represent a short meeting between two people as a punctual event,
while an activity like “Planning-Attack” takes an extended amount of time. We
handle these scales using two temporal representations: a tick-based representa-
tion, and an interval representation. At lower levels of the blackboard, where we
are considering things like meetings and current locations, each network node
is indexed by the time it occurs, and the entire network is a Dynamic Bayesian
Network (DBN) [12]. At higher levels of the blackboard, which correspond to



Moving-Towards (R1, B2)

Location (R1, T1) Location (R1, T2)

Fig. 1. A sample blackboard in the military analysis domain

Outflank (U2, 7R1)

Fig. 2. A sample knowledge fragment for the military analysis domain

long-term actions and intentions, we represent events by the interval in which
they occur. Each event has a start-time and an end-time that are explicit nodes
in the network. These two representations are integrated as described elsewhere
[3].

4.2 Knowledge Sources

A knowledge source is a procedure that modifies the blackboard. Knowledge
sources can post new nodes to the blackboard, add edges, alter CPTs, and remove
nodes. Every KS has three components, which can be arbitrary procedures: a
confidence, a precondition, and an action. The confidence returns a number that
indicates how intrinsically useful the KS is. The precondition is run when the
blackboard changes and returns true if the KS is applicable. The action is the
procedure that actually modifies the blackboard.

As in blackboard systems, KS actions can be full-fledged programs. For ex-
ample, a KS might use arbitrary heuristics to post simplifying assumptions to
make reasoning more tractable. In the military domain, for example, our imple-
mentation uses a grouping KS that treats several enemy units as a group if they
seem sufficiently close.

Another type of KS cleans up nodes that accumulate from old time steps. Old
nodes can slow down inference without greatly affecting current beliefs. Cleanup
KSs can remove nodes that are either older than some cutoff or that do not
cause a large drop in information about certain nodes of interest. We define the
information value of a node in section 4.3.

The most common type of KS is a network fragment, which is a belief network
that represents a small fragment of knowledge. Example fragments are shown
in figures 2 and 6. A node in the fragment matches a node on the blackboard
when the two nodes have the same type, and their argument lists unify. (Recall
that nodes in a KS can have logic variables in their argument lists, and the
arguments of a node are distinct from its set of possible outcomes.) By default,



Fix-n-Flank (?U1, ?U2, ?7R1)

Moving-Towards (R1, B2)
Location (R1, T1)

1
BLACKBOARD " KS

Fig. 3. The bipartite matching problem from matching KS 2 to the blackboard in
figure 1

the precondition for a fragment KS is that at least one of the fragment nodes
has a match on the blackboard; however, the KS designer can designate certain
nodes that must be matched, or write an arbitrary precondition.

Posting Network Fragments Fragments are posted to the blackboard by a
process that resembles unification. A fragment can be posted to the blackboard
if three conditions hold. First, each of the fragment nodes must match a node
on the blackboard; a new node can be created on the blackboard if necessary.
Second, a single unifying assignment must unify the argument lists of all the
fragment nodes with their corresponding blackboard nodes—this merely ensures
that a logic variable like ?U refers to the same thing throughout the fragment.
Third, no two fragment nodes can match the same blackboard node.

We can think of fragment matching as a bipartite matching problem, as
shown in figure 3. On the left side of the bipartite graph are all the blackboard
nodes; on the right are all the fragment nodes. A blackboard node and a fragment
node are linked if they have the same node type. Now, any bipartite matching
in this graph describes a way the fragment could be posted to a blackboard. A
fragment node unifies with its neighbor in the matching. If it has no neighbor,
a new node is posted to the blackboard.

Once a fragment has been matched to the blackboard, it can be posted. An
example of a fragment posting is given in figure 4. A fragment is posted to the
blackboard in three steps. First, new nodes are posted if they are required by
the match. Second, for every pair of fragment nodes that are linked, a corre-
sponding edge is added to the blackboard. Now the nodes on the blackboard
have both their original parents Vg and the new parents that were specified
by the fragment, V . Third, since every node V in the fragment has both a con-
ditional distribution in the fragment, P(V | V), and a one on the blackboard,
P(V | Vg), these two distributions are combined to get P(V | Vg, V). Ways
this can be done are given in the next section.

Influence Combination Since network fragments are themselves belief net-
works, they specify a complete probabilistic model over their variables. But nodes
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Fig. 4. The blackboard in figure 1 after KS 2 posts

on the blackboard already have a probability distribution. Suppose that some
node V has parents Vg in the fragment and parents V gg on the blackboard, so
that we have probability distributions P(V | Vg) and P(V | Vgg). When the
KS posts, the parents of V will be {Vr U Vpp}, so we must merge these two
models to get a CPT for P(V | Vg, Vgg). For example, between figures 7 and 7,
the distribution P(ALARM | BURGLAR) must be combined with the distribution
P(ALARM | BASEBALL-BREAKS-WINDOW).

There are several ways to do this. Laskey and Mahoney [10] define several
influence combination methods to combine conditional probability distributions,
one of the principal types being parametric causal models like noisy-or. The
noisy-or model [14, 17] allows one to compactly specify a conditional distribution
when the parents are independent, stochastic causes of the child. The knowledge
engineer can specify which combination method should be used for a given node

type.

4.3 Control

Many knowledge sources are applicable at any given time, but only a few can
be selected to run. This is both because our implementation of AIID runs on a
single processor, so only one KS can be run at a time, and because if too many
KSs fire, the blackboard could become too large for probabilistic inference to be
tractable. We describe three types of control regimes: a simple one based on KSs’
confidence methods, an information-theoretic one based on nodes of interest to
the user, and a Bayesian one based on the probability of the blackboard structure
given the observed data.

First, KSs can be ordered by confidence. This provides a gross ordering among
KSs, but it can be difficult to know in advance, or write a procedure that com-
putes, how useful a KS will be.

Second, certain nodes of the blackboard have more interest to the user. For
example, an intelligence analyst may want to know whether two people have
communicated, or a military commander may want to know whether a certain
attack is a feint. Let V be a set of these nodes of interest. We can choose to
post the knowledge sources that provide the most information about V| in the
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Fig. 5. Initial knowledge in the burglar-alarm example. Darkened nodes are observed,
with the observed value printed underneath the node
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Fig. 6. Three knowledge sources for the burglar-alarm example

sense of reducing its Shannon entropy. The information gained from firing a
KS K is given by I(K) = H(V) — Hig(V), where H(V) is the entropy of V
before K is posted, and Hg (V) is the entropy afterward. We can compute this
directly by temporarily posting K, computing the marginal distribution P(V),
and calculating its entropy.

Since this is probably too expensive to use if many KSs are applicable, we
can try to approximate this effect. We can get a cheap approximation by simply
looking at the distance between where the KS will post and V, that is, the length
of the shortest undirected path between a node used by the KS and a member of
V. Then we prefer the KSs with the shortest distance, on the assumption that
nodes that are closer to V have more influence on its distribution.

Third, previous work on structure learning in belief networks is applicable
to control decisions. Bayesian structure learning is concerned with finding the
structure for a belief network B; which maximizes the posterior probability
P(Bs | D, &) for some set of observed data D and an environment £. For making
control decisions, we can select the KS whose application would maximize the
posterior probability of the blackboard structure given the observations.

Although there is a closed-form solution for this probability, its calculation
is computationally intractable [7]. As a result of this numerous approximation
techniques for estimating this probability have been proposed. Heckerman [7]
gives a good overview of these approximation techniques, most of which are
applicable to the task of control, although some require multiple independent
observations, which may not always be available.

5 Example

In this section we illustrate the action of the architecture by a diagnostic example
inspired by one from Judea Pearl [16]. Suppose you are upstairs in your house
and hear your burglar alarm go off. The alarm might have gone off for many
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Fig. 7. At left, he blackboard after 6(a) has fired. At right, the blackboard after KS
6(c) has fired

reasons: an earthquake, a forgetful member of the household, a baseball breaking
a window, an actual burglar, and many others. Of course you'll investigate, but
as you get up to do this, you naturally wonder what you’ll find downstairs.

Your initial knowledge might be represented in AIID as figure 5: you have
just heard an alarm and you live alone near a baseball field. Since ALARM has
just been posted, KSs that use that node are applicable. Some available KSs are
listed in figure 6.

Now we have to choose which of those KSs should activate. Suppose we use
the Bayesian control regime. In this case, ALARM is observed, so we choose the
KS that maximizes its posterior probability. If we assume pessimistically that
burglaries are more likely than baseball games, it may be that 6(a) results in the
more probable structure, so assume that it is chosen. The result of posting KS
6(a) is shown in figure 7.

Now, suppose that you come downstairs and see a broken window and a
baseball on the floor. With this information, KS 6(b) becomes very relevant, so
suppose it fires. Now influence combination needs to be performed on the ALARM
node. Since BURGLARY and BASEBALL are independent causes of the alarm, it is
reasonable to use the noisy-or combination method. At this point P(BASEBALL)
is likely to be high and P(BURGLAR) to be low (because of explaining away), so
the blackboard now (figure 7) contains a good explanation of the observations.

6 Implementation

We have built a prototype of AIID in the domain of military analysis. We sim-
ulate military engagements at the battalion level (roughly a thousand troops),
using the Capture the Flag simulator [1,2]. The simulator includes such effects
as terrain, fog of war, artillery, combat aviation, and morale.

The data consist of reports about friendly and enemy units, for example,
“Unit Red-1 has sound contact with a brigade-sized unit in the east.” The pro-
totype does not address the problems of identifying the number and composition
of units from individual sightings, which are hard. Rather, our problem is to in-
fer the enemy commander’s strategy and, more specifically, the objective of each
enemy unit.

The blackboard contains reports about enemy units and hypotheses such as
individual unit’s objectives, coordinated actions between unit, and theater-wide
objectives. We have implemented 30 fragment KSs: for example, one computes



the relative combat strength of two opposing units, and others model of military
actions such as defeat (i.e., to attack with overwhelming force), outflank, and
fix. One procedural KS clusters enemy units by location, and hypothesizes that
the units are groups acting in close concert. This kind of geometric reasoning is
difficult to implement in a network fragment.

7 Conclusion

We have presented an architecture for solving knowledge-intensive problems un-
der uncertainty by incrementally constructing probabilistic models. The archi-
tecture synthesizes ideas from the older literature on blackboard systems and the
newer literature on construction of belief networks from fragments. Blackboard
systems are a method of incrementally building symbolic models, while the net-
work fragment systems incrementally build probabilistic models. The contribu-
tion of the current work is, in making the connection between the two literatures,
to point out that both have good ideas the other hasn’t used: probabilistic mod-
els have a principled method of reasoning under uncertainty, while blackboard
systems have focused on controlling the search through the space of possible
models.

It would be natural to extend the architecture to handle influence diagrams,
the largest requirement being influence combination methods for decision and
utility nodes. The most important open questions in this architecture are bet-
ter methods of evidence combination and evaluating different control methods.
We would also like to apply this architecture to other domains, both within
intelligence analysis and common-sense reasoning.
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