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Abstract

Conditional random fields (CRFs) for sequence modeling haveseveral
advantages over joint models such as HMMs, including the ability to
relax strong independence assumptions made in those models, and the
ability to incorporate arbitrary overlapping features. Previous work has
focused on linear-chain CRFs, which correspond to finite-state machines,
and have efficient exact inference algorithms. Often, however, we wish
to label sequence data in multiple interacting ways—for example, per-
forming part-of-speech tagging and noun phrase segmentation simulta-
neously, increasing joint accuracy by sharing informationbetween them.
We presentdynamic conditional random fields (DCRFs), which are CRFs
in which each time slice has a set of state variables and edges—a dis-
tributed state representation as in dynamic Bayesian networks—and pa-
rameters are tied across slices. (They could also be called conditionally-
trainedDynamic Markov Networks.) Since exact inference can be in-
tractable in these models, we perform approximate inference using the
tree-based reparameterization framework (TRP). We also present em-
pirical results comparing DCRFs with linear-chain CRFs on natural-
language data.

1 Introduction

The problem of labeling and segmenting sequences of observations arises in many dif-
ferent areas, including bioinformatics, music modeling, computational linguistics, speech
recognition, and information extraction. Probabilistic finite state automata, such as hidden
Markov models (HMMs), have been popular for such sequence labeling tasks. Finite-state
Conditional Random Fields (CRFs) [4] are another sequence model that offers several ad-
vantages over HMMs, relaxing the strong dependence assumptions made in those models
and allowing rich sets of overlapping features.

Many sequence-processing problems are traditionally solved by chaining errorful subtasks.
The traditional language understanding task, for example,is often broken into parsing,
semantic understanding, and contextual and discourse analysis. In information extraction,
one often performs part-of-speech tagging and then shallowparsing as pre-processing steps
before the main extraction task. In such an approach, however, errors early in processing
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nearly always cascade through the chain, causing errors in the final output.

In this paper, we address this problem by representing the multiple label sequences in
a single graphical model, explicitly modeling limited dependencies between them. We
introduceDynamic CRFs, which are CRFs that repeat structure and parameters over a
sequence. For example, the factorial structure in Figure 1(b) models dependencies between
cotemporal labels, allowing information to flow between thesubtasks in both directions.

DCRFs are named afterDynamic Bayesian Networks (DBNs)[2], directed sequence mod-
els for which there is a large body of literature addressing representation, learning, and
inference (see [7]). Particular classes of DBNs, such as factorial HMMs, have also been
extensively studied [11, 8, 3]. Previous work with CRFs has used the linear-chain struc-
ture, depicted in Figure 1, in which a first-order Markov assumption is made among labels.
DCRFs combine the modeling advantages of the distributed hidden state in DBNs with the
rich feature sets allowed in conditional models.

First, we briefly describe the general framework of CRFs. Then, we describe DCRFs,
including how to do approximate inference and parameter estimation. Finally, we compare
DCRFs to combinations of linear-chain CRFs on a task that involves both part-of-speech
tagging and noun-phrase segmentation.

2 CRFs

Conditional Random Fields(CRFs) [4] are undirected graphical models that encode a con-
ditional probability distribution using a given set of features. CRFs are defined as follows.
Let G be an undirected model over sets of random variablesy andx. As a typical special
case,y = {yt} andx = {xt} for t = 1, . . . , T , so thaty is a labeling of an observed
sequencex.1 If C = {{yc,xc}} is the set of cliques inG, then CRFs define the conditional
probability of a state sequence given the observed sequenceas:

pθ(y|x) =
1

Z(x)

∏

c∈C

Φ(yc,xc), (1)

whereΦ is a potential function andZ(x) =
∑

y

∏

c∈C Φ(yc,xc) is normalization factor
over all state sequences of lengthT . We assume the potentials factorize according to a set
of features{fk}, which are given and fixed, so that

Φ(yc,xc) = exp

(

T
∑

t=1

∑

k

λkfk(yc,xc, t)

)

(2)

The model parameters are a set of real weightsθ = {λk}, one weight for each feature.

Previous applications have used thelinear-chain CRF, in which a first-order Markov as-
sumption is made on the hidden variables. A graphical model for this is shown in Figure 1.
In this case, the cliques of the conditional model are the nodes and edges, so that there are
feature functionsfk(yt−1, yt,x, t) for each label transition andgk(yt,x, t) for each label.
Feature functions can be arbitrary. For example, a feature functionfk(yt−1, yt,x, t) on a
pair of variables(yt−1, yt) could be a binary test that has value 1 if and only ifyt−1 has the
label “adjective”, yt has the label “proper noun”, andxt begins with a capital letter.

Linear-chain CRFs correspond to finite state machines, and can be roughly understood
as conditionally-trained hidden Markov models (HMMs). This class of CRFs is also a

1Note that in general, the set of labels may be different from the set of states of the FSM, in that
multiple states can correspond to the same label. In practice, however, it is usually assumed that
the set of states and labels are the same, or given the sequence of the labels, the set of states are
unambiguously known.
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Figure 1: Graphical representation of (a) linear-chain CRF, and (b) factorial CRF for part-
of-speech tagging and noun-phrase segmentation. Althoughthe hidden nodes can depend
on observations at any time step, for clarity we have shown links only to observations at
the same time step.

globally-normalized extension toMaximum Entropy Markov Models[6] that avoids the
label bias problem [4].

3 Dynamic CRFs

3.1 Model Representation

A Dynamic CRF is a conditionally-trained undirected graphical model whose structure and
parameters are repeated over a sequence. A DCRF is specified by a 2-CRF that has a set
of feature functions{fk} and corresponding weights{λk} on each clique. A 2-CRF is a
template of the graphical structure for two time steps, analogous to the 2-slice Temporal
Bayes Network that specifies a DBN. Similarly to a DBN, a 2-CRFis unrolled into a full
undirected model given an instancex. A feature functionfk for a cliqueyc is an arbitrary
functionf(yc,x, t), that is,fk can depend on any observations but only on labels fromyc.
The same set of features and weights is used at each time slice, so that the parameters are
tied across the network. Then the conditional probability of a label sequencey is given by:

p(y|x) =
1

Z(x)
exp

(

∑

t

∑

k

λkfk(y(k,t),x, t)

)

. (3)

DCRFs generalize not only linear-chain CRFs, but more complicated structures as well.
For example, in this paper, we use afactorial DCRF, which has linear chains of labels,
with connections between cotemporal labels. Figure 1(b) isan example of an unrolled
factorial DCRF. Of course more complicated structures, such as semi-Markov CRFs and
hierarchical CRFs, are also possible.

3.2 Inference in DCRFs

Inference in an unrolled DCRF can be done using any inferencealgorithm for undirected
models. Because exact inference can be expensive in complexDCRFs, we use approx-
imate methods. Here we describe approximate inference using tree-reparameterization
(TRP) [10]. TRP is based on the fact that any exact algorithm for optimal inference on
trees actually computes marginal distributions for pairs of neighboring nodes. For an undi-
rected graphical model over variablesx, this results in an alternative parameterization of
the distribution (Figure 2(a)) as:

p(x) =
1

Z

∏

s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt) ⇒ p(x) =
∏

s∈V

Ps(xs)
∏

(s,t)∈E

Pst(xs, xt)

Ps(xs)Pt(xt)

(4)
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Figure 2: (a) A simple tree-structured graphical model and its original parameterization;
(b) Alternative parameterization in terms of marginal distributions.

Figure 2(b) shows the reparameterized tree2.

Here we summarize the TRP algorithm as a sequence of updatesTn → Tn+1 on the
graphU with the edge setE , whereT represents the set of marginal probabilities main-
tained by TRP consisting of single-node marginalsTn+1

u (xu) and pairwise joint distribu-
tion Tn+1

uv (xu, xv); andn denotes the iteration number:

1. Initialization: for every nodeu and every pair of nodes(u, v), initialize T0 by
T 0

u = κψu andT 0
uv = κψuv, with κ being a normalization factor. (Other initial-

izations are also possible.)

2. TRP updates: for i = 1, 2, . . . , do:

• Select some spanning treeT i ∈ Υ with edge setE i, whereΥ = {T } is a set
of spanning tress.

• Use any exact algorithm, such as belief propagation, to compute exact
marginalspi(x) onT i. For all(u, v) ∈ E i, set

Ti+1
u (xu) = pi(xu).

Ti+1
uv (xu, xv) =

pi(xu, xv)

pi(xu)pi(xv)
.

• SetTi+1
uv = Ti

uv for all (u, v) ∈ E/E i (i.e., all the edges not included in
the spanning treeT i).

When selecting spanning treesΥ = {T }, the only constraint is that the trees inΥ cover
the edge set of the original graphU.

3.3 Parameter Estimation in DCRFs

The parameter estimation problem is to find a set of parameters θ = {λk} given training
dataD = {x(i), y(i)}N

i=1. More specifically, we optimize the conditional log-likelihood

O(θ) =
∑

i

log pθ(y
(i) | x(i)). (5)

The derivative of this is

∂O

∂λk

=
∑

i

∑

t

∑

c∈C

fk(y
(i)
t,c ,x

(i), t) −
∑

i

∑

t

∑

y

pθ(y | x
(i)
t )fk(yt,c,x

(i)
, t), (6)

2This figure is adopted from [10].



Words Confidence in the pound is widely expected . . .
POS NN IN DT NN VBZ RB VBN
collapsed NOUN OTHER OTHER NOUN VERB RBP VERB

Phrases B-NP B-PP B-NP I-NP B-VP I-VP I-VP
collapsed B O B I O O O

Table 1: Example document with POS and NP labels, before and after collapsing the labels.

whereC is the set of cliques of the 2-CRF, andyt,c denotes the variables ofy at time stept
in cliquec of the 2-CRF. Although equation (6) seems to require summingover all possible
label sequences, if we observe that each feature function depends only on a single clique,
we obtain

∂O

∂λk

=
∑

i

∑

t

fk(y
(i)
t,c,x

(i), t) −
∑

i

∑

t

∑

c∈C

∑

yc

pθ(yc | x
(i)
t )fk(yt,c,x

(i)
, t), (7)

whereyc ranges over assignments to the cliquec.

This loss function is convex, and can be optimized by any number of techniques, as in
other maximum-entropy models [4, 1]. In the results below, we use L-BFGS, which has
previously outperformed other optimization algorithms for linear-chain CRFs [9, 5].

Note that this optimization requires computing marginal probabilities for every training
instance at every iteration of the optimizer. In the experiments reported here, it was typical
to need to compute marginals in 32 000 different graphical models. This intensifies the
need for efficient inference.

4 Experiments

We used factorial DCRFs to perform simultaneous part-of-speech tagging and noun-phrase
segmentation on data from the CoNLL 2002 shared task data set3. Table 1 shows example
data. We considered each sentence to be a training instance,with single words as tokens.
In these preliminary experiments, we used a subset of dataD1 containing 209 sentences,
and we collapsed the original POS labels from 45 to 5. Table 2 shows some of the features
we used.

The three NP labels—begin-phrase, inside-phrase, and other—were left unchanged. The
original data contained 45 different POS labels, which we collapsed to 5 labels as follows:

• Collapse all different types of nouns into one label NOUN.

• Collapse all different types of verbs into one label VERB.

• Collapse all different types of adjectives into one label JADJ.

• Collapse all different types of adverbs into one label RBP.

• Collapse the remaining POS labels into one label OTHER.

We present two experiments: one comparing factorial DCRFs with linear-chain models,
and one comparing different inference algorithms in DCRFs.

4.1 Comparison to linear-chain CRFs

We compared three approaches: a factorial DCRF;cascadedCRFs; and abest-caseCRF.
The cascaded CRFs used one linear-chain CRF to predict POS labels, and another linear-

3Seehttp://lcg-www.uia.ac.be/˜erikt/research/np-chunkin g.html .



word (collapsed: years, year-spans, fractions, numbers, ...)
contains-dash ”-”
contains-dash-based ”-based”
capitalized
all-caps
single-capital-letter
mixed-capitalization
contains-digits (and other symbols)

Table 2: Some of the features used in these experiments.

chain CRF to predict NP labels, using as a feature the ViterbiPOS labeling from the first
CRF. The best-case CRF predicted NP labels using the true POSlabels.

The factorial DCRF used the graph structure in Figure 1(b), with one chain modeling the
part-of-speech (POS) process and the other modeling the noun-phrase (NP) process. The
vertical edges capture the dependencies between POS and NP labels.

We used L-BFGS to learn the parametersθ of the DCRF. Computing the gradient requires
computing the marginals over vertices and edges of the unrolled DCRF at different portions
in time. We used the TRP approximation to compute these marginals.

Each TRP iteration selects a random spanning tree from the graphical model unrolled over
the current training instance. To ensure that all the edges of the graph were covered by the
TRP updates, we included eight hand-designed trees among the random spanning trees.

Next, we trained two cascaded linear-chain CRFs, where one CRF predicted the POS la-
bels, and then the other CRF predicted the NP labels, using the POS predictions as input
features. More specifically, we trained a POS-tagger (whichwe call CRFpos) using a train-
ing setD2 that had86 instances labeled by their POS tags. Then we substituted thePOS
labels of the original training setD1 by the labels predicted by the learned model (i.e.,
CRFpos) over the data inD1, resulting in the new training setD3. Note thatD3 has ex-
actly the same observations asD1, and the same NP labels, but possibly different POS
labels. UsingD3, we trained a new CRF model (which we call CRF+

np) for predicting the
NP labels, using as a feature the Viterbi POS labeling from CRFpos. Finally, we trained a
best-case linear-chain CRF (which we call CRF∗

np) for predicting NP labels using the true
POS labels along with the base features from Table 2. Of course, it is unrealistic to assume
that the true POS labels are provided, however, this model gives an upper bound on how
much POS knowledge can help noun-phrase segmentation.

In the cascaded model CRF+
np and the best case model CRF∗

np, we used POS labels as
features, however CRF+np uses the POS labels predicted byCRFpos whereas CRF∗np uses
the correct POS labels as originally provided with the training setD1.

Table 3 compares the performance of these models. We measured accuracy on POS labels,
on NP labels, and also joint accuracy on (POS, NP) pairs. To compute the joint accuracy
for CRF+

np on the test set, we used the predicted POS tags from CRFpos and the predicted
NP tags using CRF+np. To compute the joint accuracy for CRF∗

np we used the true POS tags
of the test set together with the predicted NP tags on the testset using CRF∗np.

The factorial DCRF outperformed the cascaded CRF+
pos in joint accuracy and POS accu-

racy, but had lower NP accuracy. We conjecture that because there are more POS labels
than NP labels, L-BFGS is forced to minimize the error acrossPOS with more weight. The
best-case model CRF∗np outperforms the other models in every category. The performance
of 100% for POS labels is because this model was provided with true POS labels.



CRF+
np DCRF CRF ∗

np

NP Accuracy 0.9084 0.8611 0.9249
POS Accuracy 0.7722 0.8203 1.0
Joint Accuracy 0.7197 0.7728 0.9249

Table 3: Comparison of performance of CRFs and DCRFs. Note that the feature set is
restricted in these experiments.

Algorithm Overall F1 Training time (hr) LBFGS iterations
TRP 0.6740 5.342 87

Loopy 0.6756 14.728 81
Junction Tree 0.6675 8.614 83

Table 4: Comparison of inference algorithms for 2-chain factorial CRF on CoNLL 2002
data set. Overall F1 is the average of the F1 measure over all types of NP and POS labels.
LBFGS iterations gives the number of iterations of the LBFGSgradient descent. Because
these experiments are preliminary, we ran with a restrictedfeature set.

These results are low compared to the state of the art. To get initial evidence comparing
DCRFs to cascaded approaches, we used a small training set and a restrictive set of fea-
tures. However, our new implementation does scale to the large feature sets needed for best
performance–in fact, because these models are conditional, the running time of inference
scales not with the number of features but with the number of labels. We leave experiments
with larger training and feature sets to future work.

4.2 Comparison of Inference Algorithms

Because DCRFs can have rich graphical structure, and require many marginal computations
during training, inference is critical to efficient training with many labels and large data sets.
We compared the performance and running time of three different propagation algorithms:
TRP, loopy belief propagation, and junction tree.

We ran TRP with random spanning trees, stopping after 25 iterations whether the algorithm
had converged or not. Loopy belief propagation was run untilall marginal probabilities had
converged to within10−4, which usually took between 10 and 15 iterations of synchronous
updates. Exact inference using junction tree was feasible because we used collapsed tags
and only two chains. In this experiment, we used 410 traininginstances, a superset of the
training set of the previous section. POS tags were collapsed as before. All experiments
were run on an Intel Xeon 2.8 GHz machine with 3 GB RAM. We measured performance
on a test set and total training time. The training times include a few non-inference tasks
such as computing the gradient; however, the running time isdominated by the time used
by inference.

The results are shown in Table 4. In overall F1 on a test set, the inference algorithms per-
form very similarly. For an unknown reason, junction tree has a slightly lower F-measure
on this test set; in other experiments, exact inference has had slightly higher F-measure.
However, TRP trains much faster, using only 62% of the time needed by junction tree.
Synchronous loopy belief propagation performed very slowly on this data set. Using a less
strict stopping criterion might allow it to run faster without sacrificing performance on the
tagging task.

Although these results need to be replicated in other data sets, they suggest that TRP is a a
good choice for training this kind of model.



5 Conclusions

Dynamic CRFs are conditionally-trained undirected sequence models with repetitive
graphical structure and tied parameters. Inference in DCRFs can be done efficiently using
approximate methods, and training can be done within the maximum-entropy framework.
Because of their factorized state, we can use DCRFs to do several labeling tasks at once,
sharing information between them. On a joint noun-phrase segmentation / part-of-speech
tagging task, factorial DCRFs have higher joint accuracy and POS accuracy than linear-
chain CRFs, but lower NP accuracy.

More work is needed for training DCRFs where accuracy on certain labels is more impor-
tant than others. We are currently running experiments thattrain on the marginal probability
of one chain, e.g.,p(NP|x).
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