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Abstract

Conditional random fields (CRFs) for sequence modeling lsaveral
advantages over joint models such as HMMs, including thétalbd
relax strong independence assumptions made in those maadelghe
ability to incorporate arbitrary overlapping featurese\®ous work has
focused on linear-chain CRFs, which correspond to finigesnhachines,
and have efficient exact inference algorithms. Often, heneve wish
to label sequence data in multiple interacting ways—fomgxa, per-
forming part-of-speech tagging and noun phrase segmentsiinulta-
neously, increasing joint accuracy by sharing informatietween them.
We presendlynamic conditional random fields (DCRFghich are CRFs
in which each time slice has a set of state variables and edgaks-
tributed state representation as in dynamic Bayesian mkswxeand pa-
rameters are tied across slices. (They could also be caileditoonally-
trained Dynamic Markov Networkys Since exact inference can be in-
tractable in these models, we perform approximate inferersing the
tree-based reparameterization framework (TRP). We alseept em-
pirical results comparing DCRFs with linear-chain CRFs @tural-
language data.

1 Introduction

The problem of labeling and segmenting sequences of olismrgaarises in many dif-
ferent areas, including bioinformatics, music modelingnputational linguistics, speech
recognition, and information extraction. Probabilistittié state automata, such as hidden
Markov models (HMMs), have been popular for such sequerditey tasks. Finite-state
Conditional Random Fields (CRFs) [4] are another sequeromiehthat offers several ad-
vantages over HMMs, relaxing the strong dependence asgumphade in those models
and allowing rich sets of overlapping features.

Many sequence-processing problems are traditionallyesidby chaining errorful subtasks.
The traditional language understanding task, for exampleften broken into parsing,
semantic understanding, and contextual and discoursgsimaln information extraction,
one often performs part-of-speech tagging and then shaldoging as pre-processing steps
before the main extraction task. In such an approach, hawexers early in processing
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nearly always cascade through the chain, causing errongifirtal output.

In this paper, we address this problem by representing thiipteulabel sequences in

a single graphical model, explicitly modeling limited depencies between them. We
introduceDynamic CRFswhich are CRFs that repeat structure and parameters over a
sequence. For example, the factorial structure in Figugrhpdels dependencies between
cotemporal labels, allowing information to flow between shibtasks in both directions.

DCRFs are named aftB®ynamic Bayesian Networks (DBNg], directed sequence mod-
els for which there is a large body of literature addresseyesentation, learning, and
inference (see [7]). Particular classes of DBNs, such astfiat HMMs, have also been
extensively studied [11, 8, 3]. Previous work with CRFs hasduthe linear-chain struc-
ture, depicted in Figure 1, in which a first-order Markov asption is made among labels.
DCRFs combine the modeling advantages of the distribuidigm state in DBNs with the
rich feature sets allowed in conditional models.

First, we briefly describe the general framework of CRFs. nThee describe DCRFs,
including how to do approximate inference and parametenasibn. Finally, we compare
DCRFs to combinations of linear-chain CRFs on a task thatlies both part-of-speech
tagging and noun-phrase segmentation.

2 CRFs

Conditional Random Field&CRFs) [4] are undirected graphical models that encode a con
ditional probability distribution using a given set of faets. CRFs are defined as follows.
Let G be an undirected model over sets of random variaplasdx. As a typical special
case,y = {y:} andx = {z;} fort = 1,...,T, so thaty is a labeling of an observed
sequence. If C = {{y.,x.}} is the set of cliques ig, then CRFs define the conditional
probability of a state sequence given the observed seqasnce

potylx) = 75 [T @l M
eC

where® is a potential function and'(x) = >__ [[.cc ®(ye, xc) is normalization factor
over all state sequences of lengthWe assume the potentials factorize according to a set
of features{ fi }, which are given and fixed, so that

T
q)(ymxc) = €xp (Z Z /\kfk(YCaxcat)> (2)

t=1 k
The model parameters are a set of real weights{ ), }, one weight for each feature.

Previous applications have used tmear-chain CRF in which a first-order Markov as-
sumption is made on the hidden variables. A graphical mamtehis is shown in Figure 1.
In this case, the cliques of the conditional model are thees@ohd edges, so that there are
feature functionss(v:—1, yt, X, t) for each label transition ang (v¢, x, t) for each label.
Feature functions can be arbitrary. For example, a featumetion f (y:—1, v+, x,t) on a
pair of variablesy: 1, y:) could be a binary test that has value 1 if and only.if; has the
label “adjectivé, y, has the labelroper nouri, and x; begins with a capital letter.

Linear-chain CRFs correspond to finite state machines, andoe roughly understood
as conditionally-trained hidden Markov models (HMMs). Jhiass of CRFs is also a

INote that in general, the set of labels may be different froenset of states of the FSM, in that
multiple states can correspond to the same label. In peadtiowever, it is usually assumed that
the set of states and labels are the same, or given the seqaktiee labels, the set of states are
unambiguously known.
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Figure 1: Graphical representation of (a) linear-chain Ciie (b) factorial CRF for part-
of-speech tagging and noun-phrase segmentation. Alththigghidden nodes can depend
on observations at any time step, for clarity we have shomkslonly to observations at
the same time step.

globally-normalized extension thlaximum Entropy Markov Model$] that avoids the
label bias problem [4].

3 Dynamic CRFs

3.1 Model Representation

A Dynamic CRF is a conditionally-trained undirected gragathimodel whose structure and
parameters are repeated over a sequence. A DCRF is spegifee®d6RFthat has a set
of feature functiong f;} and corresponding weigh{s\; } on each clique. A 2-CRF is a
template of the graphical structure for two time steps, @y@ls to the 2-slice Temporal
Bayes Network that specifies a DBN. Similarly to a DBN, a 2-GREnrolled into a full
undirected model given an instangeA feature functionf;, for a cliquey. is an arbitrary
function f (y., x, t), that is, f;, can depend on any observations but only on labels from
The same set of features and weights is used at each timessitieat the parameters are
tied across the network. Then the conditional probability abel sequenceg is given by:

p(ylx) = ﬁ exp (Z S AL (kX t)) . 3)
t k

DCRFs generalize not only linear-chain CRFs, but more cara@d structures as well.
For example, in this paper, we usdeaxtorial DCRF which has linear chains of labels,
with connections between cotemporal labels. Figure 1(@niexample of an unrolled
factorial DCRF. Of course more complicated structureshag semi-Markov CRFs and
hierarchical CRFs, are also possible.

3.2 Inferencein DCRFs

Inference in an unrolled DCRF can be done using any inferafgi@ithm for undirected
models. Because exact inference can be expensive in coDU®ESs, we use approx-
imate methods. Here we describe approximate inferencey uste-reparameterization
(TRP) [10]. TRP is based on the fact that any exact algoritbnoptimal inference on
trees actually computes marginal distributions for pafnseaghboring nodes. For an undi-
rected graphical model over variablesthis results in an alternative parameterization of
the distribution (Figure 2(a)) as:

200 =5 [T on) IT vatean = pe) =[] P ] %
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Figure 2: (a) A simple tree-structured graphical model dadriginal parameterization;
(b) Alternative parameterization in terms of marginal dittions.

Figure 2(b) shows the reparameterized4ree

Here we summarize the TRP algorithm as a sequence of up@itess T"*! on the
graphU with the edge sef, whereT represents the set of marginal probabilities main-
tained by TRP consisting of single-node margirfBls" (z,,) and pairwise joint distribu-
tion T (z,, x, ); andn denotes the iteration number:

1. Initialization: for every node: and every pair of node&:, v), initialize T° by
TO = kb, andT?, = kb, With k being a normalization factor. (Other initial-
izations are also possible.)

2. TRP updates: fori =1,2,..., do:

¢ Select some spanning tr@é € T with edge set?, whereY = {7} is a set
of spanning tress.

e Use any exact algorithm, such as belief propagation, to coenpxact
marginalg’(z) on7T*. For all (u,v) € £, set

Tfj_l (zu) = pi (Tu)-
pi(xm xu)
P wu)pt ()

e SetTif! = Ti forall (u,v) € /& (i.e., all the edges not included in
the spanning tre@*).

thl (Tu, Ty) =

When selecting spanning tre#s= {7}, the only constraint is that the treesThcover
the edge set of the original grafgh

3.3 Parameter Estimation in DCRFs

The parameter estimation problem is to find a set of paras@ter {\;} given training
dataD = {z(), 4y} N . More specifically, we optimize the conditional log-liketiod

O0) = logpo(y™ | x). 5)

The derivative of this is

g—i =3 3N A XD ) =SSN ey | ) fulyee. xPt), (6)

i t ceC i t y

2This figure is adopted from [10].



Words Confidence in the pound is widely expected

POS NN IN DT NN VBZ RB VBN
collapsed| NoOuN OTHER OTHER NOUN VERB RBP VERB

Phrases B-NP B-PP B-NP I-NP B-VP I-VP I-VP
collapsed| B 0] B I (0] 0] @)

Table 1: Example documentwith POS and NP labels, beforeféartallapsing the labels.

whereC'is the set of cliques of the 2-CRF, apgl. denotes the variables gfat time steg

in cliquec of the 2-CRF. Although equation (6) seems to require summeg all possible
label sequences, if we observe that each feature functipandks only on a single clique,
we obtain

mk szkyw L =33 SN pelye | X fe (e, xP1),  (7)

i t ceC ye
wherey. ranges over assignments to the cligue
This loss function is convex, and can be optimized by any remalh techniques, as in

other maximum-entropy models [4, 1]. In the results below,use L-BFGS, which has
previously outperformed other optimization algorithmslfoear-chain CRFs [9, 5].

Note that this optimization requires computing marginalabilities for every training
instance at every iteration of the optimizer. In the experits reported here, it was typical
to need to compute marginals in 32000 different graphicadlel® This intensifies the
need for efficient inference.

4 Experiments

We used factorial DCRFs to perform simultaneous part-eesp tagging and noun-phrase
segmentation on data from the CoNLL 2002 shared task dataTedtle 1 shows example
data. We considered each sentence to be a training instaitbesingle words as tokens.
In these preliminary experiments, we used a subset of Bateontaining 209 sentences,
and we collapsed the original POS labels from 45 to 5. Table#'s some of the features
we used.

The three NP labels—begin-phrase, inside-phrase, and-ethere left unchanged. The
original data contained 45 different POS labels, which wiapsed to 5 labels as follows:

e Collapse all different types of nouns into one label .
Collapse all different types of verbs into one labelRA.
Collapse all different types of adjectives into one lalxab
Collapse all different types of adverbs into one labsPR
Collapse the remaining POS labels into one labeher.

We present two experiments: one comparing factorial DCRls imear-chain models,
and one comparing different inference algorithms in DCRFs.

4.1 Comparison to linear-chain CRFs

We compared three approaches: a factorial DCéisradedCRFs; and dest-cas€CRF.
The cascaded CRFs used one linear-chain CRF to predict B@B,land another linear-

3Seehttp://lcg-www.uia.ac.be/ erikt/research/np-chunkin g.html



word (collapsed: years, year-spans, fractions, numhers, .
contains-dash "-”
contains-dash-based "-based”
capitalized

all-caps

single-capital-letter
mixed-capitalization

contains-digits (and other symbols)

Table 2: Some of the features used in these experiments.

chain CRF to predict NP labels, using as a feature the Vile@s labeling from the first
CRF. The best-case CRF predicted NP labels using the trudd@ss.

The factorial DCRF used the graph structure in Figure 1(lit)y ane chain modeling the
part-of-speech (POS) process and the other modeling the-plotase (NP) process. The
vertical edges capture the dependencies between POS aradh@lB. |

We used L-BFGS to learn the parametéisf the DCRF. Computing the gradient requires
computing the marginals over vertices and edges of the ledrDICRF at different portions
in time. We used the TRP approximation to compute these malgyi

Each TRP iteration selects a random spanning tree from #ghgral model unrolled over
the current training instance. To ensure that all the edfjeeayraph were covered by the
TRP updates, we included eight hand-designed trees amemgridom spanning trees.

Next, we trained two cascaded linear-chain CRFs, where &fe @edicted the POS la-
bels, and then the other CRF predicted the NP labels, ussn@@S predictions as input
features. More specifically, we trained a POS-tagger (whvieltall CRF,,¢) using a train-
ing setD, that had86 instances labeled by their POS tags. Then we substituteB@s:
labels of the original training s&b, by the labels predicted by the learned model (i.e.,
CREF,,s) over the data irDy, resulting in the new training sé?;. Note thatDs; has ex-
actly the same observations &5, and the same NP labels, but possibly different POS
labels. UsingDs, we trained a new CRF model (which we call C,BFfor predicting the
NP labels, using as a feature the Viterbi POS labeling frorrGR Finally, we trained a
best-case linear-chain CRF (which we call GRFfor predicting NP labels using the true
POS labels along with the base features from Table 2. Of egitiis unrealistic to assume
that the true POS labels are provided, however, this modesgin upper bound on how
much POS knowledge can help noun-phrase segmentation.

In the cascaded model CRfFand the best case model CRF we used POS labels as

features, however CF{I; uses the POS labels predicted @R F},,; Wwhereas CREP uses
the correct POS labels as originally provided with the frairsetD; .

Table 3 compares the performance of these models. We mdeamtaeracy on POS labels,
on NP labels, and also joint accuracy on (POS, NP) pairs. Tgpede the joint accuracy
for CRF,fp on the test set, we used the predicted POS tags from,G;RiRd the predicted

NP tags using CR}L:p. To compute the joint accuracy for CRfFwe used the true POS tags
of the test set together with the predicted NP tags on thesétsising CRE,,.

The factorial DCRF outperformed the cascaded Q;Blr'n joint accuracy and POS accu-
racy, but had lower NP accuracy. We conjecture that becdugge aire more POS labels
than NP labels, L-BFGS is forced to minimize the error acROS with more weight. The
best-case model CRF outperforms the other models in every category. The perioca
of 100% for POS labels is because this model was provided with tru® RBels.



CRF}, | DCRF | CRF;,
NP Accuracy | 0.9084 | 0.8611| 0.9249
POS Accuracy| 0.7722 | 0.8203 1.0

Joint Accuracy| 0.7197 | 0.7728| 0.9249

Table 3: Comparison of performance of CRFs and DCRFs. Natethe feature set is
restricted in these experiments.

Algorithm Overall F1 | Training time (hr)| LBFGS iterations
TRP 0.6740 5.342 87
Loopy 0.6756 14.728 81
Junction Tree|| 0.6675 8.614 83

Table 4: Comparison of inference algorithms for 2-chairiddal CRF on CoNLL 2002
data set. Overall F1 is the average of the F1 measure ovgpalt bf NP and POS labels.
LBFGS iterations gives the number of iterations of the LBFg§s&dient descent. Because
these experiments are preliminary, we ran with a restrifgatiire set.

These results are low compared to the state of the art. Taiiel ievidence comparing
DCRFs to cascaded approaches, we used a small trainingdset r@strictive set of fea-
tures. However, our new implementation does scale to tiye feature sets needed for best
performance—in fact, because these models are conditiveatunning time of inference
scales not with the number of features but with the numbeatudls. We leave experiments
with larger training and feature sets to future work.

4.2 Comparison of Inference Algorithms

Because DCRFs can have rich graphical structure, and esapainy marginal computations
during training, inference is critical to efficient traigivith many labels and large data sets.
We compared the performance and running time of three diffgyropagation algorithms:
TRP, loopy belief propagation, and junction tree.

We ran TRP with random spanning trees, stopping after 2atiters whether the algorithm
had converged or not. Loopy belief propagation was run afitiharginal probabilities had
converged to withirl0—4, which usually took between 10 and 15 iterations of syncbusn
updates. Exact inference using junction tree was feasdxtalse we used collapsed tags
and only two chains. In this experiment, we used 410 traimstances, a superset of the
training set of the previous section. POS tags were colthpsebefore. All experiments
were run on an Intel Xeon 2.8 GHz machine with 3 GB RAM. We meagperformance
on a test set and total training time. The training timesudela few non-inference tasks
such as computing the gradient; however, the running tindeminated by the time used
by inference.

The results are shown in Table 4. In overall F1 on a test setinfierence algorithms per-
form very similarly. For an unknown reason, junction tres haslightly lower F-measure
on this test set; in other experiments, exact inference hdsslightly higher F-measure.
However, TRP trains much faster, using only 62% of the timedee by junction tree.
Synchronous loopy belief propagation performed very sfawi this data set. Using a less
strict stopping criterion might allow it to run faster withiiosacrificing performance on the
tagging task.

Although these results need to be replicated in other dégatbey suggest that TRP isa a
good choice for training this kind of model.



5 Conclusions

Dynamic CRFs are conditionally-trained undirected seqaemodels with repetitive

graphical structure and tied parameters. Inference in DXGfRIR be done efficiently using
approximate methods, and training can be done within theémaxr-entropy framework.

Because of their factorized state, we can use DCRFs to doaddabeling tasks at once,
sharing information between them. On a joint noun-phragemeatation / part-of-speech
tagging task, factorial DCRFs have higher joint accuraay B®S accuracy than linear-
chain CRFs, but lower NP accuracy.

More work is needed for training DCRFs where accuracy oragetabels is more impor-
tant than others. We are currently running experimentstaigton the marginal probability
of one chain, e.gp(NP|x).
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