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Lin28a regulates neuronal differentiation and
controls miR-9 production
Jakub S. Nowak1, Nila Roy Choudhury1, Flavia de Lima Alves1, Juri Rappsilber1,2 & Gracjan Michlewski1

microRNAs shape the identity and function of cells by regulating gene expression. It is known

that brain-specific miR-9 is controlled transcriptionally; however, it is unknown whether post-

transcriptional processes contribute to establishing its levels. Here we show that miR-9 is

regulated transcriptionally and post-transcriptionally during neuronal differentiation of the

embryonic carcinoma cell line P19. We demonstrate that miR-9 is more efficiently processed

in differentiated than in undifferentiated cells. We reveal that Lin28a affects miR-9 by

inducing the degradation of its precursor through a uridylation-independent mechanism.

Furthermore, we show that constitutively expressed untagged but not GFP-tagged Lin28a

decreases differentiation capacity of P19 cells, which coincides with reduced miR-9 levels.

Finally, using an inducible system we demonstrate that Lin28a can also reduce miR-9 levels in

differentiated P19 cells. Together, our results shed light on the role of Lin28a in neuronal

differentiation and increase our understanding of the mechanisms regulating the level of

brain-specific microRNAs.
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S
mall (21–22 nucleotide) RNAs called microRNAs (miRs)
have emerged as vital regulators of the post-transcriptional
control of gene expression1. The maturation pathway of

miRs, involving nuclear cleavage by the Drosha/DGCR8 complex
and cytoplasmic processing by the Dicer complex, has been well
described and reviewed2,3. A mature miR, on entering the miR-
induced silencing complex, partially base pairs with target
messenger RNA, exerting translational repression and/or
mRNA degradation4–6. A number of miRs are expressed in a
tissue-specific, differentiation or developmental stage-specific
manner, thereby contributing to cell identity and function7.
Importantly, misregulation of miR levels is associated with many
pathological conditions, resulting in over or underinhibition of
disease-associated genes8–11. Regulation of cellular miR levels is
achieved by adjusting their transcription or by modulating post-
transcriptional processing events12,13. However, the contribution
of post-transcriptional control to the establishment of the levels of
transcriptionally regulated miRs is largely unknown.

The human nervous system expresses B70% of the known
miRs, and some of these are specific to neurons14. It has been
demonstrated that brain-specific miR-9 and miR-124 play an
important role in neuronal development15,16. The expression of
miR-9 and miR-124 is transcriptionally regulated by the RE1-
silencing transcriptional factor (REST)17,18. Furthermore, cyclic
AMP-response element-binding protein has been shown to
promote miR-9 expression17. miR-9 is evolutionarily conserved
at the nucleotide level but its expression profile and functions are
diverse within the nervous system of different species19. This
miR was shown to interfere with the fibroblast growth factor 8
(ref. 19) signalling cascade, an important pathway for neural
plate patterning and development of the midbrain–hindbrain
boundary20. Interestingly, it has been proposed that miR-9
regulates neurogenesis of the mouse telencephalon by
orchestrating adjustments in a network of transcription
factors21. Finally, miR-9 and miR-124 alone can transform
adult fibroblasts into neurons, demonstrating their roles as master
regulators of neuronal development22.

We have previously shown that hnRNP A1, a protein
implicated in many aspects of RNA processing, binds to the
conserved terminal loops (CTLs) of miR-18a (refs 23,24) and let-
7a-1 (ref. 25), stimulating and inhibiting processing, respectively.
Furthermore, we have identified a number of other primary miR
transcripts (including neuro-specific miR-9) with highly CTLs
and hypothesized that this may reflect their requirement for
auxiliary factors to regulate their processing24,26,27. Recently, we
have demonstrated that the brain-enriched expression of miR-7,
which is processed from a ubiquitous primary transcript, is
supported by inhibition of its biogenesis in non-neural cells28.
This inhibition is achieved through the HuR-mediated binding of
MSI2 to the CTL of the miR-7 primary transcript. The regulation
of pri- and pre-let-7 processing by the pluripotency factor Lin28
is an another example of post-transcriptional control of miR
levels29. It has been well demonstrated that the binding of Lin28a
to pre-let-7 induces 30-terminal uridylation through recruitment
of the TUT4 polymerase30. This blocks Dicer processing and
induces the DIS3L2-mediated degradation of aberrantly
processed pre-let-7 transcripts31. A number of other miRs have
been shown to be under post-transcriptional control32.

Here we present evidence that the brain-specific miR-9 is
regulated not only at the transcriptional level but also post-
transcriptionally. We demonstrate that Lin28a, a protein
previously implicated in the regulation of let-7 biogenesis, binds
to the miR-9 precursor and decreases the cellular levels of miR-9
during retinoic acid (RA)-mediated P19 cell neuronal differentia-
tion. We show that the constitutive expression of untagged but
not green fluorescent protein (GFP)-tagged Lin28a causes a

severe differentiation phenotype by reducing the size of
embryonic bodies. Importantly, the constitutive expression of
GFP-tagged Lin28a reduces the levels of let-7a but not miR-9,
whereas untagged Lin28 inhibits both miR-9 and let-7a. We
reveal that Lin28a controls miR-9 levels by a uridylation-
independent mechanism. Finally, using an inducible Tet-On 3G
system, we demonstrate that Lin28a can also reduce miR-9 levels
in differentiated cells. Our results provide the basis for better
understanding the mechanism regulating the levels of brain-
specific miRs and their control of neuronal differentiation.

Results
Transcriptional and post-transcriptional control of miR-9. To
determine whether post-transcriptional regulation of brain-spe-
cific miR-9 contributes to establishing its intercellular con-
centrations, we analysed the level of mature and corresponding
primary transcripts at different stages of P19 cell neuronal dif-
ferentiation. Throughout differentiation, we observed a steady
increase in the miR-9 levels to B50–60-fold on days 4 and 5,
reaching B500–550-fold between days 8 and 10 (Fig. 1a).
Importantly, the increase in primary miR-9 transcripts was higher
at these time points (Fig. 1b). On day 4, we observed an B520-
fold increase in pri-miR-9-2, whereas on day 8, pri-miR-9-1, -2
and -3 were induced by B400-, 1,300- and 260-fold, respectively
(Fig. 1b). A gradual increase in let-7 and rapid decrease in miR-
302a (Fig. 1c,d) together with a decrease in Lin28 protein and an
increase in the neuronal markers Tuj1 and GFAP (Supplementary
Fig. 1a) validated an efficient neuronal differentiation phenotype.
Northern blot analysis of miR-9, let-7a and miR-302a confirmed
their abundance at selected stages of P19 cell neuronal differ-
entiation (Supplementary Fig. 1b). Crucially, an unbiased RNA-
seq and small RNAseq analysis of undifferentiated (day 0) and
differentiating (day 4) P19 cells revealed that while primary miR-
9-2 levels accumulate from undetectable in d0 to B900 of nor-
malized reads in d4, the mature miR-9 accumulates very modestly
to B4 normalized reads in d4 (Supplementary Fig. 2). This is in
stark contrast with another miR, which is rapidly induced on RA
treatment—miR-10a. Primary levels of miR-10a accumulate from
undetectable in d0 to B170 normalized reads in d4. Unlike miR-
9, the levels of miR-10a increase from B4 normalized reads in d0
to B460 normalized reads in d4 (Supplementary Fig. 2). The
levels of control primary and mature miR-16 are much more
stable during differentiation. This example clearly demonstrates
that miR-9 processing is repressed post-transcriptionally during
early stage of neuronal differentiation, whereas miR-10a is most
probably free from post-transcriptional regulation. Altogether,
these results show that the accumulation of brain-specific miR-9
does not linearly correspond with the changing levels in their
primary transcripts. This result suggests the existence of addi-
tional post-transcriptional mechanisms regulating the abundance
of brain-specific miRs.

miR-9 processing is regulated during neuronal differentiation.
To determine whether the biogenesis of brain-specific miR-9 is
regulated during neuronal differentiation, we employed in vitro
processing assays. We observed an accumulation of pre-miR-9-1
and pre-let-7a in pri-miR processing performed in extracts from
differentiated cells when compared with those from undiffer-
entiated cells (Fig. 2). Conversely, the processing of pri-miR-302a
was more efficient in d0 than in d9 extracts, whereas the in vitro
cleavage pattern of pri-miR-101 was more uniform throughout
differentiation (Fig. 2). This result suggests that miR-9 processing
is regulated by negative or positive factors in undifferentiated and
differentiated P19 cells, respectively. Abolished pri-miR-9-1 and
pri-let-7a-1 processing in Drosha or DGCR8-depleted HeLa cell
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extracts confirmed the specificity of the reactions and the
molecular weights of the corresponding miR precursors
(Supplementary Fig. 3). Interestingly, we observed nonspecific
in vitro processing products in d0 extracts for pri-miR-9-1 (Fig. 2)
that did not correspond to pre-miRs because they were not
detected in processing reactions performed in d9 P19 or HeLa cell
extracts (Fig. 2 and Supplementary Fig. 3). Hence, we assumed
that the differentiation stage-specific accumulation of pre-miR-9-
1 might arise from the regulation of Drosha cleavage or the
control of their stability. Together, these observations corroborate
our mature miR and pri-miR profiling results, indicating that
during neuronal differentiation, the processing of brain-specific
miR-9 is regulated at the post-transcriptional level.

Lin28a is a potential regulator of miR-9 biogenesis. Conserved
terminal loops (CTLs) have been implicated in the regulation of
miR biogenesis, and miR-9 has highly conserved terminal loop24.
Thus, we hypothesized that miR-9 CTL might be involved in the
regulation of its processing during neuronal differentiation. To
find the putative regulators of miR-9 biogenesis, we used stable
isotope labeling with amino acids in cell culture (SILAC)
combined with RNA pull down and mass spectrometry
(Fig. 3a). miR-9 CTL was used to precipitate proteins from
extracts derived from undifferentiated (d0) or differentiated (d9)
P19 cells that were cultured with heavy [13C]Arg/[13C]Lys or
light [12C]Arg/[12Lys] isotopes, respectively.

SILAC combined with RNA pull down and mass spectrometry
analysis revealed several proteins specifically interacting with

miR-9 CTL (Fig. 3b and Supplementary Data 1). Our attention
was drawn to the Lin28a protein, a factor implicated in the
regulation of let-7 biogenesis, which was highly enriched (17 fold)
in pull downs from undifferentiated cells (Fig. 3b). We validated
the strong interaction between Lin28a and the miR-9-1 CTL
(Fig. 3c). Crucially, this interaction was observed only in extracts
derived from undifferentiated cells. In contrast, the Msi1 protein
was found to predominantly interact with the miR-9-1 CTL in
differentiated extracts (Fig. 3c). The observed interactions were
specific because neither Lin28 nor Msi1 interacted with beads
alone. Moreover, hnRNP A1, which is a ubiquitous RNA-binding
protein, was found to interact equally with corresponding CTLs
on days 0 and 9. Indeed, the majority of the identified proteins
did not show a differentiation-regulated expression. This,
however, does not preclude their potential roles in regulating
miR-9 biogenesis. As Lin28a is a potent inhibitor of let-7
biogenesis, we hypothesized that it can also function in the
regulation of brain-specific miR biogenesis.

To further confirm the interactions, we performed SILAC
combined with pre-miR pull down and mass spectrometry using
extracts from undifferentiated P19 cells. Pre-let-7a pull down
identified Lin28a as well as Khsrp and hnRNP A1, proteins
previously implicated in the regulation of let-7 biogenesis25,33,34

(Supplementary Table 1 and Supplementary Data 2). Surprisingly,
we did not find TuT4 in the pre-let-7a pull down, suggesting that
the Lin28a/TuT4 interaction might be transient under our
experimental conditions (Supplementary Data 2). Full-length
pre-miR-9-1 and pre-miR-9-2 pulled down Lin28 with fold
enrichment similar to that observed for pre-let-7a. The pre-miR-9
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Figure 1 | The level of brain-specific miR-9 is transcriptionally and post-transcriptionally regulated during RA-induced neuronal differentiation

of P19 cells. (a,c,d) Real-time qRT–PCR analysis of mature miR-9, let-7a and miR-302a levels at different stages of RA-induced neuronal differentiation

(Day—d). The values were normalized to miR-16 levels. The fold change was plotted relative to values derived from undifferentiated cells (d0), which were

set to 1. Mean values and s.d. of three independent biological replicates are shown. (b) Real-time qRT–PCR of miR-9 primary transcripts (pri-miR) at

different stages of RA-induced P19 cell neuronal differentiation. The fold changes of the corresponding pri-miRNA abundance, pri-miR-9-1 (black bars),

pri-miR-9-2 (grey bars) and pri-miR-9-3 (white bars) were plotted relative to the d0 values, which were set to 1. The values were normalized to the

cyclophilin A mRNA levels. Mean values and s.d. of three independent experiments are shown.
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pull down revealed a number of other specific factors that may
contribute to the regulation of miR-9 processing.

To validate Lin28a-binding specificity, we performed RNA pull
down followed by western blot analysis with a panel of pre-miRs.
Pre-miR-9-1, pre-let-7a-1 and pre-miR-101 displayed efficient
Lin28a binding (Fig. 4a). Importantly, pre-miR-16 as well as pre-
miR-9-1 with substituted TL from the miR-16 (pre-miR-9-1/miR-
16 TL) could not pull down Lin28a (Fig. 4a). This was also
confirmed by electrophoretic mobility shift assay (EMSA)
analysis of pre-miRs and anti-Lin28a antibody (Fig. 4b). In
EMSA, pre-miR-9-1 as well as pre-let-7a-1 form several
complexes with proteins from d0 P19 cell extracts. Formation
of one of the complexes is abolished on addition of anti-Lin28a
but not unspecific antibody (Fig. 4b). This suggests that Lin28a
bound to pre-miR-9-1 and pre-let-7a-1 forms a complex with the
anti-Lin28a antibody, preventing the substrates to enter the gel.
Alternatively, anti-Lin28a antibody could be binding to Lin28a
and precluding its association with its substrates. Importantly,
pre-miR-16 was not shifted in undifferentiated cell extracts. This
provides additional evidence for the specificity of Lin28a binding.

The knockdown of Lin28a leads to increased levels of miR-9.
Lin28a expression is dynamically regulated throughout neuronal
differentiation33. Its expression is elevated at early stages of
development and is switched off during differentiation. This
regulation is essential for the inhibition of let-7 production at the
early stages of differentiation and development and for
maintaining pluripotency33,35. We observed a steady decrease in
Lin28 until day 6 and a sharp drop in its expression on day 8
(Supplementary Fig. 1a). This decline coincided with a sharp
increase in miR-9 levels on day 8, although a substantial
accumulation of primary miR-9 transcripts occurs at earlier
stages of neuronal differentiation (Fig. 1a,b).

To determine whether Lin28a controls miR-9 levels, we
transfected P19 cells with anti-Lin28a short interfering RNAs

(siRNAs). To initiate miR-9 expression, we then induced
transfected cells to differentiate. Western blot analysis of Lin28a
expression on day 4 of differentiation demonstrated that the
protein was depleted to B20–30% of control treatment (Fig. 5a).
As expected, Lin28a depletion resulted in a fourfold increase in
let-7a levels (Fig. 5b). The level of miR-101 and miR-122, miRs
unrelated to neuronal development, was unchanged. Crucially,
Lin28a knockdown resulted in a modest but statistically
significant 1.6-fold increase in miR-9 levels on day 4 of P19
neuronal differentiation (Fig. 5b).

To uncouple the effects of differentiation and control of miR-9
levels, we performed pri-miR transgene overexpression in
undifferentiated P19 cells. Overexpression of pri-miR-9 and pri-
let-7a driven by a cytomegalovirus (CMV) promoter resulted in a
very small induction of mature miRs (Supplementary Fig. 4).
Importantly, overexpression of pri-let-7a-1/miR-16 TL mutant,
which escapes Lin28a-mediated regulation, produced more than
20-fold mature let-7a. This suggests that the accumulation of
miR-9 and let-7a levels in undifferentiated cells is post-
transcriptionally suppressed. Interestingly, overexpression of
cognate pri-miR-9-1/miR-16 TL mutant did not result in de-
repression of miR-9 accumulation (Supplementary Fig. 4). This
implies the existence of additional layers of post-transcriptional
miR-9 regulation, most probably preventing accumulation of
mature miR in undifferentiated cells.

All these results suggest that Lin28a expression has an influence
on the level of miR-9 in vivo. The difference between the observed
effects of Lin28 depletion on the miR-9 and let-7 levels could be
due to different levels of corresponding primary transcripts
available at early stages of differentiation. The expression of the
let-7 primary transcript is stable throughout differentiation,
whereas the miR-9 primary transcript is not detected in
undifferentiated P19 cells and only begins to accumulate during
early stages of neuronal differentiation17. Together, these results
provide evidence implicating Lin28a in the regulation of brain-
specific miR-9 abundance during neuronal differentiation.
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Pri-miR-101 processing served as a control. The results are representative of at least three independent experiments.
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Untagged Lin28a affects miR-9 and neuronal differentiation.
Next, we wanted to determine whether prolonged expression of
Lin28a during neuronal differentiation could affect the level of
let-7a and miR-9. To test this hypothesis, P19 cells constitutively
expressing untagged or GFP-tagged Lin28a together with the
relevant control cell lines were subjected to RA-induced neuronal
differentiation. Western blot analysis of untagged and GFP-tag-
ged Lin28a confirmed their prolonged expression throughout P19
differentiation (Fig. 6a,b). During the differentiation of P19 cells
constitutively expressing untagged Lin28a, we observed a sig-
nificant reduction in the size of embryonic bodies (Fig. 6c,d).
Surprisingly, P19 cells with stable Lin28a-GFP expression were
phenotypically indistinguishable from control P19 cell lines. This
result indicates that GFP-tagged Lin28a does not confer all of the
functions of the wild-type protein. Indeed, prolonged GFP-Lin28a
expression during neuronal differentiation resulted in an
approximately fourfold decrease in let-7a compared with control
cells but had no significant effect on the level of miR-9 (Fig. 6e).

Strikingly, constitutive expression of untagged Lin28a resulted
in a significant reduction in the miR-9 and let-7a levels at the final
stages of P19 cell neuronal differentiation (Fig. 6e). Similar results

were obtained from two independent Lin28a integrations. The
western blot of Lin28a on extracts from differentiated P19 FRT/
Lin28a and P19 Lin28a/GFP cells revealed similar levels of GFP-
tagged and untagged Lin28a (Supplementary Fig. 5). Thus, the
observed phenotypic and functional differences arose from
qualitative but not quantitative differences between tagged and
untagged Lin28a. The level of primary miR-9 transcripts was also
decreased in P19 cells constitutively expressing untagged Lin28a,
corroborating the existence of a negative feedback loop between
miR-9 and the REST complex, which controls miR-9 expression
and is reciprocally controlled by miR-9 (Supplementary Fig. 6).
Together, these are important observations for two reasons: they
validate Lin28a as a regulator of miR-9 levels and they suggest
that GFP-tagged Lin28a could be functionally compromised.
Finally, our results provide evidence that the mechanism of
Lin28a-mediated miR biogenesis inhibition might be different for
let-7 and miR-9.

Pre-miR-9 is destabilized in early stages of differentiation. It is
well documented that Lin28a inhibits members of the let-7 family
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at the early stages of differentiation and development through
recruitment of TuT4 (or TuT7), which uridylates pre-let-7 and
leads to its degradation by DIS3L2-mediated pre-let-7 degrada-
tion30,31,36. Our in vivo data suggest that Lin28a could inhibit
miR-9 through a different mechanism because untagged Lin28a
impairs miR-9 and let-7 processing, whereas only let-7 is affected
by expression of the GFP-tagged Lin28a.

To determine whether pre-miR-9 is regulated in a manner
different from pre-let-7, we performed in vitro uridylation assays
in P19 cell extracts from subsequent stages of neuronal
differentiation. Pre-let-7a was efficiently uridylated in extracts
derived from undifferentiated P19 cells (Fig. 7a). The intensity of
the band corresponding to the uridylated form of pre-let-7a was
reduced in reactions with extracts isolated from subsequent stages
of neuronal differentiation (Fig. 7a). This reduction resulted in a
small but significant increase in the stability of the pre-let-7a
probe (Fig. 7c). In contrast, pre-miR-9 was not converted to a
uridylated form but instead was significantly destabilized in
extracts derived from undifferentiated P19 cells (Fig. 7a,c).

Significantly, incubation of pre-miR-9 with extracts derived
from days 4, 6 and 9 resulted in its gradual stabilization by two-,
four- and fivefold, respectively, which correlates with the period
when Lin28a expression is reduced. Pre-miR-9-2 and pre-miR-9-3

are also destabilized in extract derived from d0 P19 cells
(Supplementary Fig. 7). Importantly, pri-miR-9-1/miR-16 TL
mutant, which does not bind Lin28a (Fig. 4a), is not destabilized
in extracts from undifferentiated cells (Supplementary Fig. 7).
Control pre-miR-101 and pre-let-7a probes were more stable
under similar conditions (Fig. 7a,c). To establish how pre-miR-9 is
degraded, we incubated 50-end-labelled miR precursors in d0
extracts. Pre-miR-9-1 is more unstable than pre-let-7a and pre-
miR-101, showing signs of 30–50 and 50–30 degradation (Fig. 7b,d).
These results validate our in vivo data and point to different
mechanisms by which miR-9 and let-7a levels are post-
transcriptionally regulated during neuronal differentiation.

Lin28a destabilizes pre-miR-9 independently of uridylation.
Thus far, we have shown that Lin28a can bind to the miR-9 CTL
and influence miR-9 cellular levels. In addition, we have
demonstrated that pre-miR-9 is rendered unstable in
P19 cell extracts by a mechanism that is different than that for
pre-let-7. To determine whether Lin28a mediates the observed
destabilization of pre-miR-9 in undifferentiated cells, we per-
formed pre-miR-processing assays in P19 cell extracts with
depleted Lin28a. Incubation of pre-let-7a with Lin28a-depleted
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extracts resulted in a reduction in pre-let-7a uridylation (Fig. 8a).
The pre-miR-9 substrate was significantly stabilized in Lin28a-
depleted extracts when compared with control (Fig. 8a,b). In
similar conditions, the level of pre-miR-101 remained largely un-
changed (Fig. 8a,b). Similarly, degradation of 50-end-labelled
pre-miR-9-1 was strongly suppressed in Lin28a RNAi-depleted

P19 d0 extracts compared with reactions in control RNAi extracts
(Supplementary Fig. 8).

To further demonstrate the role of Lin28a in controlling pre-
miR-9 stability, we performed in vitro processing in extracts
derived from cell lines with constitutive Lin28a expression.
Similar to wild-type, d9 extracts derived from P19 cells stably
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expressing Lin28a-GFP support degradation of pre-miR-9-1
(Supplementary Fig. 9a,b). Pre-let-7a is uridylated in extracts
from d0 and d9 derived from both P19 Lin28a-GFP and P19/FRT
Lin28a cells. Notably, pre-miR-9-1 is not stabilized in d9 extracts
derived from cells constitutively expressing untagged Lin28a
(Supplementary Fig. 9a,b). These results further support the role
of Lin28a in pre-miR-9 destabilization, which leads to decreased
cellular levels of miR-9. Since in vitro processing reactions are
uncoupled from the effects of transcription, the above results
suggest that Lin28a can regulate pre-miR-9 post-transcriptionally.

Induced Lin28a in differentiated cells downregulates miR-9. To
test whether in vivo regulation of miR-9 by Lin28a is achievable
after the cells have been differentiated, we created Tet-On 3G P19
cells that express Lin28a under a doxycycline (Dox)-inducible
CMV promoter. Selected clones were subjected to RA-mediated
differentiation and programmed with Dox at day 8 of differ-
entiation, when the miR-9 levels approach maximum (Fig. 1).
The cells were harvested at day 9 and compared with uninduced
cells from the corresponding clones. One of the analysed clones
(P19 Tet-On 3G Lin28a 3#) showed induction of Lin28a on Dox
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treatment (Fig. 9); albeit the levels were much lower when
compared with undifferentiated cells. Crucially, only this clone,
but not those that did not induce Lin28a, showed a specific
downregulation of miR-9 and let-7a levels (Fig. 9b). The levels of
pri-miR-9 transcripts were also decreased on Dox treatment
(Fig. 9b), suggesting that Lin28a can directly or indirectly influ-
ence the abundance of primary miR-9. Notably, pri-let-7a-1 levels
were upregulated supporting the previously suggested role of
Lin28a in repressing pri-let-7a-1 Drosha cleavage.

All our results support specific binding of Lin28a to the miR-9
CTL and its role in regulating cellular miR-9 levels. Our data
strongly suggest that pre-miR-9 is regulated transcriptionally and
post-transcriptionally by a Lin28a-mediated degradation mechan-
ism. These results pave the way to further in-depth analysis
required to determine the fine details of Lin28a-mediated control
of miR-9, and towards better understanding of Lin28a contribu-
tion to neuronal function and differentiation.

Discussion
The biogenesis of miRs is a multistep process that needs to be
finely regulated, reflecting their many important roles in animal
cells. Despite extensive research in the biological functions of
miRs, little is known about the post-transcriptional mechanisms
controlling their abundance. In many cases, the levels of primary

miR transcripts are not correlated with the absolute levels of
corresponding mature miRs37. In these cases, post-transcriptional
regulation of miR processing is predicted to play a major role in
controlling the level of the miRs in question2,38,39. For example,
during neuronal differentiation, the let-7 levels are negatively
correlated with the expression of Lin28 but display no correlation
with its corresponding primary transcripts40. Similar observations
have been made during the development of Caenorhabditis
elegans41. In addition, the biogenesis of brain-enriched miR-7,
which is produced from a ubiquitous primary transcript, is
inhibited by the HuR/MSI2 complex in non-neuronal cells28. Our
current study shows that the levels of neuro-specific miR-9, which
is responsible for neuronal development, undergo extensive
transcriptional and post-transcriptional regulation.

miR-9 is transcriptionally suppressed by the anti-neural REST
complex17,18. During neuronal differentiation, miR-9 target
components of REST, allowing their own expression and that
of other neuronal genes. In addition, miR-9 promotes neural cell
differentiation by targeting the TLX nuclear receptor, which is
responsible for the maintenance of self renewal42. In accordance
with previous findings, we observed an increase in the level of
miR-9 during RA-induced neuronal differentiation in P19 cells43.
At the early stages of differentiation, the accumulation of
the three miR-9 primary transcripts substantially exceeded the
accumulation of mature miR-9. These results point to the
existence of previously uncharacterized post-transcriptional
mechanisms regulating the intercellular levels of miR-9.

Using SILAC coupled with RNA pull down and mass spectro-
metry28, we identified several putative regulators of miR-9. We
isolated Lin28a as a factor binding to the miR-9 CTL in
undifferentiated P19 cells. It is believed that let-7 family
members are the main miRs regulated by Lin28 during neuronal
differentiation44. During muscle differentiation, Lin28 and
MBNL1 control miR-1 biogenesis through a uridylation-
dependent mechanism45. An AGGAG consensus sequence was
previously found to be crucial for the association between the Zn-
knuckle domain of Lin28a and the let-7 CTL46. The miR-9 CTL
has a GGAG motif, which can provide a platform for interaction
with Lin28a. However, other U-rich sequences were shown to
interact with Lin28a through its cold shock domain29. In
accordance with these observations, pre-miR-9-1 and pre-miR-9-
2 were shown to bind recombinant Lin28a in vitro47. Interestingly,
several studies have used crosslinking and immunoprecipitation
coupled with high-throughput sequencing (CLIP-seq) to identify
targets for Lin28a binding but failed to detect miR-9
precursors48,49. These studies focused on undifferentiated
embryonic stem cells and somatic cells. Therefore, it is plausible
that such an approach could result in a failure to capture targets
that are dynamically regulated throughout differentiation.

The constitutive expression of untagged Lin28a during
neuronal differentiation resulted in a severe differentiation
phenotype characterized by small embryonic bodies and reduced
levels of mature miR-9 and let-7a. Previously, it has been reported
that constitutive expression of Lin28-GFP inhibits let-7a proces-
sing in P19 cells and results in a neuronal phenotype that is
independent of let-7 (ref. 35). Unexpectedly, constitutive
expression of a Lin28a-GFP-tagged protein resulted in efficient
reduction of let-7a but not miR-9 levels. Similarly, a severe
differentiation phenotype was only evident in P19 cells
constitutively expressing untagged but not GFP-tagged Lin28a
protein. Notably, it has been shown that miR-9 depletion also
results in a severe differentiation phenotype characterized by
small embryonic bodies, which corroborates our results50. First,
these findings suggest that decreased let-7 levels are not sufficient
to induce an aberrant P19 differentiation phenotype. Second, the
mechanisms for Lin28a-mediated inhibition of miR-9 and let-7
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are different. Our in vitro processing results, obtained from the
wild-type cells and cells constitutively expressing Lin28a, indicate
that Lin28a destabilizes pre-miR-9 but does not induce
uridylation as observed for pre-let-7 transcripts30. Furthermore,
induction of Lin28a expression in differentiated cells leads to
reduction of miR-9 levels, arguing that the Lin28a control over
miR-9 is not restricted to differentiating cells. Further in-depth
analysis is required to determine the effectors of the Lin28a-
mediated control of pre-miR-9 stability and understand their
contribution to neuronal differentiation.

miR-9 and miR-124 have been shown to be master regulators
of neuronal programs because they alone can transform adult
fibroblasts into neurons22. We hypothesize that their highly
restricted, brain-specific expression profile needs to be
safeguarded by several non-mutually exclusive mechanisms.
Here we show that miR-9 is transcriptionally and post-trans-
criptionally controlled. We present evidence that untagged Lin28a
inhibits miR-9 processing by destabilizing pre-miR-9 through a
uridylation-independent mechanism. This finding sheds more
light on the role of Lin28a in neuronal differentiation. Altogether,
our results demonstrate that transcriptionally regulated miRs can

undergo complementary post-transcriptional control. This has
important implications for the understanding of how miRs are
regulated and the development of novel miR-based compounds
and therapeutics.

Methods
Cell culture and neuronal differentiation conditions. Mouse teratocarcinoma
P19 cells or HeLa cells (the American Type Culture Collection) were maintained in
standard DMEM medium (Life Technologies), supplemented with 10% fetal bovine
serum (Life Technologies). All-trans RA (Sigma) was used to induce neuronal
differentiation. In brief, B12� 106 cells were plated on a non-adhesive dish in
DMEM supplemented with 5% serum and supplemented with 1 mM of RA. This
induced the formation of embryonic bodies. After 4 days, the embryonic bodies
were re-suspended in DMEM supplemented with 10% serum and re-plated on an
adhesive dish. Differentiation was followed up to 19 days post induction. At d9,
cells displayed neuronal-like morphology. For SILAC mass spectrometry, undif-
ferentiated cells were cultured in DMEM supplemented with ‘heavy’ [13C]Arg/
[13C]Lys isotopes and differentiation was performed using DMEM supplemented
with ‘light’ [12C]Arg/[12Lys] isotopes (Pierce SILAC Proteins Quantitation Kit,
Thermo Scientific).

Real-time qRT–PCR and miRNA qRT–PCR analysis. Real-time quantitative
reverse transcription (qRT)–PCR was performed using the SuperScript III
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Platinum SYBR Green One-Step qRT–PCR Kit (Life Technologies) following the
manufacturer’s instructions on a Roche 480 LightCycler. Generally, 1 ml (500 ng) of
total RNA isolated with TRIzol (Life Technologies) was used in a 20-ml reaction,
and each sample was run in duplicate. To assess the levels of the corresponding
transcripts, values were normalized to cyclophilin A mRNA levels. For each
measurement, three independent experiments were performed. Primers are listed
in Supplementary Table 4. miR qRT–PCR analysis was performed using the
miSript qRT–PCR kit (Qiagen) on total RNA isolated with TRIzol (Life Tech-
nologies) and each sample was run in duplicate. To assess the levels of the cor-
responding miRs, values were normalized to miR-16. For each measurement, three
independent experiments were performed.

Northern blot analysis. Twenty micrograms of total RNA was mixed with an
equal volume of loading buffer (95% formamide, 18 mM EDTA, 0.025% SDS,
xylene cyanol, bromophenol blue) and resolved on a 10% PAGE–Urea gel. The
ribosomal RNA was visualized with ethidium bromide to confirm equal loading.
The RNA was transferred from the gel onto nitrocellulose membrane (Hybond N).
The membrane was crosslinked twice with ultraviolet and pre-hybridized overnight
at 40 �C with 10 ml of hybridization buffer (1� SSC, 1% SDS, 200 mg ml� 1 single-
stranded DNA). A northern probe was prepared using the mirVana miR Probe
Construction Kit (Life Technologies). In the first step, a double-stranded DNA
template for T7 transcription was generated according to the manufacturer’s
instructions. The probe was denaturated at 95 �C for 1 min, placed on ice and
hybridized against the membrane for 2 h at 40 �C in 10 ml of hybridization buffer.
Subsequently, the membrane was washed two to three times for 30 min each with
50 ml of wash buffer (0.2% SSC, 0.2% SDS). The signal was registered with a
radiographic film or exposed to a phosphoimaging screen and scanned on a
FLA-5100 scanner (Fujifilm).

Western blot analysis. Total protein samples (100 mg per lane), isolated by
sonication, were resolved by standard NuPAGE SDS–PAGE electrophoresis with
MOPS running buffer (Life Technologies) and transferred onto nitrocellulose
membrane. The membrane was blocked overnight at 4 �C with 1:10 western
blocking reagent (Roche) in TBS buffer with 0.1% of Tween-20 (TBST). The fol-
lowing day, the membrane was incubated for 1 h at room temperature with pri-
mary antibody solution in 1:20 western blocking reagent diluted in TBST: rabbit
polyclonal anti-Lin28a (A177) (1:1,000, Cell Signalling Technology), rabbit poly-
clonal anti Msi1 (N3C3) (1:1,000, GeneTex), rabbit monoclonal anti-hnRNP A1
(1:1,000, D21H11) (Cell Signalling Technology), Lin28b (1:1000, Cell Signalling
Technology), Tuj1 (1:20,000, GeneTex), GFAP (1:1,000, SIGMA), DHX9 (1:1,000,
Protein-Tech), mouse-monoclonal anti-b-tubulin (1:10,000, Sigma). After washing
in TBST, the blots were incubated with the appropriate secondary antibodies
conjugated to horseradish peroxidase and detected with SuperSignal West Pico
detection reagent (Thermo Scientific). The membranes were stripped using ReBlot
Plus Strong Antibody Stripping Solution (Chemicon) equilibrated in water, blocked
in 1:10 western blocking solution in TBST and re-probed as described above. Full
scans of the western blots presented in the manuscript are shown in the
Supplementary Fig. 10.

In vitro processing assays. Pri-miRNA and pre-miRNA substrates were prepared
by standard in vitro transcription with T7 RNA polymerase in the presence of
[a-32P]-UTP. Where indicated, pre-miRNA probes were 50-end-labelled with
[g-32P]-ATP. The templates used to generate the transcripts were prepared by PCR
amplification from cloned fragments of the human genome using corresponding
primers (Supplementary Table 2). Pri-miR-9-1/miR-16 TL and pri-let-7a-1/miR-16
TL templates were prepared based on mutagenesis of the wild-type pri-miR plas-
mids by replacing the terminal loops with the terminal loop from the miR-16 using
corresponding primers (Supplementary Table 2). Gel-purified probes (50�
103 c.p.m. (counts per minute), B20 pmol) were incubated in 30 ml reaction mix-
tures containing 50% (v/v) total P19 cell extracts (B10 mgml� 1), 0.5 mM ATP,
20 mM creatine phosphate and 3.2 mM MgCl2. Reactions were incubated at 37 �C
for 30 min followed by phenol-chloroform extraction, precipitation and 8% (w/v)
denaturing gel electrophoresis. In the case of pre-miRNA processing, 0.25 mM
UTP was added to the reaction mixture. The signal was registered with a radio-
graphic film or exposed to a phosphoimaging screen and scanned on a FLA-5100
scanner (Fujifilm).

EMSA. EMSA was performed with internally labelled pre-miR transcript and
whole-cell extracts. Gel-purified probes (50� 103 c.p.m., B20 pmol) were incubated
in 30ml reaction mixtures containing 50% (v/v) total P19 cell extracts
(B10mgml� 1), 0.5 mM ATP, 20 mM creatine phosphate and 3.2 mM MgCl2.
Reactions were incubated at 4 �C for 1 h followed by electrophoresis in 6% (w/v)
non-denaturing gel. Where indicated, antibodies were added to reactions mixtures
(1:100) to generate super shift. The signal was registered with a radiographic film or
exposed to a phosphoimaging screen and scanned on a FLA-5100 scanner (Fujifilm).

RNA pull down and mass spectrometry. RNA pull down and mass spectrometry
were performed as described previously28. In brief, total protein extracts from

undifferentiated or differentiated P19 cells grown in ‘light’ [12C]Arg/[12Lys] and
‘heavy’ [13C]Arg/[13C]Lys isotopes, respectively, were incubated with synthesized
RNAs, chemically coupled to agarose beads. All synthetic RNAs used are listed in
Supplementary Table 3. The incubation was followed by a series of washes with
Roeder D buffer (100 mM KCl, 20% (v/v) glycerol, 0.2 mM EDTA, 100 mM Tris
pH 8.0). After the final wash, the beads with associated proteins were re-suspended
in structure buffer (10 mM Tris–HCl pH 7.2, 1 mM MgCl2, 40 mM NaCl) followed
by treatment with RNAses. The samples were subsequently analysed by SDS–
PAGE followed by mass spectrometry or western blot.

RNAseq and small RNAseq. Ten micrograms of total RNA was isolated from
d0 and d4 P19 cells and analysed on the Illumina HiSeq2000 platform. Sample
processing and analysis were preformed by BGI genomics. Data visualization was
based on the bigwig files implemented into Ensembl Genome Browser.

RNA interference and miR overexpression. Pools of siRNAs were obtained from
Dharmacon in the format of three independent siRNAs targeting different regions
of the mRNA coding for the protein of interest. Genomic fragment containing
miRs were cloned in pCG T7 plasmid and transiently expressed in P19 cells. Four
micrograms of siRNAs was delivered in two transfection events separated by 48 h
using nucleofection technology (AMAXA), according to the manufacturer
instructions. Two micrograms of PCG T7 plasmids expressing miRs was delivered
using similar methodology. For HeLa cells transfections were performed using
Lipofectamine 2000 (Life Technologies), according to the manufacturer’s
instructions.

Stable cell line generation. P19 cell lines with stable Lin28a-GFP or GFP only
expression were gifts from Dr Eric Moss (The University of Medicine and Den-
tistry, NJ)35. Both lines were maintained in standard culture conditions. A P19 cell
line expressing untagged Lin28a was developed using the Flp-in system (Life
Technologies), according to the manufacturer’s instructions. In brief, the FRT site
was randomly integrated in the genome and its integration was verified using
Zeocin and lacZ selection markers. The Lin28a cDNA was integrated into the FRT
site using Flp-mediated recombination and the event was confirmed using
hygromycin selection as well as western blotting analysis. A P19 cell line with
Tet-On 3G inducible expression of Lin28a was generated according to the
manufacturer’s instructions (Clontech Lab Inc.). In brief, a pCMV-Tet3G plasmid
coding for a Dox-responsive transactivator was integrated into undifferentiated
P19 cells using a G418 selection marker. A pTRE3G-Bi-Luc plasmid expressing
luciferase under a control transactivator-responsive promoter was used to select
stable clones with high response to Dox (100 ng ml� 1) treatment. Next, Lin28a was
cloned to a pTRE3G-Bi plasmid and integrated into P19 cells with an active
pCMV-Tet3G system using a linear hygromycin selection marker. Selected clones
were expanded and differentiated using RA, as described above. On day 8 of
differentiation, cells were induced with Dox (100 ng ml� 1). The expression of
Lin28a was checked at day 9 of differentiation.

References
1. Pasquinelli, A. E. NON-CODING RNA MicroRNAs and their targets:

recognition, regulation and an emerging reciprocal relationship. Nat. Rev.
Genet. 13, 271–282 (2012).

2. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA
biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010).

3. Wilson, R. C. & Doudna, J. A. Molecular mechanisms of RNA interference.
Annu. Rev. Biophys. 42, 217–239 (2013).

4. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed
nuclease mediates post-transcriptional gene silencing in Drosophila cells.
Nature 404, 293–296 (2000).

5. Eulalio, A. et al. Deadenylation is a widespread effect of miRNA regulation.
RNA 15, 21–32 (2009).

6. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation
and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

7. Landgraf, P. et al. A mammalian microRNA expression atlas based on small
RNA library sequencing. Cell 129, 1401–1414 (2007).

8. Farazi, T. A., Hoell, J. I., Morozov, P. & Tuschl, T. MicroRNAs in human
cancer. Adv. Exp. Med. Biol. 774, 1–20 (2013).

9. Dimmeler, S. & Nicotera, P. MicroRNAs in age-related diseases. EMBO Mol.
Med. 5, 180–190 (2013).

10. Thornton, J. E. & Gregory, R. I. How does Lin28 let-7 control development and
disease? Trends Cell. Biol. 22, 474–482 (2012).

11. Bushati, N. & Cohen, S. M. MicroRNAs in neurodegeneration. Curr. Opin.
Neurobiol. 18, 292–296 (2008).

12. Yates, L. A., Norbury, C. J. & Gilbert, R. J. The long and short of microRNA.
Cell 153, 516–519 (2013).

13. Wang, Z. et al. Transcriptional and epigenetic regulation of human
microRNAs. Cancer Lett. 331, 1–10 (2013).

14. Cao, X., Yeo, G., Muotri, A. R., Kuwabara, T. & Gage, F. H. Noncoding RNAs in
the mammalian central nervous system. Annu. Rev. Neurosci. 29, 77–103 (2006).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4687 ARTICLE

NATURE COMMUNICATIONS | 5:3687 | DOI: 10.1038/ncomms4687 | www.nature.com/naturecommunications 11

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


15. Krichevsky, A. M., Sonntag, K. C., Isacson, O. & Kosik, K. S. Specific
microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24,
857–864 (2006).

16. Nowak, J. S. & Michlewski, G. miRNAs in development and pathogenesis of the
nervous system. Biochem. Soc. Trans. 41, 815–820 (2013).

17. Laneve, P. et al. A minicircuitry involving REST and CREB controls miR-9-2
expression during human neuronal differentiation. Nucleic Acids Res. 38,
6895–6905 (2010).

18. Conaco, C., Otto, S., Han, J. J. & Mandel, G. Reciprocal actions of REST and a
microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA 103,
2422–2427 (2006).

19. Leucht, C. et al. MicroRNA-9 directs late organizer activity of the midbrain-
hindbrain boundary. Nat. Neurosci. 11, 641–648 (2008).

20. Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream
of the isthmic organizer. Nat. Rev. Neurosci. 2, 99–108 (2001).

21. Shibata, M., Nakao, H., Kiyonari, H., Abe, T. & Aizawa, S. MicroRNA-9
regulates neurogenesis in mouse telencephalon by targeting multiple
transcription factors. J. Neurosci. 31, 3407–3422 (2011).

22. Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to
neurons. Nature 476, 228–231 (2011).

23. Guil, S. & Caceres, J. F. The multifunctional RNA-binding protein hnRNP
A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591–596
(2007).

24. Michlewski, G., Guil, S., Semple, C. A. & Caceres, J. F. Posttranscriptional
regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32,
383–393 (2008).

25. Michlewski, G. & Caceres, J. F. Antagonistic role of hnRNP A1 and KSRP in the
regulation of let-7a biogenesis. Nat. Struct. Mol. Biol. 17, 1011–1018 (2010).

26. Choudhury, N. R. & Michlewski, G. Terminal loop-mediated control of
microRNA biogenesis. Biochem. Soc. Trans. 40, 789–793 (2012).

27. Castilla-Llorente, V., Nicastro, G. & Ramos, A. Terminal loop-mediated
regulation of miRNA biogenesis: selectivity and mechanisms. Biochem. Soc.
Trans. 41, 861–865 (2013).

28. Choudhury, N. R. et al. Tissue-specific control of brain-enriched miR-7
biogenesis. Genes Dev. 27, 24–38 (2013).

29. Mayr, F. & Heinemann, U. Mechanisms of Lin28-mediated miRNA and
mRNA regulation-a structural and functional perspective. Int. J. Mol. Sci. 14,
16532–16553 (2013).

30. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis
through pre-microRNA uridylation. Cell 138, 696–708 (2009).

31. Chang, H. M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the
Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497,
244–248 (2013).

32. Blahna, M. T. & Hata, A. Regulation of miRNA biogenesis as an integrated
component of growth factor signaling. Curr. Opin. Cell Biol. 25, 233–240
(2013).

33. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of
microRNA processing by Lin28. Science 320, 97–100 (2008).

34. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis
of a subset of microRNAs. Nature 459, 1010–1014 (2009).

35. Balzer, E., Heine, C., Jiang, Q., Lee, V. M. & Moss, E. G. LIN28 alters cell fate
succession and acts independently of the let-7 microRNA during
neurogliogenesis in vitro. Development 137, 891–900 (2010).

36. Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated
control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4)
and Zcchc6 (TUT7). RNA 18, 1875–1885 (2012).

37. Van Wynsberghe, P. M. et al. LIN-28 co-transcriptionally binds primary let-7
to regulate miRNA maturation in Caenorhabditis elegans. Nat. Struct. Mol.
Biol. 18, 302–308 (2011).

38. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals.
Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

39. Siomi, H. & Siomi, M. C. Posttranscriptional regulation of microRNA
biogenesis in animals. Mol. Cell 38, 323–332 (2010).

40. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7
maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993
(2008).

41. Kai, Z. S., Finnegan, E. F., Huang, S. & Pasquinelli, A. E. Multiple cis-elements
and trans-acting factors regulate dynamic spatio-temporal transcription of let-7
in Caenorhabditis elegans. Dev. Biol. 374, 223–233 (2013).

42. Zhao, C., Sun, G., Li, S. & Shi, Y. A feedback regulatory loop involving
microRNA-9 and nuclear receptor TLX in neural stem cell fate determination.
Nat. Struct. Mol. Biol. 16, 365–371 (2009).

43. Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a
subset of brain-expressed microRNAs with possible roles in murine and human
neuronal differentiation. Genome Biol. 5, R13 (2004).

44. Wulczyn, F. G. et al. Post-transcriptional regulation of the let-7 microRNA
during neural cell specification. FASEB J. 21, 415–426 (2007).

45. Rau, F. et al. Misregulation of miR-1 processing is associated with heart defects
in myotonic dystrophy. Nat. Struct. Mol. Biol. 18, 840–845 (2011).

46. Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for
interaction of let-7 microRNAs with Lin28. Cell 147, 1080–1091 (2011).

47. Towbin, H. et al. Systematic screens of proteins binding to synthetic microRNA
precursors. Nucleic Acids Res. 41, e47 (2013).

48. Cho, J. et al. LIN28A is a suppressor of ER-associated translation in embryonic
stem cells. Cell 151, 765–777 (2012).

49. Wilbert, M. L. et al. LIN28 binds messenger RNAs at GGAGA motifs and
regulates splicing factor abundance. Mol. Cell 48, 195–206 (2012).

50. Delaloy, C. et al. MicroRNA-9 coordinates proliferation and migration of
human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6,
323–335 (2010).

Acknowledgements
We thank Steven West (The Wellcome Trust Centre for Cell Biology, Edinburgh) for
critical reading of the manuscript. We thank Eric Moss for a kind gift of P19 cell line with
constitutive expression of Lin28a-GFP. J.R. was supported by a Wellcome Trust Senior
Research Fellowship (084229). J.S.N. is a recipient of a Wellcome Trust PhD Studentship
(096996). G.M. is a recipient of an MRC Career Development Award (G10000564). This
work was also supported by two Wellcome Trust Centre Core Grants (077707 and
092076) and by a Wellcome Trust instrument Grant (091020).

Author contributions
J.S.N. designed, performed and analysed the experiments and contributed to the writing
of the manuscript; N.R.C. performed and analysed the experiments, and contributed to
the writing of the manuscript; F.L.A. and J.R. performed and analysed the mass spec-
trometry; G.M. designed, performed and analysed the experiments, wrote the manuscript
and supervised the whole project.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Nowak, J. S. et al. Lin28a regulates neuronal differentiation and
controls miR-9 production. Nat. Commun. 5:3687 doi: 10.1038/ncomms4687 (2014).

This work is licensed under a Creative Commons Attribution 3.0
Unported License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4687

12 NATURE COMMUNICATIONS | 5:3687 | DOI: 10.1038/ncomms4687 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/3.0/
http://www.nature.com/naturecommunications

