

Edinburgh Research Explorer

Recording Rationale in <I-N-C-A> for Plan Analysis

Citation for published version:
Wickler, G, Potter, S & Tate, A 2006, Recording Rationale in for Plan Analysis. in Workshop on Plan
Analysis and Management, International Conference on Automated Planning and Scheduling (ICAPS-06): 6
June 2006, Lake District, England.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Workshop on Plan Analysis and Management, International Conference on Automated Planning and Scheduling
(ICAPS-06)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/recording-rationale-in-inca-for-plan-analysis(7effc4d0-4aee-4f1b-a708-a35cff14478a).html

Recording Rationale in <I-N-C-A> for Plan Analysis

Gerhard Wickler, Stephen Potter, Austin Tate

Artificial Intelligence Applications Institute

University of Edinburgh, Edinburgh, Scotland

{g.wickler, s.potter, a.tate}@ed.ac.uk

Abstract

The aim of this paper is to show how the rationale behind a
plan can be recorded in the plan itself. The <I-N-C-A>
model which underlies the I-X framework will be described
in detail, focussing on annotations. It is there that a planner
can record the justifications for including components into
the plan. Recording rationale information of this type can be
used for a number of purposes in the life cycle of a plan,
including plan indexing and retrieval, failure recovery, plan
explanation and establishing trust as explained in this paper.

Introduction

Plans are the artefact that is the result of the planning
process. Traditionally, a plan is described as a set of
activities together with some organizational structure, e.g.
a sequence in the simplest case (Ghallab et al., 2004). This
is a simplistic model of a plan that can only be applied in
toy domains where plans cannot go wrong, need not be
stored for later re-use, need not be justified, etc. This view
of plans ignores a lot of the knowledge that is generated
and used during the planning process. In this paper we will
describe the <I-N-C-A> model of a plan (Tate, 2003)
which can store annotations to record knowledge about the
plan that is generated during the planning process.
Specifically, we want to record the rationale behind some
(but not all) planning decisions in the plan itself for later
use (e.g. during plan execution, re-planning or explanation
generation). This knowledge can be used to facilitate plan
analysis and help maintain the plan as a meaningful entity.

Background

Rationale has been recognized as an important type of
information in the planning literature. In fact it can be
traced back to early work on Hacker’s plan teleology
(Sussman, 1973), Nonlin’s “Goal Structure” (Tate, 1977;
Tate, 1983) and work on Plan Rationale in SIPE (Wilkins,
1988). Plan rationale capture and use is a key research
objective in the I-X framework (Tate, 2000; Potter et al.,
2003; Wickler et al., 2006) and its predecessor O-Plan
(Currie and Tate, 1991; Tate et al., 2000).
One of the fundamental ideas here is that it is necessary to
have a clear and sharable ontology of plans before one can
reason about plans (Tate, 1996; 1998). The <I-N-C-A>
model of a plan represents such an ontology and will be
described in detail in this paper, focusing on the

component that is used to record the rationale behind the
plan.
Rationale is an essential component of knowledge-rich
plans (Polyak and Tate, 1998). Having such models not
only facilitates the planning process itself, but also makes
it possible to analyse and re-use such plans. Plan rationale
can be viewed in terms of causality, dependencies and
decisions. Each of these dimensions addresses practical
issues in the planning process and adds value to the
resultant plan.

The <I-N-C-A> Model in I-X

<I-N-C-A> is a generic model for synthesis tasks (Tate,
2003). While its level of abstraction makes it possible to
apply the generic model to a wide variety of tasks, it
assumes a more specific meaning in the I-X agent
framework when the object to be synthesized is a plan, a
course of action the I-X agent intends to follow.

Terminology

In this section we will introduce some of the terminology
used in the description of <I-N-C-A> that follows. This is
necessary as we use the terms explained here with specific
meanings.

World-State Propositions. We assume here that a state of
the world can be described by a set of world-state
propositions. By a world-state proposition we mean any
logical expression that represents a proposition about the
world that can be true or false, and not necessarily a
proposition in propositional logic. <I-N-C-A> does not
commit to any specific formalism for world-state
propositions. Traditionally world-state propositions are
described as first-order literals or state-variable expressions
in AI planning, but more complex formalisms may be
required to reason about, for example, the knowledge of
agents in a world state.

Primitive and Complex Activities. Primitive activities are
considered to be the atomic elements that make up the
plan. They are primitive in the sense that, from the
perspective of the planner, they can be executed directly.
A primitive activity must be an instantiation of some
activity schema defined in the planning domain. An
activity schema contains variables representing the
parameters necessary to describe fully the activity: For
primitive activities to be executable these parameters must

uhiroeh
Typewritten Text
Wickler, G., Potter, S., & Tate, A. (2006). Recording Rationale in <I-N-C-A> for Plan Analysis. In Workshop on Plan Analysis and Management, International Conference on Automated Planning and Scheduling (ICAPS-06).

have specific values. The name of each activity schema
must be unique within a planning domain, whereas there
can be multiple primitive activities with the same activity
name in a plan. In classical planning primitive activities are
often called actions (Ghallab et al., 2004).
Complex activities are not primitive in that, from the
perspective of the planner, they cannot be executed directly
but instead need to be refined or broken down into
primitive activities that can be executed. In Hierarchical
Task Network (HTN) planning complex activities are often
called tasks (Ghallab et al., 2004) or processes (Tate,
1998). Together, primitive and complex activities
constitute the set of all activities. Note that this
terminology applies at the object-level, i.e., referring to
entities in the domain in question, as well as at the meta-
level relating to the planning process itself, as described
below.
Note too that the choice of which activities are primitive
and which complex depends on the context and knowledge
of the agent in question: usually an activity will be
modelled as primitive if it can be carried out in one step
from this perspective, and as complex otherwise.

Plans. An instantiation of the <I-N-C-A> model is an
<I-N-C-A> object. In the I-X framework an <I-N-C-A>
object is synonymous with a plan. A plan can be partial in
the sense that it is not (yet) an actionable solution to a
planning problem. It is the job of the planner to refine a
partial plan into a solution plan.

The <I-N-C-A> Representation in I-X

Planning can be described as synthesizing an <I-N-C-A>
object, i.e., a plan, in which nodes are activities. We can
formally define an <I-N-C-A> object in I-X as a 4-tuple
(I,N,C,A) consisting of:

 a set of issues I,

 a set of activity nodes N,

 a set of constraints C, and

 a set of annotations A.

Issues. I is the set of unresolved issues in the current plan,
i.e., in this <I-N-C-A> object. An issue is represented by a
syntactic expression of the form l:M(O1,…,On), where:

 l is a unique label for this issue,

 M is a symbol denoting a primitive plan modification
activity, and

 O1,…,On are plan-space objects, i.e. they are issues,
nodes, constraints or annotations. The number of such
objects, n, and the interpretation of each object in the
context of the issue, will depend on the particular
primitive plan modification activity represented by this
issue.

Issues can be seen as primitive meta-level activities, i.e.
things that need to be done to the plan before it becomes a
solution to a given planning problem. This approach is
inherited from O-Plan (Currie and Tate, 1991; Tate et al.,
2000) and is also seen in planners such as OPIS (Smith,

1994). The most commonly found primitive meta-level
activities carried out by planners, but usually only implicit
in their underlying implementation or internal plan
representation, are:

 Achieving a goal (in classical planners): Let p be a
world-state proposition and τ be a time point, then the
primitive meta-level activity of achieving p at τ can be
represented as the issue:

l1:achieve(p,τ)

 Accomplishing a complex activity (in HTN planners):
Let a∈N be a complex activity. Then the primitive meta-
level activity of accomplishing a can be represented as
the issue:

l2:refine(a)
Here, achieve and refine are examples of symbols
denoting primitive plan modification activities. Note that
these symbols are not domain specific but specific to the
planning process by which these types of issue are handled.
Issues can be either ‘negative’, in which case they can be
thought of as flaws in the plan, or they can be ‘positive’,
e.g., opportunities.
An alternative view of issues now being explored in recent
I-X research is to see them as always expressed as
questions that need to be answered. For example, the
primitive meta-level activity of refining a can be phrased
as the question “How can a be accomplished?” Adopting
this view, issues can then be classified and manipulated
according to the question types (Conklin, 2005) described
in recent advances based on the large body of work on
issue-based design (Conklin and Begeman, 1988).
An <I-N-C-A> object is considered to be a solution to a
planning problem only if the set of issues is empty.

Nodes. N is the set of activities (nodes) to be performed in
the current plan, i.e., in this <I-N-C-A> object. An activity
is a syntactic expression of the form l:α(o1,…,on), where:

 l is a unique label for this activity,

 α is a symbol denoting an activity name, and

 o1,…,on are object-level terms, i.e. they are either
constant symbols describing objects in the domain, or
they are as yet uninstantiated variables standing for such
objects.

Time points constitute a special class of domain objects
that are found as parameters of an activity. Specifically,
two time points, one representing the begin and the other
the end of an activity, are often used as parameters.
In the context of I-X, nodes represent the object-level
activities in the plan, i.e., things that need to be performed
by some agent to execute the plan. As mentioned above,
activities can be of two types from the perspective of the
planner:

 Primitive activities: primitive activities can be carried
out directly by an agent executing the plan. For example,
in a search and rescue domain, the primitive activity of
flying the aircraft ac1 from location loc1 to location
loc2 may be represented as:

l3:fly(ac1,loc1,loc2)

 Complex activities: complex activities cannot be
accomplished directly by the agent executing the plan
but need to be refined into primitive activities. For
example, the complex activity of rescuing an isolated
person ip may be represented as:

l4:rescue(ip)

In this example, fly is a primitive activity symbol and
rescue is a complex activity symbol in some domain.
Activity symbols have to be domain specific. It follows
that there has to be an activity schema defined for the
domain that has the name fly and describes when this
activity schema is applicable and how it will change the
world when applied, and there has to be a refinement
defined in the domain that accomplishes a complex activity
with the name rescue and describes how exactly it can
be accomplished.
Note that the set N of activities in the plan may contain
both complex activities and the primitive activities that
have been chosen to implement them.

Constraints. C is the set of constraints that must be
satisfied by the current plan (<I-N-C-A> object). A
constraint is a syntactic expression of the form l:c(v1,…,vn),
where:

 l is a unique label for this constraint,

 c is a symbol denoting a constraint relation, and

 v1,…,vn are constraint variables, i.e., they can represent
domain objects (including time points), variables in
activities (which may have binding constraints attached).

Constraints represent the relations that must hold between
the different objects related in the constraints for the plan
to be executable. In the context of planning, the most
commonly used constraints are of the following types:

 Ordering constraints: Let v1, v2 be variables in the plan
representing time points. Then the constraint that v1 has
to be before v2 can be represented as:

l5:before(v1,v2)

 World-state constraints: Let p be a world-state
proposition and v a variable representing a time point in
the plan. Then the fact that p is a condition that has to
hold at the time point represented by v, or the fact that p
is an effect of an activity that holds at time point v can be
represented respectively as:

l6:cond(p,v)

l7:effect(p,v)

 Variable binding constraints: Let v be a variable
mentioned in some activity a∈N and s be a constant
symbol in the planning domain. Then the fact that v must
take the value s can be represented as:

l8:value(v,s)
These are just some of the constraint types that can be
defined. The objects related to each other can be of
different types. This is reflected by the domains of the
constraint variables representing them. They can be world-
state propositions as in conditions and effects, or they can
be variables used in activities representing time points or

other domain objects in the plan as in ordering and variable
binding constraints.

Annotations. A is the set of annotations attached to the
current plan. Amongst other things, annotations can be
used to add human-centric information to the plan. They
may be informal or they may adhere to some detailed
syntax (which is not specified as part of <I-N-C-A>).
Annotations can be used to record arbitrary information
about the plan (and the annotations form a part of this plan
– hence the plan becomes, in some sense, self-descriptive).
Specifically, in this paper we want to discuss the
annotation of plans with one particular type of rationale,
namely the rationale information that can be recorded by
the planner during the planning process. In this case, an
annotation will be a syntactic expression of the form
la:r(lp:O,lm:M,O1,…,On), where:

 la: is a unique label for this annotation,

 r is a rationale predicate relating a plan-space object to
other plan-space objects,

 lp:O is a labelled plan-space object that is part of the
current plan, i.e., it is an issue, an activity, a constraint or
an annotation,

 lm:M is an issue that was formerly in the plan and has
since been resolved, i.e., it is a primitive meta-level
activity that has been performed by the planner, and

 O1,…,On are plan-space objects that may or may not be
labelled.

An annotation of this type represents the fact that the plan-
space object O was introduced into the plan as part of
performing the plan modification activity M, and possibly
involving other plan-space objects O1,…,On. The rationale
predicate r denotes the relationship between these objects
and describes the justification for including O. Thus, the
interpretation of such an annotation depends on the
rationale predicate r used. The different labels are
necessary to specify the exact object that is being referred
to. This is necessary as there might be two activities in the
plan which are identical except for the label. The following
examples illustrate the use of rationale annotations of this
form.

 Let lm:achieve(p,τ) be an issue in the current plan
and let α(o1,…,on) be an activity schema defined in the
domain that has an effect that unifies with p under the
substitution σ. Suppose the planner introduces a new
activity lp:σ(α(o1,…,on)) into the plan to address the issue
lm:achieve(p,τ). Then the following annotation can
be added to the plan to record the rationale for adding
lp:σ(α(o1,…,on)):

naap(lp:σ(α(o1,…,on)),lm:achieve(p,τ),p)
 In this case naap is a rationale predicate that expresses

that a new activity, the first argument, was introduced
into the plan to address the issue of achieving some
proposition (the second and third arguments
respectively). Thus, the argument types for this particular
rationale predicate are an activity a∈N, an issue m∈I in
which the plan modification activity symbol is

achieve, and a world-state proposition. Furthermore,
the last argument, the proposition p, must be the same as
the one to be achieved in the plan modification activity,
and it must be unifiable with one of the effects of the
activity a∈N.

 In this case, a second rationale annotation could be
introduced in a similar fashion to express the fact that
lp:σ(α(o1,…,on) has to be performed before the time point
τ.

 Let lm:refine(a) be an issue in the current plan and
let there be a refinement Δ defined in the domain that can
be used to accomplish a under the substitution σ by
refining it into, amongst other things, activities
σ(α1(o1,…,on))…σ(αk(o1,…,on)). Note that the elements
into which a is refined can together be seen as an
<I-N-C-A> object, i.e. they can be issues, nodes,
constraints and annotations. Suppose the planner uses Δ
to refine a and this adds new activities
lp1:σ(α1(o1,…,on))…lpk:σ(αk(o1,…,on)) to N to address the
issue lm:refine(a). Then, the following annotation
can be added to the plan to record the rationale for
adding each lpi:σ(αi(o1,…,on)), 1≤i≤k:

nadi(lpi:σ(αi(o1,…,on)),lm:refine(a),Δ)
 (One such annotation would be added for each new

activity αi.) In this case nadi is a rationale predicate that
expresses that a new activity, the first argument, was
introduced into the plan to address the issue of refining
some proposition in accordance with some particular
refinement in the domain (the second and third
arguments respectively). Thus, the argument types for
this rationale predicate must be an activity a∈N, an issue
m∈I, where the plan modification activity symbol has to
be refine, and a refinement. Furthermore, the last
argument, the refinement Δ, must be defined as
accomplishing a complex activity that can be unified
with a.

 Similarly, if appropriate, analogous rationale annotations
could be introduced to express the fact that other
<I-N-C-A> elements of the refinement – such as issues
or constraints – were also introduced as part of this
refinement.

Rationale predicates of this type are usually specific to a
type of issue. Hence, naap rationale will always relate to
an achieve issue, and nadi rationale will always relate
to a refine issue. However, there may be multiple
rationale predicates that may be used with the same issue –
that used will depend on how the planner did actually
resolve the issue. For example, achieving a proposition at
some time point can be done by introducing a new activity
before the time point or by maintaining the truth of the
proposition if it was true at another, previous time point.
Thus, the relation between rationale predicates and issues
is not one-to-one: issues need not always be resolved in the
same manner.
Note too that this type of rationale, recording justifications
for the inclusion of objects into the plan, is only one type
of rationale that one may want to record in a plan. For
example, we may want to record why a specific way of

refining a plan was chosen among the various available
options. While we believe that this type of information
would be very useful to record, we believe that this will
best be approached by use of a separate decision structure.
It is in general not possible to extract useful knowledge of
this kind from a search-based planning algorithm that tries
out many possibilities and backtracks upon failure. At any
choice point, there may be a large number of reasons why
all the leaf nodes that are in the search space under the
choice point represent failures in the search, and it may be
hard to abstract these into meaningful rationale. However,
there also exist choice points in a search space where a
decision is forced or made via user selectyion from open
alternatives and it may be most useful to record this as part
of the rationale for the plan. This is not described here
though.

Issues as Questions

In the I-X framework, until recently, issues had a task or
activity orientation to them, being mostly concerned with
actionable items referring to the process underway – i.e.,
actions in the process space. This is now not felt to be
appropriate, and we are adopting the gIBIS (Conklin and
Begeman, 1988) orientation of expressing these issues as
any of a number of specific types of question to be
considered (Selvin, 1999; Conklin, 2005). The types of
questions advocated are:

1. Deontic questions – What should we do?

2. Instrumental questions – How should we do it?

3. Criterial questions – What are the criteria?

4. Meaning or conceptual questions – What does X mean?

5. Factual questions – What is X? or Is X true?

6. Background questions – What is the background to this
project?

7. Stakeholder questions – Who are the stakeholders of this
project?

8. Miscellaneous questions – To act as a catch all.
The first 5 of these are likely to be the most common in our
task support environment. This is similar to the Questions -
Options - Criteria approach (MacLean et al., 1991) - itself
used for rationale capture for plans and plan schema
libraries in our earlier work (Polyak and Tate, 1998; 2000)
and similar to the concept mapping approaches used in
Compendium (Selvin et al. 2001). Compendium can in fact
exchange its set of issues, activities and some types of
constraints and annotations with I-X (Buckingham Shum et
al., 2002; Chen-Burger and Tate, 2003).

The Uses of Rationale

Fundamental to the <I-N-C-A> model is the idea of
maintaining annotations as first-class elements placed
alongside the more conventional elements of a plan. One of
the principal uses of annotations is to capture rationale;
hence, we consider rationale to be an important element of

this model, and rationale capture and expression are areas
which we are currently exploring.
The approach outlined in the previous sections, , should be
seen as a framework and tentative steps towards defining a
typology of plan rationale and corresponding mechanisms
for its capture. These tasks are necessarily guided by the
uses to which we want to put this rationale; hence, in this
section we discuss briefly some of the types of operations
and reasoning that we hope to support through the capture
of rationale. In general terms, these are intended to support
activity in real domains (as opposed to classical planning
domains and puzzles). In other words, domains in which
we accept that information and knowledge may be
imprecise, incorrect or missing, and as a result, we expect
plans to fail – and expect that the use of rationale will
enable us to fail better.

Explanation and Trust

As might be expected, a major use of rationale is for
explaining the existence of particular elements in the plan,
e.g., why a certain activity (rather than any other) appears
in the plan. This becomes particularly important when
trying to decide if the plan can be re-applied in the current
context, or if execution of the plan fails or partially fails (of
which, more later). Another use of explanation, one
particularly important in mixed-initiative (i.e., human and
computer) agent systems arises when we wish to justify a
certain activity, particularly in those cases where we are
asking another agent to perform this activity. In all but the
most rigidly enforced hierarchical systems, where agents
simply obey commands (and which occur very rarely in
practice), we should expect that any agent might respond to
such a request with a request of its own demanding that the
activity be justified (and that, if the activity cannot be
justified to the agent’s satisfaction, it might refuse to
perform the activity). It should be apparent that rationale
would allow us to supply some justification. Moreover,
through the use of <I-N-C-A> objects as our common
interlingua in the domain, this justification can be included
and communicated as part of the activity. In this way, the
object may be thought of as analogous to the idea of proof-
carrying code, in that the presence of the rationale can help
convince the recipient of the appropriateness of performing
the activity and that it is ‘safe’ to be performed in the
current situation.
This sort of transaction and reasoning can be seen as an
important step for establishing trust between agents.
Notions of trust, and ways in which it can be established
and managed, are currently receiving much attention
among those considering open agent architectures,
particularly Semantic Web and Semantic Web Services
researchers, where it is considered to be vital if these
initiatives are to come to full fruition.

Plan Indexing and Retrieval

Often re-use of existing plans will be more appealing than
planning anew for a particular task. One use of rationale is

for richer indexing (and later retrieval) of plans; alongside
the description of what the plan does (expressed in the
through the plan itself), and the constraints under which it
is applicable. The rationale annotations allow us to access
the reasons why the plan does what it purports to do.
Properly captured, this information would allow us to
avoid plan re-use under inappropriate conditions or avoid
choosing plans that are based on (what are now known to
be faulty) assumptions or judgements, or at least to be
aware of these limitations and deal with them accordingly.

Failure Recovery and Replanning

In the real world it is inevitable that some plans will fail;
even the best-laid plans can be undermined by some
unexpected event. The failure may or may not be important
with respect to the plan rationale. We need to separate
unimportant minor side-effects from failures which impact
on the intended results of the plan (Tate, 1984; Reece and
Tate, 1994; Drabble and Tate, 1997). In such cases, it is
very likely that we will need to do something to recover,
and to do this efficiently, we will need to try to understand
why the plan has failed, and hence, when replanning to
help guide the choice of alternative actions that may
overcome this failure.

Explanation-Based Plan Learning

Since the plan is accompanied by some explanation of why
it is considered valid (in the form of the rationale), this
suggests the possibility of learning about the domain from
both positive and negative examples (plan successes and
failures). This learning may help to, for instance, identify
and repair faulty knowledge or assumptions, and provide
modified rational criteria for choice of particular options
over others.

Conclusions

In this paper we have presented an approach to recording
the rationale behind a plan in the plan itself, thus making
the plan a self-contained entity that does not require
knowledge of the planning algorithm to explain the
structure of the plan. Fundamental to this approach is the
<I-N-C-A> model which can be used to describe synthesis
tasks and has been used in the I-X framework for
synthesizing plans. Issues in this model can be described as
meta-level activities that are performed by the planner to
refine the plan. During this planning process the planner
adds new constraints on the space of possible behaviour to
the plan, and each of these constraints is added for a
reason. It is this type of rationale that we can record as
annotations in <I-N-C-A> in order to be able to better
understand the plan, the result of the planning process.
This knowledge-rich plan can then be used in various ways
outlined in this paper, thus facilitating the use of the plan in
a wider context.

Acknowledgments

The I-X project is sponsored by the Defense Advanced
Research Projects Agency (DARPA) under agreement
number F30602-03-2-0014. Parts of this work are
supported by the Advanced Knowledge Technologies
(AKT) Interdisciplinary Research Collaboration (IRC)
sponsored by the UK Engineering and Physical Sciences
Research Council by grant no. GR/N15764/01. The
University of Edinburgh and research sponsors are
authorized to reproduce and distribute reprints and on-line
copies for their purposes notwithstanding any copyright
annotation hereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of other
parties.

References

Buckingham Shum, S., De Roure, D., Eisenstadt, M.,
Shadbolt, N. and Tate, A. (2002) CoAKTinG:
Collaborative Advanced Knowledge Technologies in the
Grid, Proceedings of the Second Workshop on Advanced
Collaborative Environments, Eleventh IEEE Int.
Symposium on High Performance Distributed Computing
(HPDC-11), July 24-26, 2002, Edinburgh, Scotland.

Chen-Burger, Y. and Tate, A. (2003) Concept Mapping
Between Compendium and I-X, Informatics Report Series,
University of Edinburgh, EDI-INF-RR-0166, May 2003.

Conklin J. and Begeman M. L. (1988). gIBIS: A hypertext
tool for exploratory policy discussion. ACM Transactions
on Office Information Systems, 4(6), pp 303-331.

Conklin J. (2005) Dialogue Mapping: Building Shared
Understanding of Wicked Problems, Wiley.

Currie K. and Tate A.. (1991) O-Plan: the Open Planning
Architecture. Artificial Intelligence, Vol. 52, pp 49-86.

Drabble, B. and Tate, A. (1997) Repairing Plans on the
Fly, in Proceedings of the NASA Workshop on Planning
and Scheduling for Space, Oxnard CA, USA, October
1997

Ghallab M., Nau D., and Traverso P. (2004) Automated
Planning – Theory and Practice,. Elsevier/Morgan
Kaufmann.

MacLean A., Young R., Bellotti V. and Moran T. (1991)
Design space analysis: Bridging from theory to practice via
design rationale. In Proceedings of Esprit '91, pages 720-
730, Brussels, November 1991.

Polyak S. and Tate A. (1998) Rationale in Planning:
Causality, Dependencies and Decisions, Knowledge
Engineering Review, Vol.13 (3), pp. 247-262, September,
1998, Cambridge University Press. See
http://www.aiai.ed.ac.uk/project/oplan/documents/1998/98
-rationale.pdf

Polyak S. and Tate A. (2000) A Common Process
Ontology for Process-Centred Organisations, Knowledge

based Systems, 2000. Earlier version by S. Polyak
published as University of Edinburgh Department of
Artificial Intelligence Research paper 930, 1998. See
http://www.aiai.ed.ac.uk/project/oplan/documents/1999/99
-sebpc-cpm.pdf

Potter, S., Tate, A. and Dalton, J. (2003) I-X: Task Support
on the Semantic Web, Poster Abstract, Second
International Semantic Web Conference (ISWC-2003),
Sanibel Island, Florida, October 2003.

Reece, G. and Tate, A. (1994) Synthesizing Protection
Monitors from Causal Structure, in Proceedings of the
Second International Conference on Planning Systems
(AIPS-94), Chicago, June 1994, AAAI Press.

Selvin A.M. (1999) Supporting Collaborative Analysis and
Design with Hypertext Functionality, Journal of Digital
Information, Volume 1 Issue 4.

Selvin, A.M, Buckingham Shum, S.J., Sierhuis, M.,
Conklin, J., Zimmermann, B., Palus, C., Drath, W., Horth,
D., Domingue, J., Motta, E. and Li, G. (2001)
Compendium: Making Meetings into Knowledge Events,
Knowledge Technologies 2001, Austin TX, USA, March
4-7, 2001.

Smith, S.F. (1994) OPIS: A methodology and architecture
for reactive scheduling. In Zweben, M. and Fox, M.S.
(eds), Intelligent Scheduling, chapter 8, pages 29--66.
Morgan Kaufmann, San Francisco, CA, USA.

Sussman, G. J. (1973) "A Computational Model of Skill
Acquisition," Technical Report 297, MIT AI Lab,
Cambridge, MA.

Tate, A., (1975) "Generating Project Networks",
Proceedings of the Fifth International Joint Conference on
Artificial Intelligence (IJCAI-77) pp. 888-893, Boston,
Mass. USA, August 1977. Reprinted in Readings in
Planning, Morgan-Kaufmann, 1990.

Tate A. (1983) The Less Obvious Side of Nonlin.
Department of Artificial Intelligence, University of
Edinburgh. http://www.aiai.ed.ac.uk/project/oplan/
documents/1990-PRE/1983-unpub-tate-nonlin-less-
obvious.pdf

Tate, A. (1984) Planning and Condition Monitoring in a
FMS, Proceedings of the International Conference on
Flexible Automation Systems, Institute of Electrical
Engineers, London, UK, July 1984.

Tate A.. (1996) Towards a Plan Ontology. AI*IA Notiziqe
(Quarterly Publication of the Associazione Italiana per
l'Intelligenza Artificiale), Special Issue on "Aspects of
Planning Research", Vol. 9. No. 1, pp.19-26 - March 1996

Tate A.. (1998) Roots of SPAR - Shared Planning and
Activity Representation, The Knowledge Engineering
Review, Vol 13(1), pp. 121-128, Special Issue on Putting
Ontologies to Use (eds. Uschold. M. and Tate, A.),
Cambridge University Press, March 1998.

Tate, A. (2000) Intelligible AI Planning, in Research and
Development in Intelligent Systems XVII, Proceedings of

ES2000, The Twentieth British Computer Society Special
Group on Expert Systems International Conference on
Knowledge Based Systems and Applied Artificial
Intelligence, pp. 3-16, Cambridge, UK, December 2000,
Springer.

Tate A.., Dalton J. and Levine J. (2000) O-Plan: a Web-
based AI Planning Agent, AAAI-2000 Intelligent Systems
Demonstrator, in Proceedings of the National Conference
of the American Association of Artificial Intelligence
(AAAI-2000), Austin, Texas, USA, August 2000.

Tate A.. (2003) An Ontology for Mixed-initiative
Synthesis Tasks. Proceedings of the Workshop on Mixed-
Initiative Intelligent Systems (MIIS) at the International
Joint Conference on Artificial Intelligence (IJCAI-03),
Acapulco, Mexico, August 2003, pp 125-130.

Wickler G., Tate A., and Potter S. (2006) Using the
<I-N-C-A> Artifact Model as a Shared Representation of
Intentions for Emergency Response Coordination. In:
Jennings N., Tambe M., Ishida T., Ramchurn G. Proc.
First International Workshop on Agent Technology for
Disaster Management, Japan, May 2006.

Wilkins, D.E. (1988) Practical Planning: Extending the
Classical AI Planning Paradigm, Morgan Kaufmann, San
Mateo, CA, USA.

