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Abstract 

A pseudospectral matrix-element (PSME) numerical model is described for the 

simulation of rotating flows in a three-dimensional annular cavity.  Temporal 

discretization is implemented using a second-order semi-implicit scheme.  Modified 

compressibility is invoked to handle the coupling between velocity and pressure while 

maintaining the incompressibility constraint.  The governingcontinuity and Navier-Stokes 

momentum equations and boundary conditions are discretized using Chebyshev and 

Fourier collocation formulae.  The model is validated against numerical results from 

alternative schemes and experimental data on rotating flows in an annular cavity.  A base 

flow regime and instability patterns are observed, in accordance with other previously 
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published investigations.  It is demonstrated that the PSME model provides an accurate 

representation of rotating flows in an annular cavity. 

 

Keywords: PSME method; Rotor-stator cavity.  

 

1. Introduction 

Confined cavity flow between a pair of coaxial discs is relevant to many industrial 

devices involving rotating fluids, such as turbomachinery.  In many cases, such flows can 

be assumed to be incompressible and Newtonian in behaviour, and so can be described 

by mass continuity and the Navier-Stokes momentum equations.  It is well known that 

very few exact solutions can be obtained for the Navier-Stokes equations owing to their 

non-linearity.  One such family of solutions exists however for stationary axisymmetric 

laminar flow.  Historically, von Kármán’s (1921) study about a laminar flow over an 

infinite rotating disc in a quiescent fluid can be taken as a useful starting point.  This flow 

is nowadays known as generalized von Kármán swirling flow.  Later, Bödewadt (1940) 

carried out an important numerical investigation into the flow over an infinite stationary 

plane with an outer flow in solid body rotation.  Batchelor (1951) considered stationary 

axisymmetric flow between two discs of infinite radii, and argued that boundary layers 

would develop on both discs in the case of a single rotating disc.  Meanwhile Stewartson 

(1953) found that only one boundary layer developed, near the rotating disc.  Over the 

past half century, Batchelor and Stewartson flows have been investigated by many 

researchers, including Lance and Rogers (1962) and Zandbergen and Dijkstra (1987) who 
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showed that the such flows which progressively appear as the Reynolds number increases 

are merely two of several solutions to the governing viscous flow equations. 

 

Numerous theoretical (e.g. Faller, 1991 and San’kov and Smironov, 1992), 

experimental (e.g. Moisy et al., 2004, Schouveiler et al., 2001 and Gauthier et al., 1999) 

and numerical (e.g. Serre et al., 2001, Nore et al., 2003 and Poncet et al., 2009) studies 

have been undertaken into rotating flows between discs.  The majority of these studies 

were concerned with the stability of the flow.  Owen and Rogers (1989) discussed the 

engineering applications of rotating annular flows.  Recently, Launder et al. (2010) 

carried out a comprehensive review of literature concerned with flow in rotor-stator 

cavities. [AND WHAT DID LAUNDER ET AL. CONCLUDE ???]. 

 

Spectral methods are highly accurate numerical techniques that are appropriate for 

solving certain problems in fluid mechanics (see e.g. the detailed review by Hussaini and 

Zang, 1987).  Recently, Boyd and Yu (2011) compared seven spectral methods used to 

solve the Poisson equation in a disc.  The present study employs the pseudospectral 

matrix-element (PSME) method of Ku and Hatziavramidis (1985) to solve the three-

dimensional continuity and Navier-Stokes equations for incompressible viscous flow in a 

rotating annular cavity.  Due to its spectral accuracy (Canuto et al., 1988), the PSME 

method is well suited to solving boundary value partial differential equations.  Moreover, 

the PSME method solves the governing equations in physical space instead of a spectral 

domain, and so is computationally more efficient than conventional  spectral methods.  
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The PSME approach has also been successfully applied to a variety of free surface 

problems (see e.g. Chern et al., 2005, 2011 and Vaziri et al., 2011). 

 

A cylindrical coordinate system is chosen to model the annular cavity.  The 

governing Navier-Stokes equations are temporally discretized using a combination of 

Adams-Bashforth (AB) and Crank-Nicolson (CN) methods for the advection and the 

diffusion terms, respectively.    The proposed discretization uses a Fourier pseudospectral 

matrix (FPSM) in the angular direction and a Chebyshev pseudospectral matrix (CPSM) 

in the radial and the axial directions.  Due to the CN method, the discretized Navier-

Stokes equations are partially implicit, leading to an asymmetrical set of equations, which 

are solved using the bi-conjugate gradient method.  To avoid singular behavior when the 

radial coordinate tends to zero, an inner cylinder of arbitrary radius is inserted along the 

centerline axis of the cylindrical domain. It should be noted that numerical difficulties 

related to the velocity-pressure coupling are overcome using the modified compressibility 

approach (Chorin, 1968).         

 

2. Mathematical model and physical parameters 

Figure 1 illustrates the annular cavity.  The geometry comprises a pair of smooth coaxial 

parallel discs that enclose an annular domain of internal wall radius a and external wall 

radius b, respectively.  The upper (stator) disc of the cavity is stationary and the lower 

(rotor) disc rotates at uniform angular velocity Ω.  The lateral boundaries of the flow 

domain are composed of two cylinders each of height h.  The inner and the outer 

cylinders are the so-called hub and shroud, respectively.  
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Figure 1. Schematic view of the annular rotor-stator cavity. 

The flow is controlled by three main parameters: the Reynolds number Re, the 

aspect ratio, and a curvature parameter.  The Reynolds number is usually based either on 

the outer radius of the cavity, 2 /Re b   (e.g. Owen and Rogers, 1989, Schouveiler et 

al., 1999 and Poncet et al., 2009) where ν is the fluid kinematic viscosity or on the height 

of the cavity, 2 /Re h   (e.g. Sirivat, 1991, Gauthier et al., 1999 and Serre et al., 

2001).  The latter is chosen in the present study because it scales the characteristic 

boundary layer thickness, 1/2( / )   , with respect to the cavity height.  The aspect 

ratio is defined as G = h / b and the curvature parameter is Rm = (b + a) / (b - a).  

 

3. Numerical method 

3.1. Governing equations 

In this problem, 3D unsteady incompressible viscous fluid flow without energy transfer is 

considered.  The governing continuity and Navier-Stokes momentum equations can be 

written 

=0,u                                                                                                                            (1) 
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and 

21
( ) ,p
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




      



u
u u u                                                                                        (2) 

where u is the velocity vector, t is the time, ρ is the fluid density, p is pressure, and ν is 

the kinematic viscosity.  Along the cylindrical coordinate directions (θ, r, z), the velocity 

components are uθ, ur and uz, respectively.  All above parameters are used in 

nondimensional forms. [GIVE DETAILS ON HOW THE PARAMETERS ARE NON-

DIMENSIONALISED] 

 

3.2. Modified compressibility method 

Because of the absence of pressure in the continuity equation, a special scheme must be 

implemented in order to evaluate the pressure.  The present study makes use of a two-step 

modified compressibility method (Cortes and Miller, 1994) to calculate the pressure. In 

the first step, the continuity equation is modified to 

*

0,
p


 u                                                                                                                    (3) 

where λ is a prescribed small number and p* is the calculated pressure correction term.  

In the second step, the pressure field is corrected as follows, 

*.new oldp p p                                                                                                               (4) 

The continuity equation is satisfied when * 0p  .  The two-stage technique is applied 

iteratively each time step until the absolute value of the first term in Equation (3) is less 

than the prescribed tolerance (see Chern et al., 2005 for more details).  

 

3.3. Temporal discretization scheme 
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Herein, Crank-Nicolson (CN) and second-order Adams-Bashforth (AB) schemes are used 

to integrate the diffusion and advection terms forward in time.  The discretized Navier-

Stokes equation becomes 

1
1 1 2 1 23 1 1 1 1

( ) ( ) ( ).
2 2 2 2

n n
n n n n n np

t Re


  

         


u u
u u u u u u                     (5) 

The CN method is a second-order partially implicit scheme whereas the AB method is 

fully explicit.  Therefore, the mixed AB-CN approach is second-order semi-implicit.  

This combination has good stability properties.      

 

3.4. Pseudospectral model 

Like other spectral methods, the pseudospectral matrix-element (PSME) method is based 

on orthogonal polynomials.  Herein, Chebyshev polynomials are used for derivative 

expansions in the radial and the vertical directions and Fourier polynomials are used in 

the angular direction.  This scheme is based on that of Chern et al. (2001, 2005).  The 

domain is discretised according to the Chebyshev and Fourier collocation grid formulae 

as follows: 

2
, cos , cos ,i j k

i j k
r z

N M L

  


   
     

   
                                                                  (6) 

for i = 0, 1, …, N-1, j = 0, 1, …, M, and k = 0, 1, …, L, where N, M and L are the number 

of collocation points in the θ, r and z directions, respectively.  Figure 2 depicts an 

example of the physical grid system.  Chebyshev collocation points are separately 

distributed in the central part of the interval [-1, 1] but concentrated at the two ends of the 

domain. Fourier collocation points are uniformly located within [0, 2π].  
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Figure 2. The three-dimensional pseudospectral mesh. 

 

Using equation (6), the collocation grid system is created in the physical domain.  Now, 

the Fourier pseudospectral matrix (FPSM) and Chebyshev pseudospectral matrix (CPSM) 

are established as follows. Consider a continuous function φ (x).  The qth derivative at 

each collocation point (xj) is approximated by  

( )

,

0

d ˆ ,
d

q N
q

j k kq
k

G
x






                                                                                                       (7) 

where 
( )ˆ q

G  is the CPSM for the qth derivative.  Moreover, for the same scheme, the qth 

derivative at the Fourier collocation point x j is given by 

 
1

( )

,

0

d ˆ ,
d

q N
q

j k kq
k

F
x








                                                                                                      (8) 

where ( )ˆ q
F  is the FPSM for the qth derivatives.  More details about the PSME method are 

given by Ku et al. (1987) and Chern et al. (2011).    
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3.5. Boundary conditions 

Non-slip boundary conditions (uθ = ur = uz = 0) are applied at all rigid walls.  On the 

rotating disc, the angular component of velocity is set to Ω (1 +r) / 2 while the other 

velocity components are fixed at zero.  Physically, there is a thin gap between the edges 

of the rotating disc and stationary sidewalls.  This junction layer involves a singularity in 

angular velocity.  To eliminate this problem, the boundary condition is smoothed using 

an exponential angular velocity profile uθ = exp ((z – 1)/0.006) following Maubert et al. 

(1993) and Serre et al. (2004). 

      

3.6. Matrix solver 

The discretised Navier-Stokes equations are semi-implicit, and so a set of non-

symmetrical simultaneous equations are formed.  Herein, the bi-conjugate gradient 

method (Jennings and McKeown, 1992) is selected as the solver.  In addition, the storage 

method described by Press et al. (1986) is used to hold the non-zero elements of the 

sparse matrix. 

 

4. Results and discussion 

The model is now used to simulate rotating flow in the cavity.  The general behavior of 

the flow is analyzed in detail and compared with results from other investigations.  First, 

base flow is considered in order to verify the model.  Next, mesh convergence and time 

step dependency are assessed.  Finally, a parameter study is undertaken, and several 



 10 

instability patterns investigated.  The main parameters are limited to G = [0.05, 2.0], Rm = 

[1.1, 3.5], and Re = [1200, 140000], covering a wide range of annular flow behaviour.  

 

4.1. Base flow 

Laminar base flow between a pair of rotating discs is steady, axisymmetric and three-

dimensional.  As already mentioned, the two best-known theoretical general solutions of 

this flow are those of by Batchelor (1951) and Stewartson (1953).  The two global 

parameters of the flow in the cavity are linked together by the relation 2

bRe ReG .  For 

large Reb, the base flow in a closed geometry is similar to the Batchelor solution.  The 

rotor boundary layer is an Ekman layer.  Flow in this layer is directed outward because 

the radial velocity component is positive.  Meanwhile, the boundary layer in the vicinity 

of the stator is the so-called Bödewadt layer.  The flow in this layer is directed inward 

and the radial velocity component is negative.  Figure 3 shows an example of the base 

flow for Rm = 1.1, G = 0.2, and Re = 1200 (such that Reb = 48).  The radial recirculating 

flow pattern is in close agreement with the received understanding from previous studies 

(see e.g. Serre et. al., 2001). 

 

Figure 3. Velocity vectors and stream function contours in the plane (0, r, z); Rm = 1.1, G 

= 0.2, Re = 1200. 
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The thickness of the boundary layer is usually normalized by its characteristic 

length, 1/2( / )   .  Figure 4 depicts the normalized thicknesses of the Ekman and the 

Bödewadt boundary layers as functions of non-dimensional radial distance r for Rm = 1.1, 

G = 0.2, Re = 1400.  The present results are similar to those of Serre et al. (2001) and 

match the experimental results of Gauthier et al. (1999) [THESE SHOULD ALSO BE 

PLOTTED ON FIGURE 4].  It can be seen that the Ekman layer remains constant 

whereas the Bödewadt layer thickness decreases from the hub to the shroud.  Near the 

vertical walls, the layers become almost merged and cannot be measured accurately. 

 

Figure 4. Development of normalized thickness of boundary layers as a function of non-

dimensional radial distance (data are fitted linearly): Rm = 1.1, G = 0.2, Re = 1400. 
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The boundary layer thicknesses are influenced by the values of G and Re.  Figure 

5 compares the axial profile of the radial velocity component ur for aspect ratios of 0.2, 

0.5 and 2.0.  In all cases, the Reynolds number is 70,000 and the curvature parameter is 

3.5.  As would be expected, when G = 0.2, the boundary layers become joined together, 

and so are thicker than other cases.  An inviscid region is created as the aspect ratio 

increases.  In the tallest cavity, the stator boundary layer has almost vanished and the 

flow is like a typical Stewartson flow. 

   

    Figure 5. Axial profile of the radial velocity component at the mid-radial location for 

Rm = 3.5, Re = 70000, and G = 0.2, 0.5 and 2.0. 

 

Figure 6 shows the axial profile of the mean velocity in the annular cavity for Rm 

= 1.1, G = 0.05, and Re = 36900.  The results are in satisfactory agreement with the 

experimental measurements obtained by Schouveiler et al. (2001).  It should be noted 
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that the non-viscous part of the flow in the center of the cylinder does not develop fully 

because the axial component of velocity is not strictly zero.  Also, Schouveiler et al.’s 

(2001) measurements are limited in the boundary layers.  Similar results were also 

reported by Dijkstra and van Heijset (1983). 

 

Figure 6. Axial profile of normalized mean velocity for r/b = 0.357, Rm = 1.1, G = 0.05, 

and Re = 36900. 

 

The ratio between convective and Coriolis motions defines an entrainment 

coefficient (or local Rossby number) /fK    where f is the local angular velocity 

of the fluid.  For an infinite-disc cavity, laminar similarity solutions give a constant value, 

K = 0.313 (Pearson, 1965 and Itoh, 1991).  For a finite-disc cavity, both experimental (e.g. 

Gauthier et al., 1999) and numerical (e.g. Serre et al., 2001) results show that K is an 

increasing function of the radius.  As found in other studies, the entrainment coefficient 

increases monotonically with radius, and so the core fluid rotation rate increases from the 
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hub to the shroud. Table 1 compares the entrainment coefficients obtained by the present 

study with those determined experimentally by Schouveiler et al. (2001) for G = 0.05 and 

Re = 36900 at mid-height of the cavity.  A major discrepancy is evident between the 

predicted and measured entrainment coefficients near the hub.  This may be because of 

the inner cylinder wall effect in the present model.  However, the present results are of 

the same order as those of Dijkstra and van Heijst (1983) and Gauthier et al. (1999).  It 

should be noted that other authors have found discrepancies between numerical 

predictions and experimental estimates of K.  For example Serre et al. (2001) report a 

70% overestimate.  Figure 7 depicts the mean velocity contours in the plane (0, r, z) and 

at the mid-height of the cavity. 

              

Table 1 Local Rossby number (with r/b normalized to [0, 1]) 

r/b K (present study) K (Schouveiler et al., 

2001) 

0.357 0.16 0.35 

0.643 0.32 0.40 

0.850 0.46 0.46 
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Figure 7. Mean velocity contours after 100 nondimensional time units (a) in the plane of 

(0, r, z), (b) at the mid-height of the cavity: Rm = 3.5, G = 0.2, Re = 4000. 

 

4.2. Spectral and temporal resolutions 

Previous studies have shown that the PSME method gives convergent and stable results 

for wide ranges of collocation point numbers and time step (see e.g. Chern et al., 2011).  

Table 2 lists the parameters used to test for mesh convergence (number of collocation 

points) and numerical stability (time step).  In these cases, Rm = 1.2, G = 0.16, and Re = 

26000.  Table 3 reports the results of these tests while also listing the computer time 

requirements.  In all cases, the value of λ is set to 0.01, and the simulation run until a 

non-dimensional time of 50 is reached.  The simulations are performed on a workstation 

with two Intel Xeon 3.10 GHz CPUs and 6 GB RAM.   

 

Table 2  Mesh convergence and time step parameter study 

Case N M L Total no. of 

grid cells 

*t  

c1 25 20 25 13650 0.0001 
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c2 35 30 35 37800 0.0001 

c3 35 30 35 37800 0.0005 

c4 40 35 35 51840 0.0001 

 

Table 3  Mesh convergence and time step test results (coordinates are normalized) 

Case u 

(0, 0.5, 0.5) 

u 

(0, 0.5, 0.05) 

u 

(0, 0.5, 0.95) 

δE/δ 

(r = 0.5) 

δB/δ 

(r = 0.5) 

CPU time 

(s) 

c1 0.222 0.503 0.025 7.095 12.323 350 

c2 0.253 0.500 0.013 6.445 13.727 1160 

c3 0.237 0.500 0.012 6.404 10.818 2400 

c4 0.246 0.523 0.012 6.404 13.161 2140 

 

It may be observed from Table 3 that the predicted mean velocities are insensitive 

to the number of grid collocation points, except for Case c1.  Substantial discrepancies 

occur in the non-dimensional boundary layer thicknesses which are not predicted to high 

accuracy.  The maximum difference in mean velocity in Cases c2 to c4 is about 7%.  

Cases c3 and c4 are more expensive to compute than Case c2 in terms of CPU time.  

Based on these results, a collocated mesh of 35 30 35   nodes and a non-dimensional 

time step of 10-4 are selected for all the remaining cases.  Note that the aim of the present 

study is purely to test the capability of the PSME model in simulating different cases of 

flow in a rotor-stator annular cavity.  A higher resolution mesh system is recommended 

for more comprehensive case studies, in particular when investigating instability at high 

Reynolds number.    
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4.3. Instabilities 

Two kinds of axisymmetric instabilities arise from the steady base flow, which are 

referred to as Type I and Type II instabilities.  Based on the linear theory of Ekman flow 

(Lilly, 1966), Type I is an inviscid instability due to the presence of unstable inflection 

points in the boundary layer velocity profiles.  Type II instability is more specific to the 

rotating disc boundary layer.  It is viscous and associated with Coriolis acceleration.   

 

Five cases are considered involving instability.  Table 4 lists the parameters.  

Cases c2 to c4 examine the effect of Reynolds number for a fixed value of the curvature 

parameter, whereas Cases c1, c2 and c5 examine the influence of the curvature parameter 

at constant Re.  In all cases, Type II instabilities arise which have characteristic circular 

ring patterns.  Figure 8 shows the axial velocity component iso-surfaces for Cases c1 to 

c4.  For Case c1, the solution becomes oscillatory, but this is not typical behavior (see 

Serre et al., 2004 for further details).  The primary destabilization occurs in the stator 

boundary layer at a local radius related to the critical local Reynolds number, 

2 1/2( / )c f cRe r   , where rc is the critical radial location at which the pattern appears.  

In Case c1, the waves persist to the hub because the inner radius is larger than rc.  The 

radial wavelength is defined as /r rr n   , where r is the radial length occupied by the 

nr rolls.  For example, in Case c1, / 11r    which agrees with the result obtained by 

Savas (1987) for G = 0.5 and Re = 38528.  The temporal frequency 2 f  is about 5, 

which is also the same as found by Savas and close to that of Gauthier et al. (1999) (σ = 4) 

for G = 0.047 and Re = 110.  In Case c2, the boundary layers are merged and Type II 
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instabilities appear as circular rings above the lower threshold at  Rec = 62.  This is in 

agreement with the findings of Serre et al. (2001).  The upper threshold value of Rec is 

about 160.     

 

Table 4  Cases for instability parameter study 

Case G Re Rm 

c1 0.5 25000 3.5 

c2 0.2 25000 1.1 

c3 0.2 70000 1.1 

c4 0.2 140000 1.1 

c5 0.5 25000 2.0 

    

 

Figure 8. Iso-surfaces of the axial velocity component; Cases: (a) c1, (b) c2, (c) c3, and 

(d) c4. 
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Figure 9 shows the time evolution of the three velocity components for Case c1 

(after an initial start-up period of 100 non-dimensional time units) at the mid-height of 

the cavity, (0, 0.5, 0.5).  Figure 10 shows the corresponding power spectrum, which 

contains several interesting features.  The largest values of power spectral density are 

obtained consistently with angular frequency at the mid-height of the cavity.  The peak 

value of the power spectrum obtained at mid-height occurs at a frequency of 0.9013 rad/s 

that corresponds to the fundamental frequency of oscillation of the local angular velocity 

component.  Near the rotor, a wide range of different frequencies is excited (contrary to 

the Bödewadt boundary layer).  Along with an initial maximum at a very low frequency 

of about 0.5 rad/s, a distinct series of spectral peaks occurs near the rotor at integer 

multiples of 7 rad/s, from 7 rad/s to 35 rad/s inclusive, followed by a major peak at 40.11 

rad/s (also evident at mid-height).  The oscillation starts in the stator boundary layer and 

propagates to the rotor.  The largest velocity amplitude is observed near the stator 

(especially near vertical walls) and it is gradually decreased to the rotor.   [WHERE IS 

THIS EVIDENT IN FIGS 9 OR 10 ???]        
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Figure 9. Time histories of velocity components at point (0, 0.5, 0.5); Rm = 3.5, G = 0.5, 

Re = 25000. 

 

Figure 10. Power spectrum densities at different axial locations (in logarithmic scale): Rm 

= 3.5, G = 0.5, Re = 25000. 

 



 21 

Rolls which progress as axisymmetric rings can break and form spirals travelling 

within the cavity.  This spiral mode is the so-called Type I instability.  In numerical 

studies, the spiral patterns are usually obtained by superimposition of infinitesimal 

disturbances to break down the rolls (contrary to experimental findings).  Several studies 

have shown that this mode also can be created without any perturbations for certain 

configurations (see e.g. Poncet et al., 2009). Here we do not use any perturbations. Figure 

11 depicts the iso-surfaces of the axial velocity component in the stator boundary layer 

for Cases c3 and c5.  In the other cases considered, spirals were not obtained before the 

end of the simulation period of 150 non-dimensional time units.  In accordance with the 

findings of Schouveiler et al. (2001), spiral structures are first created near the stator and 

gradually propagate to the rotor but with reduced magnitude.  Moreover, some of the rolls 

become disrupted, especially near the shroud. 

 

 At the lowest rotation rate threshold [???], the spiral wave pattern can co-exist 

with the previous circular waves (Savas, 1987).  This phenomenon can be seen in Case c5.  

Previous studies (see e.g. Serre and Pulicani, 2001) have reported the co-existence of 

rolls and spirals during transition periods between the two types of instability.  In 

addition, it is usually found that spirals are created near the shroud and then propagate 

inward.  Case c5 is qualitatively similar to a case considered by Moisy et al. (2004) who 

found that a spiral structure developed near the hub.  The spirals invariably have a 

negative orientation.  In the present study, the radial wave length of the spirals is about 

27δ, with twelve spiral arms formed at an angle to the azimuthal direction of about 24  

near the stator.  Both the radial wave length and the angle to the azimuthal direction are 
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in agreement with results obtained by Serre and Pulicani (2001) and Gauthier et al. 

(1999).  

 

 In Case c3, both types of instabilities are observed (see Figures 8 (c) and 11 (a)).  

Here, the spiral has 14 arms with a tangential angle of about 25 .  It should be noted that 

Poncet et al. (2009) obtain 19 spiral arms at a tangential angle of 24  for Re = 41000 .  In 

Case c4 where Re = 140000, the spirals disappear and the Type II instability persists until 

the end of simulation, although some perturbations are created near the hub as can be 

seen in Figure 8 (d).  In their experimental study of rotating flows in an annular cavity, 

Schouveiler et al. (2001) also observed the disappearance of spirals at relatively high Re. 

      

 

Figure 11. Iso-surfaces of the axial velocity component near the stator; Cases: (a) c3, and 

(b) c5. 

 

 5. Conclusions 

A pseudospectral matrix-element method has been developed for simulating rotating 

flows in an annular cavity.  To achieve this, the continuity and Navier-Stokes equations 
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have been solved in a three-dimensional cylindrical coordinate system using the modified 

compressibility method.  Spectral grid convergence and and numerical stability tests were 

carried out, and the results demonstrate that the model provides reasonably accurate 

predictions of the rotating flow behavior, even when quite low numbers of collocation 

points are used.  The numerical model is capable of reproducing the important features of 

laminar base flow and Type I and Type II instabilities of rotating flow in an annular 

cavity.  Flow patterns, velocity time histories, and power spectra obtained for a parameter 

study in which the aspect ratio, Reynolds number, and curvature parameter are varied, are 

consistent with results with those from earlier numerical and experimental studies.  

Although no new flow physics has been discovered in the present study, it can be 

concluded that the PSME method offers considerable promise as a numerical technique 

for simulating rotating flows in annular rotor-stator cavities, particularly over a much 

broader range of parameters using higher resolution meshes. 
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