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Abstract  

    This paper investigates the interaction of solitary waves (representative of tsunamis) 

with idealised flat-topped conical islands. The investigation is based on simulations 

produced by a numerical model that solves the two-dimensional Boussinesq-type 

equations of Madsen and Sørensen using a Total Variation Diminishing (TVD) Lax-

Wendroff scheme.  After verification against published laboratory data on solitary wave 

run-up at a single island, the numerical model is applied to study the maximum run-up 

at a pair of identical conical islands located at different spacing apart for various angles 
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of wave attack.  The predicted results indicate that the maximum run-up can be 

attenuated or enhancement according to the position of the second island, because of 

wave refraction, diffraction and reflection.  It is also observed that the local wave height 

and hence run-up can be amplified at certain gap spacing between the islands, owing to 

the interference between the incident waves and the reflected waves between islands.    

 

Keywords:  Solitary wave; tsunami; shock-capturing; TVD; Boussinesq equations.  

 

1. Introduction 

    Tsunamis are extreme events that can wreak havoc in vulnerable coastal regions, such 

as low-lying settlements on islands in the Pacific Ocean.  For example, Babi Island - a 

small conical island 5 km northwest of Flores Island, Indonesia - was badly hit by a 

tsunami on December 12th 1992, leaving a quarter of the population dead.  In particular, 

two villages situated on the lee side of the island during the tsunami strike were both 

completely destroyed (Tsuji et al. 1995).  As Briggs et al. (2005) note “this is an 

interesting phenomenon, since most people would feel ‘safe’ on the backside of an 

island”.  Various researchers including Liu et al. (1995) and Briggs et al. (1995) 

conducted experiments on solitary wave interaction with a single flat-topped conical 

island (an idealisation of a typical volcanic island).  Liu et al. suggest that wave 

refraction and diffraction were most likely to be responsible for the enhancement of run-

up that exacerbated the destruction witnessed to the lee side villages in Babi Island, 

Indonesia as well as Okushiri Island, Japan.  In their comprehensive report on the Indian 

Ocean tsunami of December 26, 2004, Lavigne et al. (2009) note that wave reflection 

could also have been a further contributory factor to the local amplification of the 
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tsunami effects at Babi Island (see Yeh et al. 1994, Minoura et al. 1997).  Gently 

sloping circular islands (e.g. Veti Levu - the principal island of Fiji) are common in 

regions highly susceptible to tsunamis from tectonic activity, such as  the Eastern Indian 

Ocean or the Pacific Rim. Numerical simulations of tsunami- like waves have been 

made using the shallow-water approximations (e.g. Liu et al. 1995, Titov and Synolakis 

1998, Wei et al. 2006) and Boussinesq models (e.g. Chen et al. 2000, Fuhrman and 

Madsen 2008).  

    Clusters of islands are prevalent in the Caribbean and Pacific Rim (Jacaranda 2002).  

In island clusters, the disturbance to the wave field induced by the presence of 

neighbouring islands can have a significant influence on the wave run-up on a given 

island.  With this scenario in mind, the present paper aims to investigate an idealised 

form of tsunami run-up on a very simple island cluster: namely, solitary wave run-up at 

a pair of adjacent islands.  To achieve this, a robust numerical model that solves the 

Boussinesq equations was developed using the TVD Lax-Wendroff scheme.  The model 

was first applied to simulate solitary wave run-up at a single conical island, and the 

results compared with laboratory measurements reported by Briggs et al. (1995) and Liu 

et al. (1995).  The predicted and measured results are found to be in satisfactory 

agreement, thus validating the numerical model.  Then, an additional nearby island was 

added to the single island configuration, and the changes of wave run-up behaviour 

were examined.  The nearby island is found to either provide sheltering to its neighbour, 

or else amplify the run-up.  The computational results are sensible in terms of solitary 

wave diffraction and reflection.  The numerical model developed in the present study 

could be applied as a tool to help predict the severity of tsunami risk at different island 

locations, with a view of making appropriate crisis response preparations.    
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2. TVD Lax-Wendroff scheme for Boussinesq model  

2.1. Mathematical model 

    The shallow water Boussinesq-type equations due to Madsen and Sørensen (1992) 

can be written in the following matrix-vector form (see e.g. Borthwick et al. 2005, Ning 

et al. 2008):  

TSGFX  yxt                                                      (1) 

where the subscripts t, x and y denote the differentiation with respect to time and two 

spatial coordinates, and the vectors are:  
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in which η is the free-surface displacement above the still water level, d = η + h is the 

total water depth with h being the still water depth, p and q are the horizontal 

components of the volume flux in the x and y directions respectively, g is the 

acceleration due to gravity (=9.81 m/s2), n is the Manning roughness coefficient, and φ 

and ψ are the Boussinesq dispersive terms defined as:  
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for which B (= 1/15) is the dispersion coefficient.  By subtracting these dispersive terms 

from Equations (2d,e), Equation (1) reduces into the non-linear shallow water equations.   

 

2.2. Overall solution strategy 

    With the operator-splitting technique, the solution of Equation (1) can be approached 

by solving the following two one-dimensional problems alternately:  

SFX  xt     and    TGX  yt .                                           (4a,b) 

The present computation is carried out on a uniform Cartesian grid.  The finite 

difference scheme for Equations (4a,b) can be expressed as:  
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, L XX      ,                                       (5a, b) 

where Lx and Ly are the finite-difference operators, and the subscript and superscript of 

X denote the spatial and temporal indices respectively.  Following Strang (1968), the 

finite difference scheme for Equation (1) can be constructed as: 

n

jixyyx

n

ji ,

2

, LLLL XX 
     .                                                (6) 

    It is seen from Equation (3) that φ and ψ include many mixed second-order and third-

order derivatives, which greatly complicate the solution procedure.  Following Bradford 
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and Sanders (2002) and Borthwick et al. (2006), both Equation (4a) and Equation (4b) 

are solved in two steps.  First, the following hyperbolic equations are solved:  

*SFU  xt
     and    *TGV  yt                                            (7a,b) 

where 
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Equations 8(a-b) reveal that p*, q* and p, q are related by elliptic equations.  Therefore, 

the primary variables, [η, p, q], can be determined easily after U and V are obtained.  

Taking Equation 8(a) for example, the central difference expression for p* is:  
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where Δx is the grid size.  Knowing p* and q across the domain, Equation (9) forms a 

linear system of equations, from which p can be solved.  Likewise, q can be obtained 

according to Equation (8b) once p and q* are known.  

An illustration of the solution procedure is given in Figure 1.  



 8 

 

Initialise 

Construct np *  from np , nq  and 

h , thus n
U  is known 

Yes 
Next time Step? 

Finalise 

No 

Calculate 1n
U  from equation (7a) 

Calculate 1np  from 1* np  and 
1nq based on equation (8a) 

Set 1n , 1np  and 1nq  back to n , np  

and nq  for y-direction computation 

Construct nq *  from np , nq  and 
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Calculate 1n
V  from equation (7b) 

Calculate 1nq  from 1np  and 
1* nq based on equation (8b) 

Lx 

Ly 

 

Fig. 1. Computational procedure 

    It should be noted that sequence of executing operators Lx and Ly is alternated in the 

actual computation as indicated in Equation (6), although this is not reflected in Figure 

1.  Ning et al. (2008) reported a similar algorithm.  The advantage of the present 

approach lies in the efficient calculation of pn+1 and qn+1 from 1* np  and 1* nq  using 

the tri-diagonal matrix algorithm, which is enabled by the operator-splitting technique.  
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2.3 TVD Lax-Wendroff scheme  

    The TVD Lax-Wendroff scheme is used to march from Un to Un+1 and from Vn to 

Vn+1 according to Equation (7a) and Equation (7b) respectively (and indicated by the 

grey boxes in Figure 1).  Since the two one-dimensional problems are similar, it suffices 

to consider only Equation (7a) along a single row i, with the subscript j being dropped 

for clarity.  

    A symmetric non- linear flux limiter is appended to the conventional two-step Lax-

Wendroff scheme, giving second-order accuracy in both time and space.  Such a scheme 

is a member of the conventional shock-capturing finite difference schemes proposed in 

aerodynamics (Davis 1984).  The flux limiter is designed to satisfy the TVD criterion, 

and has been adopted in developing the TVD-MacCormack model for shallow water 

flows (see e.g. Liang et al. 2007).   

 

i-1 i i+1 

n 

2/1n  

1n  

t  

x  

i-1/2 i+1/2 

 

Fig. 2. Computational stencil for two-step Lax-Wendroff scheme 

    The standard two-step Lax-Wendroff scheme is based on the computational stencil 

shown in Figure 2.  The first step calculates the values at half time steps and half grid 

points using space-centred and time-forward differencing, whilst the second step uses 

centred differencing in both time and space, such that 
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x  and t  are the grid size and time step respectively.  The overbars in Figure 2 and 

Equations (9a10a,b) signify that a full time step is achieved only after the following 

TVD modification is implemented:  
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The angle bracket in Equations (123a, b) denotes the dot product of the two vectors 
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)( ir  is a non-linear flux limiter defined as  
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    The standard Lax-Wendroff scheme is second-order accurate.  The Godunov theorem 

(Godunov 1959) states that all second-order schemes having constant coefficients will 

generate spurious oscillations at discontinuities.  The non- linear TVD step essentially 

evaluates the smoothness of the solution using the ratios of the successive increments, 

as shown in Equations (112-123).  Where the solution varies steeply and the local 

Courant number is large, sufficient diffusion is introduced to avoid spurious oscillations.  

On the contrary, little diffusion is introduced where the solution is smooth or the 

Courant number is small.  Unlike most other TVD schemes, no characteristic 

transformation is needed in the present method.  

    Liang (2010b) has applied this TVD Lax-Wendroff scheme to solve the shallow 

water equations.  A noteworthy property of this scheme is that the discharge of the flow 

is exactly balanced if the variable, 2/1

2/1





n

iF , is treated as the flux output, no matter 

whether the fluid is in stationary, steady flow or unsteady flow state.  Hence,  
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Further details can be found in Liang (2010b).  

 

3. Computational conditions  

    The high quality large-scale experimental results obtained by Liu et al. (1995) and 

Briggs et al. (1995) are widely used as benchmark data for validating numerical models 

of solitary wave interaction with an island (see e.g. Titov and Synolakis 1998, Chen et 

al. 2000, Wei et al. 2006, Fuhrman and Madsen 2008).  Here, we consider a test case 

taken from Liu et al. (1995) whose laboratory basin was rectangular in plan, of 

dimensions 30m wide (x direction) by 26m long (y direction) and with wave absorbers 
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installed along all four lateral boundaries.  In the present computer model, the basin 

domain dimensions are doubled in both directions in order to eliminate boundary effects 

for each configuration of islands considered.  The still water depth h is 0.32m, and the 

Manning’s roughness coefficient is 0.013 s/m1/3.  A circular island represented by a flat-

topped cone is placed in the middle of the wave basin.  The conical island has a based 

radius of 3.6m, a crest radius of 1.1m, and is of height 0.625m.    

    A grid size of Δx = Δy = 0.05 m is adopted for all test cases, corresponding to a grid 

of 1200 × 1040 square cells covering the flow domain.  A time step of 0.01 s is selected, 

meeting the Courant-Friedrichs-Lewy condition.  It should be noted that, in a separate 

study, Romer-Lee (2010) has examined the dependence of the computed results by the 

present model on grid resolution, and showed that the present grid size is sufficient to 

achieve converged solutions.  

    A solitary wave enters the domain from the boundary at y = 0 and propagates along 

the y axis.  The flux normal to boundary is specified to be:  
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and the wave speed is  Ahgc  .  This incident wave has amplitude A of 0.032 m, 

which is 10% of the still water depth.  At the other three boundaries, a linear 

transmission boundary condition is applied whereby the normal derivatives o f all the 

unknown quantities are specified to be zero.  Although such a simple treatment does not 

strictly enforce a zero-transmission condition, the large computational domain ensures 
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that this is not a drawback, as the simulations have already stopped pr ior to the arrival 

of any unwanted disturbances generated as reflections at the boundaries.  

    Wetting/drying occurs around the island under the solitary wave attack.  An empirical 

method of modelling this moving boundary problem is used, following Liang et al. 

(2007, 2010a).  At each time step, drying and wetting checks are conducted.  In the 

drying check, a computational node is regarded as dry if its water depth is less than 1 

mm, and then excluded in the subsequent computation until switched wet again.  It 

should be noted that the initial water levels are also assigned to the dry nodes, but they 

are equal to the ground levels to give a zero water depth.  In the wetting check, the 

water level above a given dry node (called the frozen water level), is co mpared with the 

highest water level of any adjacent wet nodes (called the free water level).  If the free 

surface level is found to be more than 2 mm higher than the frozen water level, then a 1 

mm layer of water is shifted to the dry node from the corresponding wet node.  The dry 

node may then be deemed wet and included in the subsequent computation.  Numerical 

experiments have been conducted for the run-up around a single conical island and they 

reveal that the computational results are not sensitive to the threshold water depth 

adopted, which is consistent with authors’Liang et al.’s (2007) experience ofn the flood 

routing with the same wetting/drying technique (Liang et al. 2007).  

    To improve the stability of the computation, a threshold still water depth, 5 mm, is 

prescribed, below which the dispersive terms are switched off and locally shallow water 

equations are solved.  This treatment also removes the complications caused by the 

negative still water depths that are encountered in the numerical scheme during the run-

up on island slopes.  
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4. Verification of the numerical model  

    Two validation cases are considered: (1) solitary wave propagation in otherwise still 

water over a flat bed; and (2) solitary wave run-up at a single conical island.    

    Figure 3 presents the free surface profiles for the solitary wave as it propagates 

forward over a horizontal bed at time t = 4, 9 and 14 s obtained from the present 

numerical model (a) with the dispersive terms switched off, and (b) including the 

Boussinesq terms.  Figure 3(a) shows that a shallow-water modelled solitary wave has 

the tendency to shock-up into a steep, triangular shape over time, because the wave crest 

travels faster than the trough due to the finite change in water depth.  No spurious 

oscillations arise from the almost vertical wave front, confirming the shock-capturing 

capability of the model.  Conversely, Figure 3(b) shows that very little profile evolution 

occurs when the dispersive terms are included, demonstrating that the wave nonlinearity 

is countered by dispersion in the case of a solitary wave.  The results are in satisfactory 

agreement with the analytical solution for a solitary wave of small amplitude, where the 

shape of the free surface profile remains nearly constant as the wave propagates.  The 

results highlight the drawback of a shallow water model when applied to solitary wave 

propagation.   
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(a) without frequency dispersion (i.e. shallow flow equations)  
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(b) with frequency dispersion (i.e. Boussinesq-type equations)  

Fig. 3. Solitary wave propagation over a flat bed  

    The second validation test comprises solitary wave run-up at an isolated conical 

island, for which experimental measurements are available from the laboratory tests 

conducted by Liu et al. (1995).  Figure 4 shows (a) the bed topography, positions of 

wave gauges, and (b), (c), and (d) colour visualisations of the free surface contours at 

times t = 16, 18 and 20 s respectively after the solitary wave was introduced into the 

domain.  The vertical axis of Figure 4 has been magnified by a factor of two (relative to 

the horizontal axis) in order to improve the visualisation.  The solitary wave slows down 

as it approaches the island, causing the wave front to curve near the shoreline.  Figure 

4(b) shows the situation as the island is struck by the solitary wave, with high run-up 

occurring at the front of the island.  The solitary wave front that originally spanned 

across the entire domain is interrupted by the island and split into two waves (Figure 

4(c)), each of which travel along the two sides of the island.  Meanwhile, a reflected 

wave is created that begins to radiate out from the island (see Figure 4(c-d)).  Later, the 

diffracted waves propagate alongshore and collide at the rear of the island (Figure 4(d)),  

generating a high run-up on the lee side, which is somewhat counterintuitive.   
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(a) Bed elevation and wave gauges 

 

(b) t = 16 s 

 

(c) t = 18 s 

 

(d) t = 20 s 
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Fig. 4. Solitary wave interaction with a single conical island: bed topography and 

visualizations of predicted water surface elevations 

    Figure 5 plots the predicted and measured time histories of free surface elevations at 

several wave gauges, whose positions are labelled in Figure 4(a).  In general, the model 

predictions match the experimental data, especially the amplitude of the main wave, 

until the solitary wave crest has passed.  There are some discrepancies that become 

evident after the main wave has passed: the experimental profiles are more oscillatory, 

perhaps due to swash zone effects not being fully represented in the wetting and drying 

scheme, the effect being most obvious at Gauge 6.  A more extensive comparison has 

been given by Romer-Lee (2010).  However, it is evident that the numerical simulation 

satisfactorily reproduces the interactions between the solitary wave and the island.  
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Fig. 5 Solitary wave interaction with a single conical island: measured (Liu et al. 1995) 

and predicted time series of free-surface displacements at wave gauges. 

    Wave run-up – the height above normal sea level that seawater reaches on land – is 

an important parameter by which to evaluate the destructive potential of a tsunami.  

Figure 6 displays the contour field of maximum water surface elevation obtained over 

the entire simulation.  There are two regions of high run-up: a broad band at the front of 

the island directly facing the incoming wave; and a small region at the back of the island.  

Both regions experience run-up of similar magnitude.  Also of note in Figure 6 is the 

wake induced by the presence of the island.  The sheltered region with relatively small 

wave height occupies two wedges enclosed by angles between around 10o and 30o from 

the centreline of the basin.   
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Fig. 6 Solitary wave interaction with a single conical island: colour contour 

visualization of predicted maximum water elevations  

 

5. Solitary wave run-up on twin islands  

    Taking the above example of solitary wave interaction with a single conical island as 

a reference case, a second conical island is then added to the domain by altering the bed 

topography and initial water levels accordingly.  All the other computational conditions 

are kept the same.  To simplify the analysis, the two islands have the same shape and 

size.  The definition sketch in Figure 7 shows the spacing and orientation of the islands 

relative to the incoming solitary wave in which d is the separation distance between the 

island centres and θ the relative angle.  By varying these two parameters, the solitary 

wave run-up characteristics on the two islands are examined with respect to the island 

positions.   
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Fig. 7. Definition sketch of solitary wave interaction with a pair of conical islands: plan 

view of island locations and definition of symbols 

    As the destruction inflicted by a tsunami is closely related to the run-up height, the 

peak run-up is chosen here as the focal parameter in quantifying the severity of wave 

attack.  The peak run-up maxR  for each combination of d and θ is normalised against 

that for a single island 0maxR , which has been found to be 0.0742 m (see Figure 6).   The 

two islands overlap each other above still water level when d < 4.64 m, and so the 

analyses are split into two categories: (1) separate islands and (2) merged islands.  This 

distinction is necessary, as the merged islands tend to have the same peak run-up on 

each of the two constituent islands.  For separate islands, the results are presented for 

Island A (in Figure 7), and θ varied from 0o to 180o.  For merged islands, A and B may 

be regarded as a single landmass, and so θ is varied between 0o and 90o.  Simulations 

have been carried out with θ being varied in increments of 10o for island separation 

distances d = 2.2, 2.7, 3.2, 3.7, 4.64, 5.5, 7.2, 10.8, 14.4, and 18.0 m.  In the subsequent 

discussion, the distance is normalised by the island radius at still water level, R = 2.32 m.  

    Figure 8 shows the normalized solitary wave run-up 0maxmax RR  as a function of 

relative angle θ and normalized separation distance d/R, obtained for the separate island 

simulations.  Figure 9 presents visualisations of the maximum water surface levels max  
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obtained for four configurations of island pairs.  Using symmetry, the  peak run-ups at 

two angles can be extracted from each plot in Figure 9, depending on how the islands 

are designated A and B.  Figure 8 indicates that the presence of the Island B has almost 

no effect on 
maxR at Island A for d/R > 3 and θ < 120 o.  However, 

maxR reduces 

considerably as for θ ≈ 150o ~ 160o, recovering somewhat by θ = 180o, for d/R > 4.  The 

trough at θ ≈ 150o ~ 160o corresponds to cases where Island A is sheltered from the 

oncoming solitary wave by Island B (e.g. see Figure 9(a)).  The wave amplitude 

recovers quickly behind a single island due to diffraction (see Figure 6), which explains 

why maxR increases at θ > 160o.  For d/R < 2.37, the normalized maximum run-up 

0maxmax RR  increases above unity when the two islands are in a tandem arrangement, i.e. 

θ ≈ 0o (or 180o).  This increase in maximum run-up when the two islands are in close 

proximity occurs because diffracted waves behind the front island collide with the 

reflected wave from the front face of the rear island.  Figure 9(b) illustrates the situation 

when wave interaction in the narrow gap (d = 2R) between the two causes the water 

surface to reach elevations higher than at the head of the front island.  Figure 9(c) shows 

that this phenomenon no longer occurs as d/R increases to 3.1.  The trough in the run-up 

distribution in Figure 8 becomes shallower as d/R reduces.  This is because the area 

sheltered by the front island is small in close vicinity.  Figure 9(d) depicts the maximum 

water surface elevation obtained when the two islands are located side-by-side as they 

face the oncoming solitary wave front.  For d/R > 2, the spacing between the islands is 

sufficient to permit a gap flow whenever the free surface elevation is greater than zero, 

preventing any enhancement of run-up at θ = 90o.  
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Fig. 8. Solitary wave interaction with separate pair of conical islands: normalised 

maximum run-up 0maxmax RR  on island A as a function of relative angle θ and 

normalized separation distance d/R 

 

 

(a) d = 4.66R, θ = 20o (160o)  
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(b) d = 2R, θ = 0o (180o)  

 

(c) d = 3.10R, θ = 0o (180o)  

 

(d) d = 2R, θ = 90o  

Figure 9. Solitary wave interaction with separate pair of conical islands: colour contour 

visualization of predicted maximum water elevations  

    It should be noted that the change in peak run-up 0maxmax RR  is only between -20% 

and +10% for the cases considered above of solitary wave interaction with separate 

conical islands.  Figure 10 shows 0maxmax RR  as a function of θ and d/R for solitary 

wave interaction with merged conical islands.  The value of 0maxmax RR  is always 

greater than unity, indicating that the merged conical islands consistently experience 

greater solitary wave run-up than the equivalent single conical island, within the range 

of parameters tested.  Furthermore, the run-up height at the merged islands tends to 

increase monotonically with both d and θ.  By comparing Figure 10 with Figure 8 it can 
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be seen that the value of
0maxmax RR  is consistently higher for the merged conical 

islands than for the separate conical islands, with the peak run-up for merged islands 

being amplified by as much as 50%, a significantly larger value than obtained for the 

separate conical islands.  Figure 11 provides four representative plots of the maximum 

free surface elevation distribution for selected values of θ and d/R for the merged 

islands.  It is evident that the highest free surface elevations (and hence run-up) tend to 

occur in the regions where the islands merge (i.e. between the island crests).  This 

phenomenon is clearly seen in Figures 11(a) and 11(b) with θ = 90o when the merged 

islands present the largest projected frontal area to the incoming solitary wave.  Figures 

11(c) and 11(d) show the maximum free surface elevation distributions obtained when 

the merged islands present the smallest projected frontal area, i.e. for θ = 90o.  From the 

numerical results, the peak run-up at d/R = 1.6 occurs at the groove in the middle of the 

two islands (Figure 11(c)), whereas maxR  occurs at the head of the front island when the 

two islands are spaced closer together at d/R = 1.16  (Figure 11(d)).   

    The above finding carries practical implications.  Coastal development is often 

concentrated around narrow bay areas, where it appears sensible to construct urban 

settlements, ports, marinas, etc., presuming that such areas offer more protection from 

the wind and waves than exposed headlands.  However, the above analyses show that 

narrow bay areas could be more prone to inundation from severe tsunami waves.   
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Fig. 10. Solitary wave interaction with merged pair of conical islands: normalised 

maximum run-up 0maxmax RR  as a function of relative angle θ and normalized 

separation distance d/R 

 

 

(a) d = 1.60R, θ = 90o  

 

(b) d = 1.16R, θ = 90o  
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(c) d = 1.60R, θ = 0o  

 

(d) d = 1.16R, θ = 0o  

Fig. 11. Solitary wave interaction with merged pair of conical islands: colour contour 

visualization of predicted maximum water elevations 

 

6. Conclusions  

    A shock-capturing TVD Lax-Wendroff numerical scheme has been applied to solve 

the Boussinesq-type equations of Madsen and Sørensen.  Using operator-splitting, the 

two-dimensional problem has been converted into a pair of one-dimensional problems, 

each of which is solved efficiently using a tri-diagonal matrix algorithm.  The model has 

been validated for the evolution of a solitary wave over a flat bed, emphasising the need 

to include the dispersive Boussinesq terms, and then verified for solitary wave run-up at 

a single conical island by comparison against experimental data obtained by Liu et al. 

(1995).  The model is found to reproduce satisfactorily the main characteristics of the 
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wave behaviour.  High values of run-up occur over much of the front face of the island.  

Due to the collision of diffracted waves behind the island, a narrow band of high values 

of run-up are also obtained at the back face of the island.   

    A parameter study was then undertaken whereby solitary wave interaction with a pair 

of identical conical islands was investigated for different spacing and relative angles, 

and the results presented as plots of non-dimensional maximum run-up and maximum 

free surface elevation.  For relatively large d/R ≥ 3.1, the maximum run-up occurs at the 

point on the island pair that is first impacted by the solitary wave.  The maximum run-

up does not exceed that of a single island because there is a sufficient time interval 

between the original solitary wave impact and the arrival of the reflected wave from the 

neighbouring island.  For θ > 130o with this large separation, the maximum run-up is 

less than that at a single island, because of the sheltering effect of the upstream island.   

For 2 ≤ d/R ≤ 2.37, the two islands remain separate above still water level, and large 

free surface levels and run-up occur in the narrow gap region, influenced by wave-wave 

interactions, especially when the rear island is directly behind the front island.  When 

the two islands merge into a single entity (even above high water level) with d/R ≤ 1.60, 

the solitary wave is prevented from propagating between the island crests.  The 

simulations have shown that the maximum run-up can be amplified by up to 150%, 

owing to the combined projected area of the front face of the island pair perpendicular 

to the solitary wave flow.   

    The present study has direct implications on assessing the tsunami risk to small 

volcanic islands.  For closely spaced islands, the maximum free surface elevations and 

associated peak run-up due to a tsunami event may occur in the narrow bay region 

between the islands, close to where coastal development is often concentrated.   
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    We are currently investigating the influence of the incident wave amplitude and the 

slope of the islandss’ slope on the maximum run-up, and intend to report the findings in 

a future publicationthese results will be reported soon.  
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Figures  

Fig. 1. Computational procedure 

Fig. 2. Computational stencil for two-step Lax-Wendroff scheme 

Fig. 3. Solitary wave propagation over a flat bed 

 (a) without frequency dispersion (i.e. shallow flow equations) 

 (b) with frequency dispersion (i.e. Boussinesq-type equations) 

Fig. 4. Solitary wave interaction with a single conical island: bed topography and 

visualizations of predicted water surface elevations 

 (a) Bed elevation and wave gauges  

 (b) t = 16 s  

 (c) t = 18 s  

 (d) t = 20 s 

Fig. 5 Solitary wave interaction with a single conical island: measured (Liu et al. 1995) 

and predicted time series of free-surface displacements at wave gauges. 

Fig. 6 Solitary wave interaction with a single conical island: colour contour 

visualization of predicted maximum water elevations 

Fig. 7. Definition sketch of solitary wave interaction with a pair of conical islands: plan 

view of island locations and definition of symbols 

Fig. 8. Solitary wave interaction with separate pair of conical islands: normalised 

maximum run-up 0maxmax RR  on island A as a function of relative angle θ and 

normalized separation distance d/R 

Figure 9. Solitary wave interaction with separate pair of conical islands: colour contour 

visualization of predicted maximum water elevations 

 (a) d = 4.66R, θ = 20o (160o) 
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 (b) d = 2R, θ = 0o (180o) 

 (c) d = 3.10R, θ = 0o (180o) 

 (d) d = 2R, θ = 90o 

Fig. 10. Solitary wave interaction with merged pair of conical islands: normalised 

maximum run-up 
0maxmax RR  as a function of relative angle θ and normalized 

separation distance d/R 

Fig. 11. Solitary wave interaction with merged pair of conical islands: colour contour 

visualization of predicted maximum water elevations 

 (a) d = 1.60R, θ = 90o 

 (b) d = 1.16R, θ = 90o 

 (c) d = 1.60R, θ = 0o 

 (d) d = 1.16R, θ = 0o 

 


