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a b s t r a c t

In this study, a pseudospectral s-transformation model is developed to simulate fully

nonlinear sloshing waves in a three-dimensional shallow water rectangular tank. The

s-transformation maps the physical domain including the water free surface onto a

fixed rectangular computational domain. Chebyshev collocation formulae are used to

discretize the governing equation and boundary conditions in the computational

domain. The numerical model is validated for three well known analytical and

numerical sloshing problems. An extensive study is then made of sloshing in a shallow

water tank, and the effects of excitation frequency, base aspect ratio, and amplitude of

excitation on the wave motions and patterns are considered. Wave regimes and

patterns are considerably influenced by the base aspect ratio. In a shallow water tank

with a non-square base, different wave regimes are observed during small-amplitude

resonant excitation. Also, bores develop during large amplitude resonance excitation.

The present study demonstrates that a pseudospectral s-transformation can accurately

model nonlinear sloshing waves in a rectangular tank. Also, results show that contrary

to the situation in deeper water tanks, sloshing in shallow water strongly depends on

the base aspect ratio.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

When subject to external excitation, liquid in a container experiences sloshing motions, which can become resonant as
the tank excitation frequency approaches the natural frequency of the liquid within the tank. Sloshing is of considerable
importance whenever liquids are transported or stored in tanks, and so the analysis of sloshing motions is relevant to a
wide range of engineering disciplines. Resonant sloshing waves can induce large loads on the container walls and
associated support structures, reducing the operational fatigue life and even causing failure when the pressure is
sufficiently high.

Many research studies have focused on resonant fluid sloshing. Ibrahim et al. (2001) reviewed the use (up to the year
2000) of different flow models in predicting fluid sloshing. More recently, Ibrahim (2005) and Faltinsen and Timokha
(2009) have provided extensive reviews on the physics and applications of liquid sloshing. Faltinsen et al. (2005) divided
the main approaches to theoretical analysis of sloshing into three categories: analytic methods for standing waves based
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on low-order asymptotic expansions (see e.g. Abramson 1966; Hutton, 1962; Moiseyev, 1958; Penny and Price, 1952),
computational fluid dynamics (CFD), and multimodal or pseudospectral methods. Whereas analytical solutions are
available for low-amplitude sloshing in simple container geometries, such analysis does not readily extend to large-
amplitude sloshing in complicated geometries (see e.g. El-Sayad et al., 1999). Instead numerical models are widely applied
to the study of nonlinear free surface motions of liquids undergoing sloshing in tanks. Examples include Faltinsen (1978),
Okamoto and Kawahara (1990), Chen et al. (1996), Armenio and La Rocca (1996), Chern et al. (1999), Frandsen (2004) and
Sun et al. (2010) who used various numerical methods to simulate two-dimensional sloshing problems.

It is debatable whether two-dimensional sloshing theory should be used to predict three-dimensional sloshing.
Faltinsen et al. (2003) observed that resonant excitation at the lowest natural frequency could lead to two-dimensional
motions becoming unstable, then highly three-dimensional, even chaotic. Faltinsen et al. (2003, 2005, 2006) conducted a
series of studies into three-dimensional sloshing, including resonant nonlinear sloshing in square and nearly square basins.
A whole variety of different numerical schemes have been used to predict sloshing. Huang and Hsiung (1996) solved the
depth-averaged shallow water equations in simulating green water sloshing on the deck of a ship. Wu et al. (1998)
developed a finite element potential flow solver to simulate three-dimensional nonlinear wave sloshing in a tank. Akyildiz
and Erdem Unal (1996) used a volume of fluid (VOF) technique to model three-dimensional sloshing in a rectangular tank.
Wu and Chen (2009) developed a time-independent finite difference method to predict three-dimensional wave sloshing
in a tank. Curadelli et al. (2010) used the finite element method and study resonant frequencies in an elevated spherical
container. Alemi Ardakani and Bridges (2011) derived a new set of shallow water equations and simulated sloshing in
three dimensions.

Fully nonlinear, time-domain potential flow solvers based on high order methods, such as spectral elements are
particularly well suited to the study of large amplitude waves in shallow water. Hussaini and Zang (1987) provides a
detailed review of spectral elements applications in computational fluid dynamics. The present study employs the
Chebyshev pseudospectral matrix-element (PSME) method (Ku and Hatziavramidis, 1985) to model the three-dimensional
free surface sloshing motions of an inviscid fluid. Fully nonlinear potential theory is used to describe mathematically the
problem, which is mapped from the physical domain onto a s-transformed rectangular coordinate system. The present
model is an extension of a 2D nonlinear sloshing model by Chern et al. (1999). A similar approach was also used by Chern
et al. (2001) to simulate fully nonlinear free surface motions in a cylindrical domain. It should be noted that the
s-transformation involves a unique mapping between the tank bed and liquid free surface, and so is not applicable to
overturning or breaking waves. The aim of the present work is the study of the capability of the PSME method as a high
order numerical method on 3-D sloshing. Results are presented for three-dimensional sloshing of shallow water in a
rectangular tank for a ratio of water depth to tank length, d/a¼0.1.

2. Mathematical model of free surface waves in the Cartesian domain

Fig. 1 shows an illustration of the model tank of length a and width b, with still water depth d. In the numerical cases
considered herein, six reference points are selected: the four free surface corner vertices (Points A, B, C and D) and the free
surface mid points along the tank in the ox and oy axes (Points E and F, respectively). Assuming that the fluid inside the

Nomenclature

Ai amplitude, m [i¼x,y,z]
a length of tank, m
b width of tank, m
d still water depth, m
G(q) matrix of PSME coefficients [q¼1,2,y]
Ĝ
ðqÞ

inverse of the matrix G(q) [q¼1,2,y]
g acceleration due to gravity, m/s2

h elevation of wave free surface vertically above
bed of tank, m

L number of collocation points in s direction
M number of collocation points in Y direction
N number of collocation points in X direction
q order of derivation
T matrix formed of Chebyshev polynomials
T̂ inverse of matrix T
t time, s
Dt time step, s
Dt* non-dimensional time step

u typical smooth function
û vector of Chebyshev coefficients
xj collocation points [j ¼0,y,N]
X s-transformation of x

Xtank forced periodic motion in x direction, m
Y s-transformation of y

Ytank forced periodic motion in y direction, m
Ztank forced periodic motion in z direction, m

Greek symbols

Z free surface elevation above the still water
level, m

s s-transformation of z

F transformed value of j
j velocity potential, m2/s
Oi excitation frequency, rad/s [i¼x,y,z]
omn natural frequencies of rectangular tank,

rad/s [m,n¼0,1,2,y]
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tank is incompressible, inviscid, and irrotational, the governing equation is

@2j
@x2
þ
@2j
@y2
þ
@2j
@z2
¼ 0, ð1Þ

where j is the velocity potential. At the solid lateral wall and bed boundaries, the velocity components are set to zero,
such that

@j
@x
¼ 0 at x¼ 0 and x¼ a, ð2Þ

@j
@y
¼ 0 at y¼ 0 and y¼ b, ð3Þ

and

@j
@z
¼ 0 at z¼�d: ð4Þ

Consider a tank undergoing forced periodic motion defined by

Xtank ¼ AxsinðOxtÞ,

Y tank ¼ AysinðOytÞ,

Ztank ¼ AzsinðOztÞ, ð5Þ

where A is the amplitude of the displacement, t is time, and O is the excitation frequency. These excitations correspond to
surge, sway and heave, respectively. It is relevant to note that, based on the linear solution for sloshing in a tank (see e.g.,
Faltinsen, 1978; Wu et al., 1998), the natural frequencies of sloshing in a rectangular tank, omn are

o2
mn ¼ gp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a2
þ

n2

b2

� �s
tanh p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a2
þ

n2

b2

� �s
d

 !
ðm,n¼ 0,1,2,. . .Þ: ð6Þ

The first natural frequency in the x direction (o10) is obtained by taking m¼1 and n¼0. Similarly the first natural
frequency in the y direction (o01) is obtained by taking m¼0 and n¼1. The value of O is proportional to omn. For example
the tank can become resonant in the x direction when Ox approaches o10 (e.g. Ox¼0.9999o10).

At the gas–liquid interface, the nonlinear dynamic and kinematic free surface boundary conditions are

@j
@t
¼�gZ�1

2

@j
@x

� �2

þ
@j
@y

� �2

þ
@j
@z

� �2
" #

�x
d2Xtank

dt2
�y

d2Y tank

dt2
�z

d2Ztank

dt2
at z¼ Z ð7Þ

and

@Z
@t
¼
@j
@z
�
@j
@x

@Z
@x
�
@j
@y

@Z
@y

at z¼ Z, ð8Þ

where Z is the free surface elevation above the still water level and g is the acceleration due to gravity. The tank motion
acceleration components, d2Xtank=dt2, d2Y tank=dt2 and d2Ztank=dt2, are obtained by twice differentiating Eq. (5). It should
be noted that this study is focused on the surge and the sway excitations only. Therefore the last term of Eq. (5) (and the
transformed form of it) can be omitted. Initial conditions for the velocity potential and free surface elevation are given by

jðx,y,z,0Þ ¼�x
dXtank

dt

����
t ¼ 0

�y
dYtank

dt

����
t ¼ 0

, ð9Þ

Fig. 1. Schematic view of the tank (with the length of a, the width of b and the still water depth of d) and the excitation directions.
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and

Zðx,y,0Þ ¼ 0: ð10Þ

2.1. s-Transformation

The s-transformation involves mapping the physical domain x,y,zA[0,a]� [0,b]� [�d,Z] onto the rectangular region
X,Y,sA[�1,1]� [�1,1]� [�1,1]. The transformation equations are

X ¼�1þ
2x

a
,

Y ¼�1þ
2y

b
,

s¼�1þ
2ðzþdÞ

h
, ð11Þ

where

h¼ Zþd: ð12Þ

A consequence of this transformation is that the free surface is fixed in the computational domain at Y¼1, and so
cannot model overturning waves or roof impacts. Applying the above transformation, the velocity potential j(x,y,z,t) in the
physical domain is mapped onto F(X,Y,s,t). Invoking the chain rule and rearranging, the transformed governing equation
becomes

2

a

� �2 @2F
@X2
þ

2

b

� �2 @2F
@Y2

þ
2

a

� �2 2s
h2

� �
@Z
@X

� �2

�
2

a

� �2 s
h

� � @2Z
@X2

 !
þ

2

b

� �2 2s
h2

� �
@Z
@Y

� �2

�
2

b

� �2 s
h

� � @2Z
@Y2

 !" #
@F
@s

�
2

a

� �2 2s
h

� �
@Z
@X

� �" #
@2F
@X@s

�
2

b

� �2 2s
h

� �
@Z
@Y

� �" #
@2F
@Y@s

þ
2

a

� �2 s2

h2

� �
@Z
@X

� �2

þ
2

b

� �2 s2

h2

� �
@Z
@Y

� �2

þ
1

h2

� �" #
@2F
@s2
¼ 0: ð13Þ

The transformed dynamic and kinematic free surface boundary conditions are

@F
@t
¼

s
h

� � @Z
@t

� �
@F
@s

� �
�gZ

�
1

2

2

a

� �
@F
@X

� �
�

2

a

� �
s
h

� � @Z
@X

� �
@F
@s

� �� 	2

þ
2

b

� �
@F
@Y

� �
�

2

b

� �
s
h

� � @Z
@Y

� �
@F
@s

� �� 	2
"

þ
1

h

� �
@F
@s

� �� 	2
#
�

aX

2

� �
d2Xtank

dt2
�

bY

2

� �
d2Y tank

dt2
�Zd2Ztank

dt2
at s¼ 1 ð14Þ

and

@Z
@t
¼

1

h

� �
þ

2

a

� �
s
h

� � @Z
@X

� �
þ

2

b

� �
s
h

� � @Z
@Y

� �� 	
@F
@s

�
2

a

� �2 @Z
@X

� �
@F
@X
�

2

b

� �2 @Z
@Y

� �
@F
@Y

at s¼ 1: ð15Þ

The transformed bed condition is

@F
@s ¼ 0 at s¼�1: ð16Þ

The transformed lateral wall boundary conditions are

@F
@X
�

s
h

� � @Z
@X

� �
@F
@s
¼ 0 at X ¼�1 and X ¼ 1 ð17Þ

and

@F
@Y
�

s
h

� � @Z
@Y

� �
@F
@s ¼ 0 at Y ¼�1 and Y ¼ 1: ð18Þ
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3. Pseudospectral matrix-element method

The Chebyshev expansion of u(x), a smooth function on xA[�1,1], is

u¼ Tû, ð19Þ

where T is a Chebyshev polynomial matrix and û is a vector of Chebyshev coefficients. Collocation points in the interval
[�1, 1] are located at

xj ¼ cos
jp
N

� �
, j¼ 0,1,2,. . .,N, ð20Þ

with corresponding discrete values of the function,

uj ¼ uðxjÞ and Tjk ¼ TkðxjÞ: ð21Þ

Transforming from physical space to Chebyshev spectral space,

ûk ¼
2

NCk

XN

j ¼ 0

1

Cj
uðxjÞcos

pkj

N
, k¼ 0,1,. . .,N, ð22Þ

where

Cj,Ck ¼
2, j, k¼ 0, N,

1, 1r j, krN�1:

(
ð23Þ

Writing this in matrix notation,

û¼ T̂u, ð24Þ

where T̂is the inverse of T, with each entry defined as

T̂kj ¼
2

NCkCj
cos

pkj

N
: ð25Þ

In Chebyshev spectral space, the qth derivative of the function u is written as

dquj

dxq
¼
XN

k ¼ 0

û
ðqÞ
k TkðxjÞ, ð26Þ

in which û
ðqÞ
k are the coefficients of the derivative expansion. Again, in matrix notation, we have

û
ðqÞ
¼GðqÞû: ð27Þ

In practice, Eq. (26) is simplified to give

dðqÞu

dxðqÞ
¼ Ĝ

ðqÞ
u, ð28Þ

in which

Ĝ
ðqÞ
¼ TGðqÞT̂, ð29Þ

where

GðqÞ ¼ ðGð1ÞÞq, ð30Þ

with the matrix elements given by

Gð1Þij ¼
0 if iZ j or iþ j even,
2j
Ci

otherwise:

(
ð31Þ

Ci¼1 everywhere, except at the end points where Ci¼2. In the PSME method, Eq. (28) is used to determine the spectral
derivatives. If q¼1, then Ĝ

ðqÞ
is the first derivative, and so on.

4. PSME modelling

Next, the transformed domain is discretized according to the Chebyshev collocation formula given by Eq. (20). Let N, M

and L be the total numbers of collocation points in the X, Y and s directions. Fig. 2 shows a typical s-transformed mesh.
After PSME discretization, Eq. (13) becomes

2

a

� �2 XN

m ¼ 0

ĜXð2ÞimFmjkþ
2

b

� �2 XM
m ¼ 0

ĜY ð2ÞjmFimkþ
2

a

� �2 2ðZkþ1Þ

h2
ij

 !
@Z
@X

� �2

ij

�
2

a

� �2
ðZkþ1Þ

hij

� �
@2Z
@X2

 !
ij

2
4
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þ
2

b

� �2 2ðZkþ1Þ
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ij
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� �2

ij
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2

b
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m ¼ 0

Ĝsð1ÞkmFijm

�
2

a

� �2 2ðZkþ1Þ

hij

� �
@Z
@X

� �
ij

" # XN

n ¼ 0

XL

m ¼ 0

ĜXð1Þin Ĝsð1ÞkmFnjm

�
2

b

� �2 2ðZkþ1Þ

hij

� �
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� �
ij

" # XM
n ¼ 0

XL

m ¼ 0

ĜY ð1Þjm Ĝsð1ÞkmFinm

þ
2

a

� �2
ðZkþ1Þ2

h2
ij

 !
@Z
@X

� �2

ij

þ
2

b

� �2
ðZkþ1Þ2

h2
ij

 !
@Z
@Y

� �2

ij

þ
1

ðZkþ1Þ2

 !" # XL

m ¼ 0

Ĝsð2ÞkmFijm ¼ 0: ð32Þ

The discretized versions of the s-transformed dynamic and kinematic free surface boundary conditions are

@F
@t
¼
ðZkþ1Þ

hij

� �
@Z
@t

� �
ij

XL

m ¼ 0

Ĝsð1ÞkmFijm�gZij

�
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2

2
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b
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hij
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þ
1

hij
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m ¼ 0

Ĝsð1ÞkmFijm

" #2
3
5� aX

2

� �
d2Xtank

dt2
�

bY

2

� �
d2Y tank

dt2
�Zij

d2Ztank

dt2
ð33Þ

and

@Z
@t
¼

1

hij

� �
þ

2

a

� �
ðZkþ1Þ

hij

� �
@Z
@X

� �
ij

þ
2

b

� �
ðZkþ1Þ

hij

� �
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Ĝsð1ÞkmFijm
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2

a

� �2 @Z
@X

� �
ij

XN

m ¼ 0

ĜXð1ÞimFmjk�
2

b

� �2 @Z
@Y

� �
ij

XM
m ¼ 0

ĜY ð1ÞjmFimk: ð34Þ

All time integrations are undertaken using a third order Adam-Bashforth (AB3) scheme. The discretized bottom
boundary condition is

XL

m ¼ 0

Ĝsð1ÞkmFijm ¼ 0: ð35Þ

Also, the discretized lateral wall boundary conditions are

XN

m ¼ 0

ĜXð1ÞimFmjk�
ðZkþ1Þ

hij

� �
@Z
@X

� �
ij

XL

m ¼ 0

Ĝsð1ÞkmFijm ¼ 0, ð36Þ

XM
m ¼ 0

ĜY ð1ÞjmFimk�
ðZkþ1Þ

hij

� �
@Z
@Y

� �
ij

XL

m ¼ 0

Ĝsð1ÞkmFijm ¼ 0 : ð37Þ

Fig. 2. A three-dimensional pseudospectral s-transformed mesh.

M.-J. Chern et al. / Journal of Fluids and Structures 35 (2012) 160–184 165



Starting from a prescribed initial wave form, the solution procedure is as follows: (i) calculate free surface boundary
values of F using Eq. (33); (ii) solve the discrete governing Eq. (32) together with the bed and wall boundary conditions
(35)–(37) by an iterative matrix solver; (iii) update the surface elevation, Z, using Eq. (34) and (iv) move forward one time
step and return to (i). In this study, Successive Over-Relaxation (SOR) was used as the iterative matrix solver.

5. Model validation

First, we consider two two-dimensional cases previously investigated by Faltinsen (1978), Wu et al. (1998) and Chern
et al. (1999). The displacement of the tank takes place solely in the x-direction, such that Xtank ¼ AxsinðOxtÞ. Initial
conditions are given by Eqs. (9) and (10). The tank dimensions are d/a¼0.5 and d/b¼5.0. A linear analytical solution for
this problem is given by Faltinsen (1978). The first case has non-dimensional forcing frequency Ox/o10¼0.999 and non-
dimensional amplitude Ax/d¼0.001. Fig. 3 shows the numerical results and the linear analytical solution at the left hand

Fig. 4. Non-dimensional free surface elevation time history at Point A, for O/o10¼1.1.

Fig. 3. Non-dimensional free surface elevation time history at Point A, for O/o10¼0.999.
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tank wall (Point A in Fig. 1). Fig. 4 shows the corresponding results for Ox/o10¼1.1. In both cases, the numerical
predictions are in satisfactory agreement with the linear analytical solution.

Next, a three-dimensional case is examined, where the tank dimensions are d/a¼0.25 and d/b¼0.25. The non-
dimensional excitation frequencies in the x- and y-direction are Ox/o10¼0.9999 and Oy/o01¼0.9999, and are applied
simultaneously to the tank. No excitation is applied in the z-direction. The non-dimensional amplitudes in both directions
are Ax/d¼Ay/d¼0.372�10�3. Fig. 5 shows the predicted wave elevation time histories of the free surface at the four
corners of the tank (i.e. at Points A, B, C and D). The predictions match alternative numerical results obtained by Wu et al.
(1998) who used a finite element potential flow solver. It should be noted that the present model predicts small ripples at

Table 1
Cases for collocation point and time step independency parameter study:.

Case N M L Dt*

c1 100 10 10 0.01

c2 100 10 10 0.001

c3 100 10 10 0.005

c4 50 5 5 0.005

Fig. 5. Non-dimensional free surface elevation time histories at the four corners of the tank, for Ox/o10¼0.9999 and Oy/o01¼0.9999; — present study,

– – Wu et al. (1998) model.
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Fig. 7. Wave pattern classification for surge excitation, Ax/d¼0.001, d/a¼0.1.

Fig. 8. Decay patterns for surge excitation, Ax/d¼0.001, d/a¼0.1, Ox/o10¼0.6 & 0.7.

Fig. 6. Comparison of water free surface elevation time histories at Points A and C for different numbers of collocation points and values of time

increment.
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Points B and C, unlike Wu et al.’s model, because of the high order nature of the spectral element scheme. In this case, we
used 40�40�10 collocation points in the x-, y- and z-direction, respectively, and a non-dimensional time step,
Dtn ¼Dt

ffiffiffiffiffiffiffiffiffiffiffi
ðg=dÞ

p
¼0.01. The simulation was performed on a workstation with two 3.40 GHz CPU and 3 GB RAM, and

required less than 4 h CPU time to compute results up to a non-dimensional time of 50.
Table 1 lists the parameters used to test for mesh convergence (numbers of collocation points) and stability (time step).

In this case, d/a¼0.1 and d/b¼1. The non-dimensional forcing frequency acts solely in the x-direction, and is
Ox/o10¼0.9999; the non-dimensional amplitude is Ax/d¼0.01. Fig. 6 presents time histories of the free surface elevation at
Points A and C for all the mesh convergence test cases listed in Table 1. The results show that in spite of the nonlinearity of the
very steep wave considered, the spectral method gives convergent and stable results for N¼50, M¼5, L¼5, Dt*

¼0.005.

6. Sloshing in a tank with shallow water

The validated spectral element model is now applied to simulate sloshing in a shallow water tank. It should be noted that
various criteria have been suggested in the literature for the shallow water approximation, such as d/ar0.2 (Stoker, 1957) and

Fig. 10. Resonance patterns for surge excitation, Ax/d¼0.001, d/a¼0.1, Ox/o10¼0.9 , 0.95 , 0.9999, 1.0001 and 1.05.

Fig. 9. Beating patterns for surge excitation, Ax/d¼0.001, d/a¼0.1, Ox/o10¼0.8, 1.1 and 1.2.
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d/ar0.15 (Armenio and La Rocca, 1996). By considering series expansions, Faltinsen and Timokha (2001) propose that d/a¼0.1
should be the border between intermediate water depth and shallow water depth. There are some papers and reports in this area
(e.g. Armenio and La Rocca 1996; Faltinsen and Timokha 2001). To the authors’ knowledge, there is not any comprehensive study
on sloshing in three-dimensional shallow water tanks with a higher order method. Herein, we present results from a numerical
parameter study on the effects of excitation frequency, base aspect ratio, and perturbation amplitude on sloshing in a shallow
water rectangular tank. The dimensions of the reference tank are d/a¼0.1 and d/b¼0.1.

The study by Faltinsen et al. (2005) using an asymptotic modal system indicated that four different regimes of wave
motion can occur in a square basin: (i) steady-state ‘planar’, two dimensional Stokes waves, (ii) steady-state ‘diagonal’-like
standing waves, which consist of oscillations from one corner of the basin to the opposite corner with much less motion in
the vicinity of the other corners, (iii) steady-state ‘swirling’, where an almost flat crest travels around each of the four sides
of the tank along with an almost flat trough propagating along on the opposite side of the tank, and (iv) ‘chaotic’, or
irregular waves. The first three regimes in the study by Faltinsen et al. (2005) are evident in the results obtained in the
present study, and discussed in the following sections.

Fig. 11. Wave elevation time histories for different base aspect ratios: longitudinal excitation, Ax/d¼0.001, Ox/o10¼0.9999.

Fig. 12. Wave elevation time histories for different base aspect ratios: longitudinal excitation, Ax/d¼0.01, Ox/o10¼0.9999.
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6.1. Effect of excitation frequency

We first consider the effect of altering the tank excitation frequency in the longitudinal direction (along the ox-axis), for
10 values chosen near to resonance in the range 0.6rOx/o10r1.2. The non-dimensional tank longitudinal excitation

Fig. 13. Wave elevation time histories for different base aspect ratios: diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼0.9999, Oy/o01¼0.9999.

Fig. 14. Snapshots of the free surface profile: base aspect ratio¼10/1, diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼0.9999, Oy/o01¼0.9999

(the profile is not scaled).
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amplitude is Ax/d¼0.001. The predicted free surface motions invariably reach stable steady state conditions, as would be
expected, because of the small perturbation (Ax/d) value. All the resulting steady-state wave motions are planar, two-
dimensional. Fig. 7 presents a classification of the wave patterns obtained. For Ox/o10o0.8, the waves are irregular and
decay gradually (see Fig. 8). This regime is close to the chaotic behaviour. Beating patterns occur for Ox/o10¼0.8 and
Ox/o10Z1.1 (Fig. 9). For Ox/o10¼0.8 and Ox/o10¼1.2, the non-dimensional period of the wave envelope is about 100 time

Fig. 15. Wave elevation time histories: base aspect ratio¼10/5, diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼0.9999, Oy/o01¼0.9999.

Fig. 16. Snapshots of the free surface profile: base aspect ratio¼10/9, diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼0.9999, Oy/o01¼0.9999

(the profile is not scaled).
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Fig. 17. Wave elevation time histories: base aspect ratio¼10/9, diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼0.9999, Oy/o01¼0.9999.

Fig. 18. Wave elevation time histories: base aspect ratio¼10/10, diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼0.9999, Oy/o01¼0.9999.
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units. The maximum wave elevation for Ox/o10¼1.2 is about 61% greater than that for Ox/o10¼0.8, and the wave is
steeper. For Ox/o10¼1.1, the non-dimensional period of the wave envelope is more than 200 time units and the maximum
wave elevation is about 84% larger than for Ox/o10¼1.2. Fig. 10 shows the free surface time histories at frequency ratios
close to resonance, in the range 0.9rOx/o10r1.05, where the wave lengths are almost the same. The maximum
increasing rates of amplitude of the free surface motions are obtained for frequency ratios of 0.9999 and 1.0001.

6.2. Effect of base aspect ratio

Industrial containers usually have different base dimensions, and the length/width aspect ratio can affect the sloshing
wave behaviour. Several theoretical and experimental studies have been undertaken on this topic (e.g. Feng and Sethna,
1993; Ockendon et al., 1993). Recently, Faltinsen et al. (2006) examined the nearly-square base effect on the wave regimes
in a tank of intermediate water depth. In the present study, we consider four different base aspect ratios a/b in shallow
water where d/a¼0.1. The ratios are a/b¼10/1 (very long base), 10/5 (half width base), 10/9 (nearly square base) and
10/10 (square base). Longitudinal (surge) and diagonal (surge and sway) excitations are applied separately, for two non-
dimensional amplitudes Ax/d¼Ay/d¼0.001 and 0.01.

6.2.1. Resonance excitation frequency

First, we focus on surge (Ox/o10¼0.9999) and sway (Oy/o01¼0.9999) excitations. Fig. 11 compares wave elevation
time histories for different base aspect ratios, when the excitation is longitudinal and the non-dimensional amplitude is
Ax/d¼0.001. The results demonstrate that when the basin is far from square (a/b¼10/1 and 10/5), the sloshing rapidly
evolves into standing waves at this low value of Ax/d. This phenomenon has previously been observed in certain sloshing
problems, but, in such cases, the standing waves were found to take considerable time to develop and were usually driven
by diagonal excitation of the tank (see Faltinsen et al., 2005). Also, there is an obvious phase shift, which is almost seiche-
related behaviour (Forel, 1895). However, the standing waves exist only for certain special conditions. For example, when
the excitation frequency ratio is increased to 1.1, standing waves are not found. Resonant wave motions diminish as the
basin becomes less square and the base aspect ratio deviates from unity, due to asymmetric wave interactions. For

Fig. 19. Wave elevation time histories for different base aspect ratios: diagonal excitation, Ax/d¼Ay/d¼0.01, Ox/o10¼0.9999, Oy/o01¼0.9999.
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Fig. 20. Wave elevation time histories for different base aspect ratios: longitudinal excitation, Ax/d¼0.001, Ox/o10¼1.1.

Fig. 21. Wave elevation histories for different base aspect ratios: longitudinal excitation, Ax/d¼0.01, Ox/o10¼1.1.

Table 2
Effects of base aspect ratio on wave regime and pattern (resonant excitation frequency, diagonal excitation).

Base aspect ratio Amplitude Wave regime Wave pattern

10/1 0.001 Planar Resonant

10/1 0.01 Planar Resonant

10/5 0.001 Swirling Resonant

10/5 0.01 Swirling Resonant

10/9 0.001 Swirling Beating

10/9 0.01 Swirling Beating

10/10 0.001 Diagonal Resonant

10/10 0.01 Diagonal Resonant
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a/b¼10/9, the maximum free surface elevation at non-dimensional time of 100 units decreases by about 47% compared
with that for a/b¼10/10. In all cases, the sloshing is planar.

Fig. 12 shows that the effect of increasing the longitudinal excitation amplitude to Ax/d¼0.01 causes the evolution of
the wave patterns to become much less sensitive to the geometric base aspect ratio of the tank.

Next, the tank is excited in two directions simultaneously, such that Ax/d¼Ay/d¼¼0.001. Fig. 13 depicts the free
surface time histories for varying base aspect ratio. For a/b¼10/1, the effect of sway is significantly more than surge (see
Eq. (6)). In this case, when o01E540o10 the wave regime becomes effectively planar in the y-direction (Fig. 14). Although
there are some wave perturbations in the x-direction these are unable to change the regime.

For a/b¼10/5, the longitudinal and transverse excitation frequencies are closer, and the wave motions become swirling
but with different wave elevations in the x- and y-direction (see Fig. 15 for the corresponding wave elevation time histories
at points E and F). When the base aspect ratio is nearly square (such that a/b¼10/9), swirling is preserved in the wave
motion (Fig. 16), but the pattern changes to beating (Fig. 17). For a/b¼10/10, a diagonal wave regime is established, with
some perturbations induced at B and C but insufficient to change the motion (Fig. 18). Fig. 19 shows elevation time

Fig. 22. Wave elevation time histories for different base aspect ratios: diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼1.1, Oy/o01¼1.1.

Fig. 23. Wave elevation time histories for base aspect ratio ¼10/1, diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼1.1, Oy/o01¼1.1.

M.-J. Chern et al. / Journal of Fluids and Structures 35 (2012) 160–184176



histories at A, B, C and D for Ax/d¼Ay/d¼0.01. The wave regimes and patterns are the same as for the (almost) linear
amplitude (Ax/d¼Ay/d¼0.001) cases. Table 2 summarizes the results of the diagonal excitation tests.

6.2.2. Beating excitation frequency

Fig. 20 shows the free surface time histories at locations A and C for surge excitation at a beating frequency,
Ox/o10¼1.1, with Ax/d¼0.001 for various base aspect ratios. Unlike the corresponding resonance excitation cases, standing
waves do not develop for a/b¼10/1 and 10/5. The envelope periods for a/b¼10/1 and 10/5 are longer than for a/b¼10/9
and 10/10. The regime is invariably planar, with the wave pattern exhibiting beating behaviour for all base aspect ratios.
As the amplitude increases to 0.01, the wave motions become almost unaffected by the base aspect ratio (Fig. 21).

Fig. 22 depicts the free surface elevation time history for diagonal excitation of the tank with Ax/d¼Ay/d¼0.001. For a
base aspect ratio of 10/1, the primary regime of wave motion is planar in the y-direction. Fig. 23 shows the free surface
motions at locations E and F. There is evidence of wave beating, for example when the free surface oscillations in the x-and
y-direction almost disappear between 100 and 110 non-dimensional time units, and the wave regime becomes swirling.

As the width of the tank is increased relative to the length, the wave motions become more complicated. For a/b¼10/5,
the wave pattern is almost beating but mixed, and includes planar, diagonal, clockwise swirling and counter-clockwise
swirling regimes. Fig. 24 presents the free surface elevation time histories at locations A to F.

Fig. 24. Wave elevation time histories for base aspect ratio¼10/5, diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼1.1, Oy/o01¼1.1.
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When the tank has a nearly square base (a/b¼10/9), the wave motion is swirling, although the maximum elevations at
points A and D are about 60% less than points B and D. Also, the envelope durations at A and D are about 62% less than at B
and C (Fig. 25). The maximum elevation is the smallest in comparison with the results obtained for other base aspect
ratios. For the square base, the wave motion is diagonal and the pattern is beating, as expected. The maximum elevation in
this case is between that obtained for a/b¼10/5 and 10/9.

The wave motion regimes and patterns obtained when the excitation amplitude is increased to Ai/d¼0.01 are similar to
those obtained for the small amplitude cases where Ai/d¼0.001. Table 3 summarizes the results obtained for diagonal
excitation. Fig. 26 compares free surface motions at the tank corners for different base aspect ratios when Ox/o10¼1.1 and
Ai/d¼0.01.

In short, the present study shows that the base aspect ratio is very important in shallow water sloshing. More research
is required, especially with regard to theory of stability and laboratory experiments.

6.3. Amplitude effect

The final part of the parameter study examines the influence of longitudinal excitation amplitude on free surface
motions in a tank with dimensions d/a¼d/b¼0.1. Four different non-dimensional amplitudes are considered: Ax/d¼0.001,
0.005, 0.01 and 0.1.

Fig. 25. Wave elevation time histories for base aspect ratio¼10/9: diagonal excitation, Ax/d¼Ay/d¼0.001, Ox/o10¼1.1, Oy/o01¼1.1.
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Fig. 27 shows the free surface elevation time histories obtained for all four amplitudes at locations E and F when the
non-dimensional excitation frequency is Ox/o10¼0.9999. Ripples can be observed at E, and become more pronounced
with excitation amplitude due to the effect of nonlinearity. At F, steep waves of growing amplitude develop with time.

Fig. 26. Wave elevation time histories for different base aspect ratios: diagonal excitation, Ax/d¼Ay/d¼0.01, Ox/o10¼1.1, Oy/o01¼1.1.

Table 3
Effect of the base aspect ratio on wave regime and pattern (beating excitation frequency, diagonal excitation).

Base aspect ratio Amplitude Wave regime Wave pattern

10/1 0.001 Planar Beating

10/1 0.01 Planar Beating

10/5 0.001 Mixing Beating

10/5 0.01 Mixing Beating

10/9 0.001 Swirling Beating

10/9 0.01 Swirling Beating

10/10 0.001 Diagonal Beating

10/10 0.01 Diagonal Beating
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Fig. 27. Wave elevation time histories for different excitation amplitudes, Ox/o10¼0.9999.

Fig. 28. Snapshots of the free surface profile: Ax/d¼0.001, Ox/o10¼0.9999 (the profile is not scaled).

M.-J. Chern et al. / Journal of Fluids and Structures 35 (2012) 160–184180



Wave motions are planar in all cases. Figs. 28–31 show free surface snapshots of all cases when non-dimensional times are
equal to 5, 15, 25 and 35. When Ax/d¼0.001 (Fig. 28), the sloshing elevation is lower than other cases. Some perturbations
are seen but they cannot change the wave regime. When Ax/d¼0.005 and 0.01 (Figs. 29 and 30), perturbations are much
less than the first case. In the largest amplitude case (Ax/d¼0.1), the wave behaviour is almost the same as the other cases
before 30.0 non-dimensional time units. But after that the bore appears gradually. This behaviour can be seen obviously in
the last snapshot of the Fig. 31. Similar effects are noted by Armenio and La Rocca (1996) for two-dimensional roll motion
of water in a tank.

Fig. 32 shows the free surface time histories obtained for Ox/o10¼1.1. The results are essentially the same as for
Ox/o10¼0.9999, except that the bore is not created until the end of the simulation.

7. Conclusions

A pseudospectral s-transformation model has been developed for simulating sloshing waves in a 3-D rectangular tank.
The model was verified against analytical solutions for sloshing in a two-dimensional tank and an alternative numerical
prediction for a three-dimensional tank. A parameter study was undertaken for sloshing in a shallow water tank, where
d/a¼0.1 and the excitation frequency, base aspect ratio, and excitation amplitude were varied. First, the wave pattern was

Fig. 29. Snapshots of the free surface profile: Ax/d¼0.005, Ox/o10¼0.9999 (the profile is not scaled).
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classified for small amplitude longitudinal excitation of Ax/d¼0.001 in a square tank for various near-resonant excitation
frequencies. It was found that the patterns altered from decay, to beating, to resonant, to beating as Ox/o10 varied from 0.6
to 1.2.

The sloshing dynamics obtained for four base aspect ratios was studied. For small-amplitude longitudinal resonance
excitation, the wave pattern was that of standing waves when the base aspect ratio is far from unity. In contrast, resonant
waves were produced in nearly square and square basins. For the largest amplitude longitudinal excitation (Ax/d¼
Ay/d¼0.01) the resonant free surface motions were similar regardless of the base aspect ratio, with the wave height
increasing monotonically. The wave pattern and wave regime were more sensitive to the base aspect ratio of the tank
when the resonant excitation was diagonal. Table 2 summarizes the findings for the resonant excitation cases. For a
beating excitation frequency in the longitudinal direction, the wave motions were in the planar regime with a beating
pattern, as expected, regardless of base aspect ratio. For diagonal beating excitation, the wave regimes were dependent on
the base aspect ratio. Table 3 summarizes the findings for the beating excitation cases. Finally, the effect of longitudinal
excitation amplitude was considered. For large amplitude resonance excitation, a bore was induced in the tank. In general,
the larger was the amplitude, the steeper the waves due to the effect of nonlinearity.

The present study has demonstrated the capability of the PSME method to simulate the behaviour of sloshing waves in
a tank. Also, results show that in shallow water containers, the behaviour of the sloshing strongly depends on the base
aspect ratio. It is more obvious when the exciting amplitude is small. Future investigation is required into the effect of base
aspect ratio on sloshing in shallow and very shallow water containers.

Fig. 30. Snapshots of the free surface profile: Ax/d¼0.01, Ox/o10¼0.9999 (the profile is not scaled).
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Fig. 31. Snapshots of the free surface profile: Ax/d¼0. 1, Ox/o10¼0.9999 (the profile is not scaled).

Fig. 32. Wave elevation time histories for different longitudinal excitation amplitudes, at Ox/o10¼1.1.
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