

Edinburgh Research Explorer

Distributed Coordinate Descent Method for Learning with Big
Data

Citation for published version:
Richtárik, P & Taká, M 2013 'Distributed Coordinate Descent Method for Learning with Big Data' ArXiv.

Link:
Link to publication record in Edinburgh Research Explorer

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Oct. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/distributed-coordinate-descent-method-for-learning-with-big-data(a081a4ae-b689-4903-96c3-fb23356e16b3).html

Distributed Coordinate Descent Method for Learning with Big Data

Peter Richtárik PETER.RICHTARIK@ED.AC.UK
Martin Takáč MARTIN.TAKI@GMAIL.COM

University of Edinburgh, King’s Buildings, EH9 3JZ Edinburgh, United Kingdom

Abstract
In this paper we develop and analyze Hydra: HY-
briD cooRdinAte descent method for solving loss
minimization problems with big data. We ini-
tially partition the coordinates (features) and as-
sign each partition to a different node of a clus-
ter. At every iteration, each node picks a ran-
dom subset of the coordinates from those it owns,
independently from the other computers, and in
parallel computes and applies updates to the se-
lected coordinates based on a simple closed-form
formula. We give bounds on the number of itera-
tions sufficient to approximately solve the prob-
lem with high probability, and show how it de-
pends on the data and on the partitioning. We
perform numerical experiments with a LASSO
instance described by a 3TB matrix.

1. Introduction
Randomized coordinate descent methods (CDMs) are in-
creasingly popular in many learning tasks, including boost-
ing, large scale regression and training linear support vector
machines. CDMs update a single randomly chosen coordi-
nate at a time by moving in the direction of the negative
partial derivative (for smooth losses). Methods of this type,
in various settings, were studied by several authors, includ-
ing Hsieh et al. (2008); Shalev-Shwartz & Tewari (2009);
Nesterov (2012); Richtárik & Takáč (2012c); Necoara et al.
(2012); Tappenden et al. (2013b); Shalev-Shwartz & Zhang
(2013b); Lu & Xiao (2013).

It is clear that in order to utilize modern shared-memory
parallel computers, more coordinates should be updated at
each iteration. One way to approach this is via partition-
ing the coordinates into blocks, and operating on a single
randomly chosen block at a time, utilizing parallel linear al-
gebra libraries. This approach was pioneered by Nesterov
(2012) for smooth losses, and was extended to regularized
problems in (Richtárik & Takáč, 2012c). Another popular

approach involves working with a random subset of coordi-
nates (Bradley et al., 2011). These approaches can be com-
bined, and theory was developed for methods that update a
random subset of blocks of coordinates at a time (Richtárik
& Takáč, 2012a; Fercoq & Richtárik, 2013). Further recent
works on parallel coordinate descent include (Richtárik &
Takáč, 2012b; Mukherjee et al., 2013; Fercoq, 2013; Tap-
penden et al., 2013a; Shalev-Shwartz & Zhang, 2013a).

However, none of these methods are directly scalable to
problems of sizes so large that a single computer is unable
to store the data describing the instance, or is unable to do
so efficiently (e.g., in memory). In a big data scenario of
this type, it is imperative to split the data across several
nodes (computers) of a cluster, and design efficient meth-
ods for this memory-distributed setting.

Hydra. In this work we design and analyze the first dis-
tributed coordinate descent method: Hydra: HYbriD cooR-
dinAte descent. The method is “hybrid” in the sense that it
uses parallelism at two levels: i) across a number of nodes
in a cluster and ii) utilizing the parallel processing power
of individual nodes1.

Assume we have c nodes (computers) available, each with
parallel processing power. In Hydra, we initially partition
the coordinates {1, 2, . . . , d} into c sets, P1, . . . ,Pc, and
assign each set to a single computer. For simplicity, we as-
sume that the partition is balanced: |Pk| = |Pl| for all k, l.
Each computer owns the coordinates belonging to its par-
tition for the duration of the iterative process. Also, these
coordinates are stored locally. The data matrix describing
the problem is partitioned in such a way that all data de-
scribing features belonging to Pl is stored at computer l.
Now, at each iteration, each computer, independently from
the others, chooses a random subset of τ coordinates from
those they own, and computes and applies updates to these
coordinates. Hence, once all computers are done, cτ coor-
dinates will have been updated. The resulting vector, stored
as c vectors of size s = d/c each, in a distributed way, is
the new iterate. This process is repeated until convergence.

1We like to think of each node of the cluster as one of the many
heads of the mythological Hydra.

ar
X

iv
:1

31
0.

20
59

v1
 [

st
at

.M
L

]
 8

 O
ct

 2
01

3

Distributed Coordinate Descent Method for Learning with Big Data

It is important that the computations are done locally on
each node, with minimum communication overhead. We
comment on this and further details in the text.

The main insight. We show that the parallelization po-
tential of Hydra, that is, its ability to accelerate as τ is in-
creased, depends on two data-dependent quantities: i) the
spectral norm of the data (σ) and ii) a partition-induced
norm of the data (σ′). The first quantity completely de-
scribes the behavior of the method in the c = 1 case. If σ
is small, then utilization of more processors (i.e., increas-
ing τ) leads to nearly linear speedup. If σ is large, speedup
may be negligible, or there may be no speedup whatsoever.
Hence, the size of σ suggests whether it is worth to use
more processors or not. The second quantity, σ′, charac-
terizes the effect of the initial partition on the algorithm,
and as such is relevant in the c > 1 case. Partitions with
small σ′ are preferable. For both of these quantities we de-
rive easily computable and interpretable estimates (ω for
σ and ω′ for σ′), which may be used by practitioners to
gauge, a-priori, whether their problem of interest is likely
to be a good fit for Hydra or not. We show that for strongly
convex losses, Hydra outputs an ε-accurate solution with
probability at least 1 − ρ after dβ

cτµ log(1
ερ) iterations (we

ignore some small details here), where a single iteration
corresponds to changing of τ coordinates by each of the c
nodes; β is a stepsize parameter and µ is a strong convexity
constant.

Outline. In Section 2 we describe the structure of the op-
timization problem we consider in this paper and state as-
sumptions. We then proceed to Section 3, in which we de-
scribe the method. In Section 4 we prove bounds on the
number of iterations sufficient for Hydra to find an approx-
imate solution with arbitrarily high probability. A discus-
sion of various aspects of our results, as well as a compar-
ison with existing work, can be found in Section 5. Imple-
mentation details of our distributed communication proto-
col are laid out in Section 6. Finally, we comment on our
computational experiments with a big data (3TB matrix)
L1 regularized least-squares instance in Section 7.

2. The problem
We study the problem of minimizing regularized loss,

min
x∈Rd

L(x) := f(x) +R(x), (1)

where f is a smooth convex loss, and R is a convex (and
possibly nonsmooth) regularizer.

Loss function f . We assume that there exists a positive
definite matrix M ∈ Rd×d such that for all x, h ∈ Rd,

f(x+ h) ≤ f(x) + (f ′(x))Th+ 1
2h

TMh, (2)

square loss (SL) 1
2 (yj −Aj:x)2

logistic loss (LL) log(1 + exp(−yjAj:x))
square hinge loss (HL) 1

2 max{0, 1− yjAj:x}2

Table 1. Examples of loss functions ` covered by our analysis.

and write M = ATA, where A is some n-by-d matrix.

Example. These assumptions are natural satisfied in many
popular problems. A typical loss function has the form

f(x) =
∑n
j=1 `(x,Aj:, y

j), (3)

where A ∈ Rn×d is a matrix encoding n examples with d
features, Aj: denotes j-th row of A, ` is some loss function
acting on a single example and y ∈ Rn is a vector of labels.
For instance, in the case of the three losses ` in Table 1,
assumption (2) holds with M = ATA for SL and HL, and
M = 1

4A
TA for LL (Bradley et al., 2011).

Regularizer R. We assume that R is separable, i.e., that
it can be decomposed as R(x) =

∑d
i=1Ri(x

i), where xi

is the i-th coordinate of x, and the functions Ri : R →
R ∪ {+∞} are convex and closed.

Example. The choice Ri(t) = 0 for t ∈ [0, 1] and
Ri(t) = +∞, otherwise, effectively models bound con-
straints, which are relevant for SVM dual. Other popular
choices are R(x) = λ‖x‖1 (L1-regularizer) and R(x) =
λ
2 ‖x‖

2
2 (L2-regularizer).

3. Distributed coordinate descent
We consider a setup with c computers (nods) and first par-
tition the d coordinates (features) into c sets P1, . . . ,Pc of
equal cardinality, s := d/c, and assign set Pl to node l.
Hydra is described in Algorithm 1. Hydra’s convergence
rate depends on the partition; we comment on this later in
Sections 4 and 5. Here we simply assume that we work
with a fixed partition. We now comment on the steps.

Step 3. At every iteration, each of the c computers picks
a random subset of τ features from those that it owns, uni-
formly at random, independently of the choice of the other
computers. Let Ŝl denote the set picked by node l . More
formally, we require that i) Ŝl ⊆ Pl, ii) Prob(|Ŝl| = τ) =
1, where 1 ≤ τ ≤ s, and that iii) all subsets of Pl of car-
dinality τ are chosen equally likely. In summary, at every
iteration of the method, features belonging to the random
set Ŝ := ∪cl=1Ŝl are updated. Note that Ŝ has size cτ ,
but that, as a sampling from the set {1, 2, . . . , d}, it does
not choose all cardinality cτ subsets of {1, 2, . . . , d} with
equal probability. Hence, the analysis of parallel coordi-
nate descent methods of Richtárik & Takáč (2012a) does
not apply. We will say that Ŝ is a τ -distributed sampling
with respect to the partition {P1, . . . ,Pc}.

Distributed Coordinate Descent Method for Learning with Big Data

Algorithm 1 Hydra: HYbriD cooRdinAte descent
Parameters: x0 ∈ Rd; {P1, . . . ,Pc}; β > 0, τ ; k ← 0

1 repeat
2 xk+1 ← xk
3 for each computer l ∈ {1, . . . , c} in parallel do
4 Pick a random set of coordinates Ŝl ⊆ Pl , |Ŝl| = τ

5 for each i ∈ Ŝl in parallel do
6 hik ← arg mint f

′
i(xk)t+Miiβ

2 t2+Ri(x
i
k+t)

7 Apply the update: xik+1 ← xik+1 + hik

8 until happy;

Step 4. Once computer l has chosen its set of τ coordinates
to work on in Step 3, it will in parallel compute (Step 5)
and apply (Step 6) updates to them.

Step 5. This is a critical step where updates to coordinates
i ∈ Ŝl are computed. By f ′i(x) we denote the i-th partial
derivative of f at x. Notice that the formula is very simple
as it involves one dimensional optimization.

Closed-form formulas. Often, hik can be computed in
closed form. For Ri(t) = λi|t| (weighted L1 regularizer),
hik is the point in the interval [

−λi−f ′i(xk)
Miiβ

,
λi−f ′i(xk)

Miiβ
] which

is closest to −xik. If Ri(t) = λi
2 t

2 (weighted L2 regular-

izer), then hik = − f ′i(xk)
λiMiiβ

.

Choice of β. The choice of the step-size parameter β is
of paramount significance for the performance of the al-
gorithm, as argued for different but related algorithms by
Richtárik & Takáč (2012a); Takáč et al. (2013); Fercoq &
Richtárik (2013). We will discuss this issue at length in
Sections 4 and 5.

Implementation issues: Note that computer l needs to know
the partial derivatives of f at xk for coordinates i ∈ Ŝl ⊆
Pl. However, xk, as well as the data describing f , is dis-
tributed among the c computers. One thus needs to devise
a fast and communication efficient way of computing these
derivatives. This issue will be dealt with in Section 6.

Step 6. Here all the τ updates computed in Step 5 are ap-
plied to the iterate. Note that the updates are local: com-
puter l only updates coordinates it owns, which are stored
locally. Hence, this step is communication-free.

Step 7. Here we are just establishing a way of labeling it-
erates. That is, starting with xk, all c computers modify cτ
entries of xk in total, in a distributed way, and the result
is called xk+1. Our method is therefore inherently syn-
chronous. We do not allow, in our analysis, for the various
computers to proceed until all computers have updated all
coordinates. In practice, a carefully designed asynchronous
implementation will be faster, and our experiments in Sec-
tion 7 are done with such an implementation.

4. Convergence rate analysis
Notation: For any G ∈ Rd×d, let DG = Diag(G). That
is, DG

ii = Gii for all i and DG
ij = 0 for i 6= j. Further,

letBG ∈ Rd×d be the block diagonal of G associated with
the partition {P1, . . . ,Pc}. That is, BG

ij = Gij whenever
i, j ∈ Pl for some l, and BG

ij = 0 otherwise.

4.1. Four important quantities: σ′, ω′, σ, ω

Here we define two quantities, σ′ and σ, which, as we
shall see, play an important role in the computation of
the stepsize parameter β of Algorithm 1, and through it,
in understanding its rate of convergence and potential for
speedup by parallelization and distribution. As we shall
see, these quantities might not be easily computable. We
therefore also provide each with an easily computable and
interpretable upper bound, ω′ for σ′ and ω for σ.

Let

Q := (DM)−1/2M(DM)−1/2, (4)

and notice that, by construction, Q has ones on the diago-
nal. Since M is positive definite, Q is as well. For each
l ∈ {1, . . . , c}, let Al ∈ Rn×s be the column submatrix
of A corresponding to coordinates i ∈ Pl. The diagonal
blocks of BQ are the matrices Qll, l = 1, 2, . . . , c, where

Qkl := (DAT
kAk)−1/2AT

kAl(D
AT
l Al)−1/2 ∈ Rs×s (5)

for each k, l ∈ {1, 2, . . . , c}. We now define

σ′ := max{xTQx : x ∈ Rd, xTBQx ≤ 1}, (6)

σ := max{xTQx : x ∈ Rd, xTx ≤ 1}. (7)

A useful consequence of (6) is the inequality

xT (Q−BQ)x ≤ (σ′ − 1)xTBQx. (8)

Sparsity. Let arl be the r-th row of Al, and define

ω′ := max
1≤r≤n

{ω′(r) := |{l : l ∈ {1, . . . , c}, arl 6= 0}|} ,

where ω′(r) is the number of matrices Al with a nonzero
in row r. Likewise, define

ω := max
1≤r≤n

{ω(r) := |{l : l ∈ {1, . . . , c}, Arl 6= 0}|} ,

where ω(r) is the number of nonzeros in the r-th row of A.

Lemma 1. The following relations hold:

max{1, σs } ≤ σ
′ ≤ ω′ ≤ c, 1 ≤ σ ≤ ω ≤ d. (9)

Distributed Coordinate Descent Method for Learning with Big Data

4.2. Choice of the stepsize parameter β

We analyze Hydra with stepsize parameter β ≥ β∗, where

β∗ := β∗1 + β∗2 ,

β∗1 := 1 + (τ−1)(σ−1)
s1

, β∗2 :=
(
τ
s −

τ−1
s1

)
σ′−1
σ′ σ,

(10)

and s1 = max(1, s − 1). As we shall see in Theorem 5,
fixing c and τ , the number of iterations needed by Hydra
find a solution is proportional to β. Hence, we would wish
to use β which is as small as possible, but not smaller than
the safe choice β = β∗, for which convergence is proved.
In practice, β can often be chosen smaller than β∗, leading
to larger steps and faster convergence. If the quantities σ
and σ′ are hard to compute, then one can replace them by
the easily computable upper bounds ω and ω′, respectively.
However, there are cases when σ can be efficiently approx-
imated and is much smaller than ω. In some ML datasets
with A ∈ {0, 1}n×d, σ is close to the average number of
nonzeros in a row of A, which can be significantly smaller
than the maximum, ω. On the other hand, if σ is difficult
to compute, ω may provide a good proxy. Similar remarks
apply to σ′. In the τ ≥ 2 case (which covers all interesting
uses of Hydra), we may ignore β∗2 altogether, as implied by
the following result.

Lemma 2. If τ ≥ 2, then β∗ ≤ 2β∗1 .

This eliminates the need to compute σ′, at the expense of at
most doubling β, which translates into doubling the num-
ber of iterations.

4.3. Separable approximation

We first establish a useful identity for the expected value
of a random quadratic form obtained by sampling the rows
and columns of the underlying matrix via the distributed
sampling Ŝ. Note that the result is a direct generalization
of Lemma 1 in (Takáč et al., 2013) to the c > 1 case.

For x ∈ Rd and ∅ 6= S ⊆ [d] := {1, 2, . . . , d}, we write
xS :=

∑
i∈S x

iei, where ei is the i-th unit coordinate vec-
tor. That is, xS is the vector in Rd whose coordinates i ∈ S
are identical to those of x, but are zero elsewhere.

Lemma 3. Fix arbitrary G ∈ Rd×d and x ∈ Rd and let
s1 = max(1, s− 1). Then E[(xŜ)TGxŜ] is equal to

τ
s

[
α1x

TDGx+ α2x
TGx+ α3x

T (G−BG)x
]
, (11)

where α1 = 1− τ−1
s1

, α2 = τ−1
s1

, α3 = τ
s −

τ−1
s1

.

We now use the above lemma to compute a separable
quadratic upper bound on E[(hŜ)TMhŜ].

Lemma 4. For all h ∈ Rd,

E
[
(hŜ)TMhŜ

]
≤ τ

sβ
∗ (hTDMh

)
. (12)

Proof. For x := (DM)1/2h, we have (hŜ)TMhŜ =

(xŜ)TQxŜ . Taking expectations on both sides, and ap-
plying Lemma 3, we see that E[(hŜ)TMhŜ] is equal to
(11) for G = Q. It remains to bound the three quadrat-
ics in (11). Since DQ is the identity matrix, xTDQx =
hTDMh. In view of (7), the 2nd term is bounded as
xTQx ≤ σxTx = σhTDMh. The last term, xT (Q−BQ),
is equal to

= σ′−1
σ′ x

T (Q−BQ)x+ 1
σ′x

T (Q−BQ)x

(8)
≤ σ′−1

σ′ x
T (Q−BQ)x+ σ′−1

σ′ x
TBQx

= σ′−1
σ′ x

TQx
(7)
≤ σ′−1

σ′ σx
Tx = σ′−1

σ′ σh
TDMh.

It only remains to plug in these three bounds into (11).

Inequalities of type (12) were first proposed and studied by
Richtárik & Takáč (2012a)—therein called Expected Sep-
arable Overapproximation (ESO)—and were shown to be
important for the convergence of parallel coordinate de-
scent methods. However, they studied a different class of
loss functions f (convex smooth and partially separable)
and different types of random samplings Ŝ, which did not
allow them to propose an efficient distributed sampling pro-
tocol leading to a distributed algorithm. An ESO inequality
was recently used by Takáč et al. (2013) to design a mini-
batch stochastic dual coordinate ascent method (paralleliz-
ing the original SDCA methods of Hsieh et al. (2008))
and mini-batch stochastic subgradient descent method (Pe-
gasos of Shalev-Shwartz et al. (2011)), and give bounds
on how mini-batching leads to acceleration. While it was
long observed that mini-batching often accelerates Pega-
sos in practice, it was only shown with the help of an ESO
inequality that this is so also in theory. Recently, Fer-
coq & Richtárik (2013) have derived ESO inequalities for
smooth approximations of nonsmooth loss functions and
hence showed that parallel coordinate descent methods can
accelerate on their serial counterparts on a class of struc-
tured nonsmooth convex losses. As a special case, they ob-
tain a parallel randomized coordinate descent method for
minimizing the logarithm of the exponential loss. Again,
the class of losses considered in that paper, and the sam-
plings Ŝ, are different from ours. None of the above meth-
ods are distributed.

4.4. Fast rates for distributed learning with Hydra

Let x0 be the starting point of Algorithm 1, x∗ be an opti-
mal solution of problem (1) and let L∗ = L(x∗). Further,
define ‖x‖2M :=

∑d
i=1 Mii(x

i)2 (a weighted Euclidean
norm on Rd) and assume that f and R are strongly convex
with respect to this norm with convexity parameters µf and
µR, respectively. A function φ is strongly convex with pa-

Distributed Coordinate Descent Method for Learning with Big Data

rameter µφ > 0 if for all x, h ∈ Rd,

φ(x+ h) ≥ φ(x) + (φ′(x))Th+
µφ
2 ‖h‖

2
M,

where φ′(x) is a subgradient (or gradient) for φ at x.

We now show that Hydra decreases strongly convex L with
an exponential rate in ε.

Theorem 5. Assume L is strongly convex with respect to
the norm ‖ · ‖M, with µf + µR > 0. Choose x0 ∈ Rd,
0 < ρ < 1, 0 < ε < L(x0)− L∗ and

T ≥ d

cτ
× β + µR
µf + µR

× log

(
L(x0)− L∗

ερ

)
, (13)

where β ≥ β∗ and β∗ is given by (10). If {xk} are the
random points generated by Hydra (Algorithm 1), then

Prob(L(xT)− L∗ ≤ ε) ≥ 1− ρ.

Proof. Outline: We first claim that for all x, h ∈ Rd,

E[f(x+hŜ)] ≤ f(x)+ E[|Ŝ|]
d

(
(f ′(x))Th+ β

2h
TDMh

)
.

To see this, substitute h ← hŜ into (2), take expectations
on both sides and then use Lemma 4 together with the fact
that for any vector a, E[aThŜ] = E[|Ŝ|]

d = τc
sc = τ

s . The
rest follows by following the steps in the proof in (Richtárik
& Takáč, 2012a, Theorem 20).

A similar result, albeit with the weaker rate O(sβτε), can be
established in the case when neither f nor R are strongly
convex. In big data setting, where parallelism and distribu-
tion is unavoidable, it is much more relevant to study the
dependence of the rate on parameters such as τ and c. We
shall do so in the next section.

5. Discussion
In this section we comment on several aspects of the rate
captured in (13) and compare Hydra to selected methods.

5.1. Insights into the convergence rate

Here we comment in detail on the influence of the vari-
ous design parameters (c = # computers, s = # coordinates
owned by each computer, and τ = # coordinates updated by
each computer in each iteration), instance-dependent pa-
rameters (σ, ω, µR, µf), and parameters depending both on
the instance and design (σ′, ω′), on the stepsize parame-
ter β, and through it, on the convergence rate described in
Theorem 5.

special case β∗ β∗/(cτ)
any c
τ = 1

1 + σ
s

(
σ′−1
σ′

)
s+ σ

(
σ′−1
σ′

)
c = 1
any τ 1 + (τ−1)(σ−1)

d−1
d
τ

(
1 + (τ−1)(σ−1)

d−1

)
τc = d σ σ

Table 2. Stepsize parameter β = β∗ and the leading factor in the
rate (13) (assuming µR = 0) for several special cases of Hydra.

Strong convexity. Notice that the size of µR > 0 mit-
igates the effect of a possibly large β on the bound (13).
Indeed, for large µR, the factor (β + µR)/(µf + µR) ap-
proaches 1, and the bound (13) is dominated by the term
d
cτ , which means that Hydra enjoys linear speedup in c and
τ . In the following comments we will assume that µR = 0,
and focus on studying the dependence of the leading term
d βcτ on various quantities, including τ, c, σ and σ′.

Search for small but safe β. As shown by Takáč et al.
(2013, Section 4.1), mini-batch SDCA might diverge in the
setting with µf = 0 and R(x) ≡ 0, even for a simple
quadratic function with d = 2, provided that β = 1. Hence,
small values of β need to be avoided. However, in view of
Theorem 5, it is good if β is as small as possible. So, there
is a need for a “safe” formula for a small β. Our formula
(10), β = β∗, is serving that purpose. For a detailed in-
troduction into the issues related to selecting a good β for
parallel coordinate descent methods, we refer the reader to
the first 5 pages of (Fercoq & Richtárik, 2013).

The effect of σ′. If c = 1, then by Lemma 9, σ′ = c = 1,
and hence β∗2 = 0. However, for c > 1 we may have
β∗2 > 0, which can hence be seen as a price we need to
pay for using more nodes. The price depends on the way
the data is partitioned to the nodes, as captured by σ′. In
favorable circumstances, σ′ ≈ 1 even if c > 1, leading to
β∗2 ≈ 0. However, in general we have the bound σ′ ≥ cσ

d ,
which gets worse as c increases and, in fact, σ′ can be as
large as c. Note also that ξ is decreasing in τ , and that
ξ(s, s) = 0. This means that by choosing τ = s (which ef-
fectively removes randomization from Hydra), the effect of
β∗2 is eliminated. This may not be always possible as often
one needs to solve problems with s vastly larger than the
number of updates that can be performed on any given node
in parallel. If τ � s, the effect of β∗2 can be controlled,
to a certain extent, by choosing a partition with small σ′.
Due to the way σ′ is defined, this may not be an easy task.
However, it may be easier to find partitions that minimize
ω′, which is often a good proxy for σ′. Alternatively, we
may ignore estimating σ′ altogether by setting β = 2β∗1 ,
as mentioned before, at the price of at most doubling the
number of iterations.

Distributed Coordinate Descent Method for Learning with Big Data

Speedup by increasing τ . Let us fix c and compare the
quantities γτ := β∗

cτ for τ = 1 and τ = s. We now show
that γ1 ≥ γs, which means that if all coordinates are up-
dated at every node, as opposed to one only, then Hydra run
with β = β∗ will take fewer iterations. Comparing the 1st
and 3rd row of Table 2, we see that γ1 = s + σ σ

′−1
σ′ and

γs = σ. By Lemma 1, γ1 − γs = s− σ
σ′ ≥ 0.

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

10
4

σ

β
d

/ (
cτ

)

τ=1600 τ=12800 τ=105

(a) (c, s) = (1, 105)

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

10
4

σ

β
d

/ (
cτ

)

τ=16 τ=128 τ=1000

(b) (c, s) = (102, 103)

Figure 1. In terms of the number of iterations, very little is lost by
using c > 1 as opposed to c = 1.

Price of distribution. For illustration purposes, consider
a problem with d = 105 coordinates. In Figure 1(a) we de-
pict the size of dβ

∗
1

cτ for c = 1 and several choices of τ , as a
function of σ. We see that Hydra works better for small val-
ues of σ and that with increasing σ, the benefit of using up-
dating more coordinates diminishes. In Figure 1(a) we con-
sider the same scenario, but with c = 100 and s = 1000,
and we plot d2β∗1

cτ on the y axis. Note that the red dotted line
in both plots corresponds to a parallel update of 1600 co-
ordinates. In (a) all are updated on a single node, whereas
in (b) we have 100 nodes, each updating 16 coordinates at
a time. Likewise, the dashed blue dashed and solid black
lines are also comparable in both plots. Note that the setup
with c = 10 has a slightly weaker performance, the lines
are a bit lower. This is the price we pay for using c nodes as
opposed to a single node (obviously, we are ignoring com-
munication cost here). However, in big data situations one
simply has no other choice but to utilize more nodes.

5.2. Comparison with other methods

While we are not aware of any other distributed coordinate
descent method, Hydra in the c = 1 case is closely related
to several existing parallel coordinate descent methods.

Hydra vs Shotgun. The Shotgun algorithm (parallel co-
ordinate descent) of Bradley et al. (2011) is similar to Hy-
dra for c = 1. Some of the differences: Bradley et al.
(2011) only consider R equal to the L1 norm and their
method works in dimension 2d instead of the native dimen-
sion d. Shotgun was not analyzed for strongly convex f ,
and convergence in expectation was established. Moreover,

` f ′i(x) Mii

SL
∑m
j=1 −Aji(y

j −Aj:x) ‖A:i‖22
LL

∑m
j=1 −yjAji

exp(−yjAj:x)
1+exp(−yjAj:x)

1
4
‖A:i‖22

HL
∑
j : yjAj:x<1

(
−yjAji(1− yjAj:x)

)
‖A:i‖22

Table 3. Information needed in Step 5 of Hydra for f given by (3)
in the case of the three losses ` from Table 1.

Bradley et al. (2011) analyze the step-size choice β = 1,
fixed independently of the number of parallel updates τ ,
and give results that hold only in a “small τ” regime. In
contrast, our analysis works for any choice of τ .

Hydra vs PCDM. For c = 1, Hydra reduces to the par-
allel coordinate descent method (PCDM) of Richtárik &
Takáč (2012a), but with a better stepsize parameter β. We
were able to achieve smaller β (and hence better rates) be-
cause we analyze a different and more specialized class
of loss functions (those satisfying (2)). In comparison,
Richtárik & Takáč (2012a) look at a general class of par-
tially separable losses. Indeed, in the c = 1 case, our dis-
tributed sampling Ŝ reduces to the sampling considered in
(Richtárik & Takáč, 2012a) (τ -nice sampling). Moreover,
our formula for β (see Table 2) is essentially identical to
the formula for β provided in (Richtárik & Takáč, 2012a,
Theorem 14), with the exception that we have σ where they
have ω. By 9, we have σ ≤ ω, and hence our β is smaller.

Hydra vs SPCDM. SPCDM of (Fercoq & Richtárik,
2013) is PCDM applied to a smooth approximation of a
nonsmooth convex loss; with a special choice of β, similar
to β1. As such, it extends the reach of PCDM to a large
class of nonsmooth losses, obtaining O(1

ε2) rates.

Hydra vs mini-batch SDCA. Takáč et al. (2013) studied
the performance of a mini-batch stochastic dual coordinate
ascent for SVM dual (“mini-batch SDCA”). This is a spe-
cial case of our setup with c = 1, convex quadratic f and
Ri(t) = 0 for t ∈ [0, 1] and Ri(t) = +∞ otherwise. Our
results can thus be seen as a generalization of the results in
that paper to a larger class of loss functions f , more general
regularizers R, and most importantly, to the distributed set-
ting (c > 1). Also, we give O(log 1

ε) bounds under strong
convexity, whereas (Takáč et al., 2013) give O(1

ε) results
without assuming strong convexity. However, Takáč et al.
(2013) perform a primal-dual analysis, whereas we do not.

6. Distributed computation of the gradient
In this section we described some important elements of
our distributed implementation.

Note that in Hydra, xk is stored in a distributed way.
That is, the values xik for i ∈ Pl are stored on com-

Distributed Coordinate Descent Method for Learning with Big Data

puter l. Moreover, Hydra partitions A columnwise as
A = [A1, . . . ,Ac], where Al consists of columns i ∈ Pl
of A, and stores Al on computer l. So, A is chopped into
smaller pieces with stored in a distributed way in fast mem-
ory (if possible) across the c nodes. Note that this allows
the method to work with large matrices.

At Step 5 of Hydra, node l at iteration k+ 1 needs to know
the partial derivatives f ′i(xk+1) for i ∈ Ŝl ⊆ Pl. We now
describe several efficient distributed protocols for the com-
putation of f ′i(xk+1) for functions f of the form (3), in the
case of the three losses ` given in Table 1 (SL, LL, HL). The
formulas for f ′i(x) are summarized in Table 3 (Aj: refers
to the j-th row of A). Let Dy := Diag(y).

6.1. Basic protocol

If we write hik = 0 if i is not updated in iteration k, then

xk+1 = xk +

c∑
l=1

∑
i∈Ŝl

hikei. (14)

Now, if we let

gk :=

{
Axk − y, for SL,
−DyAxk, for LL and HL,

(15)

then by combining (14) and (15), we get

gk+1 = gk +

c∑
l=1

δgk,l, where

δgk,l =

{∑
i∈Ŝl h

i
kA:i, for SL,∑

i∈Ŝl −h
i
kD

yA:i, for LL and HL.

Note that the value δgk,l can be computed on node l as all
the required data is stored locally. Hence, we let each node
compute δgk,l, and then use a reduce all operation to add up
the updates to obtain gk+1, and pass the sum to all nodes.
Knowing gk+1, node l is then able to compute f ′i(xk+1) for
any i ∈ Pl as follows:

f ′i(xk+1) =

AT

:igk+1 =
∑n
j=1 Ajig

j
k+1, for SL,∑n

j=1 yjAji
exp(gjk+1)

1+exp(gjk+1)
, for LL,∑

j : gjk+1>−1 yjAji(1 + gjk+1), for HL.

6.2. Advanced protocols

The basic protocol discussed above has obvious drawbacks.
Here we identify them and propose modifications leading
to better performance.

• alternating Parallel and Serial regions (PS): The ba-
sic protocol alternates between two procedures: i) a

computationally heavy one (done in parallel) with no
MPI communication, and ii) MPI communication (se-
rial). An easy fix would be to dedicate 1 thread to deal
with communication and the remaining threads within
the same computer for computation. We call this pro-
tocol Fully Parallel (FP). Figure 2 compares the basic
(left) and FP (right) approaches.

Figure 2. Parallel-serial (PS; left) vs Fully Parallel (FP; right) ap-
proach.

• Reduce All (RA): In general, reduce all operations may
significantly degrade the performance of distributed
algorithms. Communication taking place only be-
tween nodes close to each other in the network, e.g.,
nodes directly connected by a cable, is more effi-
cient. Here we propose the Asynchronous Stream-
Lined (ASL) communication protocol in which each
node, in a given iteration, sends only 1 message
(asynchronously) to a nearby computer, and also re-
ceives only one message (asynchronously) from an-
other nearby computer. Communication hence takes
place in an Asynchronous Ring. This communication
protocol requires significant changes in the algorithm.
Figure 3 illustrates the flow of messages at the end of
the k-th iteration for c = 4.

Figure 3. ASL protocol with c = 4 nodes. In iteration k, node l
computes δgk,l, and sends δGk,l to l+.

We order the nodes into a ring, denoting l− and l+ the
two nodes neighboring node l. Node l only receives
data from l−, and sends data to l+. Let us denote by
δGk,l the data sent by node l to l+ at the end of it-
eration k. When l starts iteration k, it already knows
δGk−1,l− .2 Hence, data which will be sent at the end
of the k-th iteration by node l is given by

δGk,l = δGk−1,l− − δgk−c,l + δgk,l. (16)

2Initially, we let δgk,l = δGk,l = 0 for all k ≤ 0.

Distributed Coordinate Descent Method for Learning with Big Data

This leads to the update rule

gk+1,l = gk,l + δgk,l + δGk,l− − δgk−c+1,l.

ASL needs less communication per iteration. On the
other hand, information is propagated more slowly to
the nodes through the ring, which may adversely af-
fect the number of iterations till convergence (note
that we do not analyze Hydra with this communication
protocol). Indeed, it takes c−1 iterations to propagate
information to all nodes. Also, storage requirements
have increased: at iteration k we need to store the vec-
tors δgt,l for k − c ≤ t ≤ k on computer l.

7. Experiments
In this section we present numerical evidence that Hydra is
capable to efficiently solve big data problems. We have a
C++ implementation, using Boost::MPI and OpenMP. Ex-
periments were executed on a Cray XE6 cluster with 128
nodes; with each node equipped with two AMD Opteron
Interlagos 16-core processors and 32 GB of RAM. We con-
sider a LASSO problem, i.e., f given by (3) with ` being
the square loss (SL) and R(x) = ‖x‖1. In order to to test
Hydra under controlled conditions, we adapted the LASSO
generator proposed by Nesterov (2013, Section 6); modifi-
cations were necessary as the generator does not work well
in the big data setting.

τ comm. protocol organization avg. time speedup
10 RA PS 0.040 —
10 RA FP 0.035 1.15
10 ASL FP 0.025 1.62
102 RA PS 0.100 —
102 RA FP 0.077 1.30
102 ASL FP 0.032 3.11
103 RA PS 0.321 —
103 RA FP 0.263 1.22
103 ASL FP 0.249 1.29

Table 4. Duration of a single Hydra iteration for 3 communication
protocols. The basic RA-PS protocol is always the slowest, but
follows the theoretical analysis. ASL-FP can be 3× faster.

Basic communication protocol vs advanced protocols.
As discussed in Section 6, the advantage of the RA protocol
is the fact that Theorem 5 was proved in this setting, and
hence can be used as a safe benchmark for comparison with
the advanced protocols.

Table 4 compares the average time per iteration for the 3
approaches and 3 choices of τ . We used 128 nodes, each
running 4 MPI processes (hence c = 512). Each MPI pro-
cess runs 8 OpenMP threads, giving 4,096 cores in total.
The data matrix A has n = 109 rows and d = 5 × 108

columns, and has 3 TB, double precision. One can observe
that in all cases, ASL-FP yields largest gains compared to
the benchmark RA-PS protocol. Note that ASL has some
overhead in each iteration, and hence in cases when com-
putation per node is small (τ = 10), the speedup is only
1.62. When τ = 102 (in this case the durations of com-
putation and communication were comparable), ASL-FP is
3.11 times faster than RA-PS. But the gain becomes again
only moderate for τ = 103; this is because computation
now takes much longer than communication, and hence the
choice of strategy for updating the auxiliary vector gk is
less significant. Let us remark that the use of larger τ re-
quires larger β, and hence possibly more iterations (in the
worst case).

Huge LASSO problem. We generated a sparse matrix A
with block angular structure, depicted in (17).

A =

Aloc

1 0 · · · 0

0 Aloc
2 · · · 0

...
...

. . .
...

Aglob
1 Aglob

2 · · · Aglob
c

 . (17)

Such matrices often arise in stochastic optimization. Each
Hydra head (=node) l owns two matrices: Aloc

l ∈
R1,952,148×976,562 and Aglob

l ∈ R500,224×976,562. The av-
erage number of nonzero elements per row in the local part
of Al is 175, and 1, 000 for the global part. Optimal so-
lution x∗ has exactly 160, 000 nonzero elements. Figure 4
compares the evolution of L(xk)−L∗ for ASL-FP and RA-
FP.

Remark: When communicating gkl, only entries corre-
sponding to the global part of Al need to be communicated,
and hence in RA, a reduce all operation is applied to vec-
tors δgglob,l ∈ R500,224. In ASL, vectors with the same
length are sent.

0 500 1000 1500 2000

10
−10

10
0

10
10

Elapsed Time [s]

L
(x

k
)−

L
*

ASL−FP

RA−FP

Figure 4. Evolution of L(xk)−L∗ in time. ASL-FP significantly
outperforms RA-FP. The loss L is pushed down by 25 degrees of
magnitude in less than 30 minutes (3TB problem).

Distributed Coordinate Descent Method for Learning with Big Data

8. Extensions
Our results can be extended to the setting where coordi-
nates are replaced by blocks of coordinates, as in (Nesterov,
2012), and to partially separable losses, as in (Richtárik &
Takáč, 2012a).

References
Bradley, J., Kyrola, A., Bickson, D., and Guestrin, C. Paral-

lel coordinate descent for l1-regularized loss minimiza-
tion. In ICML, 2011.

Fercoq, O. Parallel coordinate descent for the AdaBoost
problem. In ICMLA, 2013.

Fercoq, O. and Richtárik, P. Smooth minimization of non-
smooth functions with parallel coordinate descent meth-
ods. arXiv:1309.5885, 2013.

Hsieh, C-J., Chang, K-W., Lin, C-J., Keerthi, S.S., , and
Sundarajan, S. A dual coordinate descent method for
large-scale linear SVM. In ICML, 2008.

Lu, Z. and Xiao, L. On the complexity analy-
sis of randomized block-coordinate descent methods.
arXiv:1305.4723, 2013.

Mukherjee, I., Singer, Y., Frongillo, R., and Canini, K. Par-
allel boosting with momentum. In ECML, 2013.

Necoara, I., Nesterov, Yu., and Glineur, F. Efficiency of
randomized coordinate descent methods on optimization
problems with linearly coupled constraints. Technical
report, 2012.

Nesterov, Yu. Efficiency of coordinate descent methods
on huge-scale optimization problems. SIAM Journal on
Optimization, 22(2):341–362, 2012.

Nesterov, Yu. Gradient methods for minimizing compos-
ite objective function. Mathematical Programming, pp.
125–161, 2013.

Richtárik, P. and Takáč, M. Parallel coordinate descent
methods for big data optimization. arXiv:1212.0873,
2012a.

Richtárik, P. and Takáč, M. Efficient serial and parallel co-
ordinate descent methods for huge-scale truss topology
design. In Operations Research Proceedings, pp. 27–32.
Springer, 2012b.

Richtárik, P. and Takáč, M. Iteration complexity of ran-
domized block-coordinate descent methods for minimiz-
ing a composite function. Mathematical Programming,
2012c.

Shalev-Shwartz, S. and Tewari, A. Stochastic methods for
`1 regularized loss minimization. In ICML, 2009.

Shalev-Shwartz, S. and Zhang, T. Accelerated mini-batch
stochastic dual coordinate ascent. arXiv:1305.2581v1,
May 2013a.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual coordi-
nate ascent methods for regularized loss minimization.
JMLR, 14:567–599, 2013b.

Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A.
Pegasos: Primal estimated sub-gradient solver for SVM.
Mathematical Programming, pp. 3–30, 2011.

Takáč, M., Bijral, A., Richtárik, P., and Srebro, N. Mini-
batch primal and dual methods for SVMs. In ICML,
2013.

Tappenden, R., Richtárik, P., and Büke, B. Separable ap-
proximations and decomposition methods for the aug-
mented Lagrangian. arXiv:1308.6774, 2013a.

Tappenden, R., Richtárik, P., and Gondzio, J. Inexact
coordinate descent: complexity and preconditioning.
arXiv:1304.5530, 2013b.

Distributed Coordinate Descent Method for Learning with Big Data

A. Proof Lemma 1
1. The inequality ω′ ≤ c is obviously true. By considering x with zeroes in all coordinates except those that belong to
Pk (where k is an arbitrary but fixed index), we see that xTQx = xTBQx, and hence σ′ ≥ 1.

2. We now establish that σ′ ≤ ω′. Let φ(x) = 1
2x

TQx, x ∈ Rd; its gradient is

φ′(x) = Qx. (18)

For each k = 1, 2, . . . , c, define a pair of conjugate norms on Rs as follows:

‖v‖2(k) := 〈Qkkv, v〉, (‖v‖∗(k))
2 := max

‖v′‖(k)≤1
〈v′, v〉 = 〈(Qkk)−1v, v〉. (19)

Let Uk be a column submatrix of the d-by-d identity matrix corresponding to columns i ∈ Pk. Clearly, Ak = AUk

and UT
kQek is the k-th diagonal block of Q, i.e.,

UT
kQUk

(4)
= Qkk. (20)

Moreover, for x ∈ Rd and k ∈ {1, 2, . . . , c}, let x(k) = UT
k x and, fixing positive scalars w1, . . . , wc, define a norm

on Rd as follows:

‖x‖w :=

(
c∑

k=1

wk‖x(k)‖2(k)

)1/2

. (21)

Now, we claim that for each k,

‖UT
k φ
′(x+ Ukh

(k))−UT
k φ
′(x)‖∗(k) ≤ ‖h

(k)‖(i).

This means that φ′ is block Lipschitz (with blocks corresponding to variables in Pk), with respect to the norm ‖ · ‖(k),
with Lipschitz constant 1. Indeed, this is, in fact, satisfied with equality:

‖UT
k φ
′(x+ Ukh

(k))−UT
k φ
′(x)‖∗(k)

(18)
= ‖UT

kQ(x+ Ukh
(k))−UkQx‖∗(k)

= ‖UT
kQUkh

(k)‖∗(k)

(20)
= ‖Qkkh(k)‖∗(k)

(19)
= 〈(Qkk)−1Qkkh(k),Qkkh(k)〉 (19)

= ‖h(k)‖(k).

This is relevant because then, by Richtárik & Takáč (2012a, Theorem 7; see comment 2 following the theorem), it
follows that φ′ is Lipschitz with respect to ‖ · ‖w, where wk = 1 for all k = 1, . . . , c, with Lipschitz constant ω′ (ω′

is the degree of partial block separability of φ with respect to the blocks Pk). Hence,

1
2x

TQx = φ(x) ≤ φ(0) + (φ′(0))Tx+
ω′

2
‖x‖2w

(19)+(21)
=

ω′

2

c∑
k=1

〈Qkkx(k), x(k)〉 =
ω′

2
(xTBQx),

which establishes the inequality σ′ ≤ ω′.

3. We now show that σs ≤ σ
′. If we let θ := max{xTBQx : xTx ≤ 1}, then xTBQx ≤ θxTx and hence {x : xTx ≤

1} ⊆ {x : xTBQx ≤ θ}. This implies that

σ = max
x
{xTQx : xTx ≤ 1} ≤ max

x
{xTQx : xTBQx ≤ θ} = θσ′.

Distributed Coordinate Descent Method for Learning with Big Data

It now only remains to argue that θ ≤ s. For x ∈ Rd, let x(k) denote its subvector in Rs corresponding to coordinates
i ∈ Pk and ∆ = {p ∈ Rc : p ≥ 0,

∑c
k=1 pk = 1}. We can now write

θ = max
x

{
c∑

k=1

(x(k))TQkkx(k) :

c∑
k=1

(x(k))Tx(k) ≤ 1

}

= max
p∈∆

c∑
k=1

{
max(x(k))TQkkx(k) : (x(k))Tx(k) = pk

}
= max

p∈∆

c∑
k=1

pk max
{

(x(k))TQkkx(k) : (x(k))Tx(k) = 1
}

= max
1≤k≤c

max
{

(x(k))TQkkx(k) : (x(k))Tx(k) = 1
}
≤ s.

In the last step we have used the fact that σ(Q) = σ ≤ c = dim(Q), proved in steps 1 and 2, applied to the setting
Q← Qkk.

4. The chain of inequalities 1 ≤ σ ≤ ω ≤ c is obtained as a special case of the chain 1 ≤ σ′ ≤ ω′ ≤ d (proved above)
when c = d (and hence Pl = {l} for l = 1, . . . , d). Indeed, in this case BQ = DQ, and so xTBQx = xTDQx =
xTx, which means that σ′ = σ and ω′ = ω.

B. Proof of Lemma 2
It is enough to argue that β∗2 ≤ β∗1 . Notice that β∗2 is increasing in σ′. On the other hand, from Lemma 1 we know that
σ′ ≤ c = d

s . So, it suffices to show that(
τ

s
− τ − 1

s− 1

)(
1− s

d

)
σ ≤ 1 +

(τ − 1)(σ − 1)

s− 1
.

After straightforward simplification we observe that this inequality is equivalent to (s − τ) + (τ − 2)σ + σ
d (s + τ) ≥ 0,

which clearly holds.

C. Proof of Lemma 3
In the s = 1 case the statement is trivially true. Indeed, we must have τ = 1 and thus Prob(Ŝ = {1, 2, . . . , d}) = 1,
hŜ = h, and hence

E
[
(hŜ)TQhŜ

]
= hTQh.

This finishes the proof since τ−1
s1

= 0.

Consider now the s > 1 case. From Lemma 3 in Richtárik & Takáč (2012a) we get

E
[
(hŜ)TQhŜ

]
=
∑
i∈Ŝ

∑
j∈Ŝ

Qijh
ihj =

d∑
i=1

d∑
j=1

pijQijh
ihj , (22)

where pij = Prob(i ∈ Ŝ & j ∈ Ŝ). One can easily verify that

pij =

τ
s , if i = j,
τ(τ−1)
s(s−1) , if i 6= j and i ∈ Pl, j ∈ Pl for some l,
τ2

s2 , if i 6= j and i ∈ Pk, j ∈ Pl for k 6= l.

In particular, the first case follows from Eq (32) and the second from Eq (37) in Richtárik & Takáč (2012a). It only remains
to substitute pij into (22) and transform the result into the desired form.

	1 Introduction
	2 The problem
	3 Distributed coordinate descent
	4 Convergence rate analysis
	4.1 Four important quantities: ', ', ,
	4.2 Choice of the stepsize parameter
	4.3 Separable approximation
	4.4 Fast rates for distributed learning with Hydra

	5 Discussion
	5.1 Insights into the convergence rate
	5.2 Comparison with other methods

	6 Distributed computation of the gradient
	6.1 Basic protocol
	6.2 Advanced protocols

	7 Experiments
	8 Extensions
	A Proof Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 3

