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Abstract We propose and analyze a new parallel coordinate descent method—
NSync—in which at each iteration a random subset of coordinates is updated, in
parallel, allowing for the subsets to be chosen using an arbitrary probability law. This
is the first method of this type. We derive convergence rates under a strong convexity
assumption, and comment on how to assign probabilities to the sets to optimize the
bound. The complexity and practical performance of the method can outperform its
uniform variant by an order of magnitude. Surprisingly, the strategy of updating a
single randomly selected coordinate per iteration—with optimal probabilities—may
require less iterations, both in theory and practice, than the strategy of updating all
coordinates at every iteration.

Keywords Coordinate descent · Arbitrary sampling · First order method ·
Complexity

1 Introduction

In this work we consider the unconstrained minimization problem

min
x∈Rn

φ(x), (1)
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whereφ is strongly convex and differentiable.Wepropose a new randomized algorithm
for solving this problem—NSync (Nonuniform SYNchronous Coordinate descent)—
and analyze its iteration complexity. The main novelty of this paper is the algorithm
itself. In particular, NSync is the first method which in each iteration updates a random
subset of coordinates, allowing for an arbitrary probability law (sampling) to be used
for this.

1.1 The algorithm

In NSync (Algorithm 1), we first assign a probability pS ≥ 0 to every subset S of the
set of coordinates [n] := {1, . . . , n}, with

∑

S⊆[n]
pS = 1,

and pick stepsize parameters wi > 0, i = 1, 2, . . . , n, one for each coordinate.

Algorithm 1 (NSync)

Input: Initial point x0 ∈ Rn , subset probabilities {pS} and stepsize parameters w1, . . . , wn > 0
for k = 0, 1, 2, . . . do
Select a random set of coordinates Ŝ ⊆ {1, . . . , n} such that Prob(Ŝ = S) = pS
Update selected coordinates: xk+1 = xk − ∑

i∈Ŝ
1
wi

∇iφ(xk )ei

end for

At every iteration, a random set Ŝ is generated, independently from previous itera-
tions, following the law

Prob(Ŝ = S) = pS, S ⊆ [n],

and then coordinates i ∈ Ŝ are updated in parallel by moving in the direction of the
negative partial derivative with stepsize 1/wi . By∇iφ(x)wemean 〈∇φ(x), ei 〉, where
ei ∈ Rn is the i th unit coordinate vector.

The updates are synchronized: no processor/thread is allowed to proceed before
all updates are applied, generating the new iterate xk+1. We study the complexity of
NSync for arbitrary sampling Ŝ. In particular, Ŝ can be non-uniform in the sense that
the probability that coordinate i is chosen,

pi := Prob(i ∈ Ŝ) =
∑

S:i∈S
pS,

is allowed to vary with i .

1.2 Literature

Serial stochastic coordinate descent methods were proposed and analyzed in [8,
15,20,23], and more recently in various settings in [4,9–11,14,24,26,29]. Parallel
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methods were considered in [2,19,21], and more recently in [1,5,6,12,13,25,27,28].
A memory distributed method scaling to big data problems was recently devel-
oped in [22]. A nonuniform coordinate descent method updating a single coordinate
at a time was proposed in [20], and one updating two coordinates at a time in
[14].

NSync is the first randomized method in the literature which is capable of updating
a subset of the coordinates without any restrictions, i.e., according to an arbitrary
probability law, except for the necessary requirement that pi > 0 for all i . In particular,
NSync is the first nonuniform parallel coordinate descent method.

In the time between the first online appearance of this work on arXiv (October 2013;
arXiv:1310.3438), and the time this paper went to press, this work led to a number
of extensions [3,7,16–18]. All of these papers share the defining feature of NSync,
namely, its ability to work with an arbitrary probability law defining the selection of
the active coordinates in each iteration. These works also utilize the nonuniform ESO
assumption introduced here (Assumption 1), as it appears to be key in the study of
such methods.

2 Analysis

In this section we provide a complexity analysis of NSync.

2.1 Assumptions

Our analysis of NSync is based on two assumptions. The first assumption generalizes
the ESO concept introduced in [21] and later used in [5,6,22,27,28] to nonuniform
samplings. The second assumption requires that φ be strongly convex.

Notation For x, y, u ∈ Rn we write ‖x‖2u := ∑
i ui x

2
i , 〈x, y〉u := ∑n

i=1 ui yi xi ,
x • y := (x1y1, . . . , xn yn) and u−1 := (1/u1, . . . , 1/un). For S ⊆ [n] and h ∈ Rn ,
let h[S] := ∑

i∈S hi ei .

Assumption 1 (Nonuniform ESO: Expected Separable Overapproximation) Assume
that p = (p1, . . . , pn)T > 0 and that for some positive vector w ∈ Rn and all
x, h ∈ Rn , the following inequality holds:

E[φ(x + h[Ŝ])] ≤ φ(x) + 〈∇φ(x), h〉p + 1

2
‖h‖2p•w. (2)

As soon as φ has a Lipschitz continuous gradient, then for every random sampling
Ŝ there exist positive weightsw1, . . . , wn such that Assumption 1 holds. In this sense,
the assumption is not restrictive. Inequalities of the type (2), in the uniform case
(pi = p j for all i, j), were studied in [6,21,22,27]. Motivated by the introduction of
the nonuniform ESO assumption in this paper, and the development in Sect. 3 of our
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work, an entire paper was recently written, dedicated to the study of nonuniform ESO
inequalities [16].1

We now turn to the second and final assumption.

Assumption 2 (Strong convexity)We assume that φ is γ -strongly convexwith respect
to the norm ‖ · ‖v , where v = (v1, . . . , vn)

T > 0 and γ > 0. That is, we require that
for all x, h ∈ Rn ,

φ(x + h) ≥ φ(x) + 〈∇φ(x), h〉 + γ

2
‖h‖2v. (3)

2.2 Complexity

We can now establish a bound on the number of iterations sufficient for NSync to
approximately solve (1) with high probability. We believe it is remarkable that the
proof is very concise.

Theorem 3 Let Assumptions 1 and 2 be satisfied. Choose x0 ∈ Rn, 0 < ε < φ(x0)−
φ∗ and 0 < ρ < 1, where φ∗ := minx φ(x). Let

� := max
i

wi

pivi
. (4)

If {xk} are the random iterates generated by NSync, then

K ≥ �

γ
log

(
φ(x0) − φ∗

ερ

)
⇒ Prob(φ(xK ) − φ∗ ≤ ε) ≥ 1 − ρ. (5)

Moreover, we have the lower bound

� ≥
(

n∑

i=1

wi

vi

) /
E[|Ŝ|]. (6)

Proof We first claim that φ is μ-strongly convex with respect to the norm ‖ · ‖w•p−1 ,
i.e.,

φ(x + h) ≥ φ(x) + 〈∇φ(x), h〉 + μ

2
‖h‖2

w•p−1 , (7)

1 A clarifying comment answering a question raised by the reviewer: The authors of [16] give explicit
formulas for w for which (2) holds, under an assumption that is slightly weaker than Lipschitz continuity
of the gradient of φ. In particular, they study functions φ admitting the global quadratic upper bound

φ(x + h) ≤ φ(x) + 〈∇φ(x), h〉 + 1
2 ‖Ah‖2

for all x, h ∈ Rn , where A ∈ Rm×n . One of the consequence of theirwork is that the parametersw1, . . . , wn
must necessarily satisfy the inequalities: wi ≥ ‖A:i‖2, where A:i is the i th column of A. Moreover, as long
as Prob(|Ŝ| ≤ τ) = 1 for some τ , then (2) holds for wi = τ‖A:i‖2. However, this choice of parameters is
rather conservative. The goal of [16] is to give explicit and tight formulas for w, where hopefully wi will
be much smaller than τ‖A:i‖2, utilizing specific properties of the sampling Ŝ and data matrix A.
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where μ := γ /�. Indeed, this follows by comparing (3) and (7) in the light of (4).
Let x∗ be such that φ(x∗) = φ∗. Using (7) with h = x∗ − x ,

φ∗ − φ(x)
(7)≥ min

h′∈Rn
〈∇φ(x), h′〉 + μ

2
‖h′‖2

w•p−1 = − 1

2μ
‖∇φ(x)‖2p•w−1 . (8)

Lethk := −(Diag(w))−1∇φ(xk). Then xk+1 = xk+(hk)[Ŝ], andutilizingAssump-
tion 1, we get

E[φ(xk+1) | xk] = E[φ(xk + (hk)[Ŝ])
(2)≤ φ(xk) + 〈∇φ(xk), hk〉p + 1

2
‖hk‖2p•w

= φ(xk) − 1

2
‖∇φ(xk)‖2p•w−1

(8)≤ φ(xk) − μ(φ(xk) − φ∗).

Taking expectations in the last inequality and rearranging the terms, we obtain

E[φ(xk+1) − φ∗] ≤ (1 − μ)E[φ(xk) − φ∗] ≤ (1 − μ)k+1(φ(x0) − φ∗).

Using this, Markov inequality, and the definition of K , we finally get

Prob(φ(xK ) − φ∗ ≥ ε) ≤ E[φ(xK ) − φ∗]
ε

≤ (1 − μ)K (φ(x0) − φ∗)
ε

≤ ρ.

Let us now establish the last claim.
First, note that (see [21, Sec 3.2] for more results of this type),

∑

i

pi =
∑

i

∑

S:i∈S
pS =

∑

S

∑

i :i∈S
pS =

∑

S

pS|S| = E[|Ŝ|]. (9)

Letting � := {p′ ∈ Rn : p′ ≥ 0,
∑

i p
′
i = E[|Ŝ|]}, we have

�
(4)+(9)≥ min

p′∈�
max
i

wi

p′
ivi

= 1

E[|Ŝ|]
n∑

i=1

vi

wi
,

where the last equality follows since optimal p′
i is proportional to vi/wi . �

Theorem 3 is generic in the sense that we do not say when Assumption 1 is satisfied
and how should one go about choosing the stepsizes {wi } and probabilities {pS}. In the
next section we address these issues. On the other hand, this abstract setting allowed
us to write a brief complexity proof.

The quantity �, defined in (4), can be interpreted as a condition number associated
with the problem and our method. Hence, as we vary the distribution of Ŝ,�will vary.
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It is clear intuitively that � can be arbitrarily bad. Indeed, by choosing a sampling Ŝ
which “nearly” ignores one or more of the coordinates (by setting pi ≈ 0 for some i),
we should expect the number of iterations to grow as the method will necessarily be
very slow in updating these coordinates.

In the light of this, inequality (6) is useful as it gives a useful expression for bounding
� from below.

2.3 Change of variables

Consider the change of variables y = Diag(d)x , where d > 0. Defining φd(y) :=
φ(x), we get ∇φd(y) = (Diag(d))−1∇φ(x). It can be seen that (2), (3) can equiva-
lently be written in terms of φd , with w replaced by wd := w • d−2 and v replaced by
vd := v •d−2. By choosing di = √

vi , we obtain vdi = 1 for all i , recovering standard
strong convexity.

3 Nonuniform samplings and ESO

In this section we consider a problem with standard assumptions and show that the
(admittedly nonstandard) ESO assumption, Assumption 1, is satisfied.

Consider now problem (1) with φ of the form

φ(x) := f (x) + γ

2
‖x‖2v, (10)

where v > 0. Note that Assumption 2 is satisfied. We further make the following two
assumptions.

Assumption 4 (Smoothness) Function f has Lipschitz gradient with respect to the
coordinates, with positive constants L1, . . . , Ln . That is,

|∇i f (x) − ∇i f (x + tei )| ≤ Li |t |

for all x ∈ Rn and t ∈ R.

Assumption 5 (Partial separability) Function f has the form

f (x) =
∑

J∈J
f J (x),

where J is a finite collection of nonempty subsets of [n] and f J are differentiable
convex functions such that f J depends on coordinates i ∈ J only. Let ω := maxJ |J |.
We say that f is separable of degree ω.

Uniform parallel coordinate descent methods for regularized problems with f of
the above structure were analyzed in [21].
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Example 1 Let

f (x) = 1

2
‖Ax − b‖2,

where A ∈ Rm×n . Then Li = ‖A:i‖2 and

f (x) = 1

2

m∑

j=1

(A j :x − b j )
2,

where A:i is the i th column of A, A j : is the j th row of A and ‖ · ‖ is the standard
L2 norm. Then ω is the maximum # of nonzeros in a row of A.

Nonuniform sampling Instead of considering the general case of arbitrary pS
assigned to all subsets of [n], here we consider a special kind of sampling having
two advantages: (i) sets can be generated easily, (ii) it leads to larger stepsizes 1/wi

and hence improved convergence rate.
Fix τ ∈ [n] and c ≥ 1 and let S1, . . . , Sc be a collection of (possibly overlapping)

subsets of [n] such that

|S j | ≥ τ

for all j = 1, 2, . . . , c and

c⋃

j=1

S j = [n].

Moreover, let q = (q1, . . . , qc) > 0 be a probability vector. Let Ŝ j be τ -nice sampling
from S j ; that is, Ŝ j picks subsets of S j having cardinality τ , uniformly at random. We
assume these samplings are independent. Now, Ŝ is defined as follows: We first pick
j ∈ {1, . . . , c} with probability q j , and then draw Ŝ j .
Note thatwe donot need to compute the quantities pS , S ⊆ [n], to executeNSync. In

fact, it is much easier to implement the sampling via the two-tier procedure explained
above. Sampling Ŝ is a nonuniform variant of the τ -nice sampling studied in [21],
which here arises as a special case for c = 1.

Note that

pi =
c∑

j=1

q j
τ

|S j |δi j > 0, i ∈ [n], (11)

where δi j = 1 if i ∈ S j , and 0 otherwise.
In our next result we show that Assumption 1 is satisfied for f and the sampling

described above.

Theorem 6 Let Assumptions 4 and 5 be satisfied, and let Ŝ be the sampling described
above. ThenAssumption1 is satisfiedwith p given by (11)andanyw = (w1, . . . , wn)

T

for which
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wi ≥ w∗
i := Li + vi

pi

c∑

j=1

q j
τ

|S j |δi j
(
1 + (τ − 1)(ω j − 1)

max{1, |S j | − 1}
)

(12)

for all i ∈ [n], where
ω j := max

J∈J
|J ∩ S j | ≤ ω.

Proof Since f is separable of degree ω, so is φ (because 1
2‖x‖2v is separable). Now,

E[φ(x + h[Ŝ])] = E[E[φ(x + h[Ŝ j ]) | j]] =
c∑

j=1

q jE[φ(x + h[Ŝ j ])]

≤
c∑

j=1

q j

{
f (x)+ τ

|S j |
(

〈∇ f (x), h[S j ]〉+
1

2

(
1+ (τ −1)(ω j −1)

max{1, |S j |−1}
)

‖h[S j ]‖2L+v

)}
,

where the last inequality follows from the ESO for τ -nice samplings established in
[21, Theorem 15]. The claim now follows by comparing the above expression and (2).

�

4 Optimal probabilities

Observe that the formula (12) can be used to design a sampling (characterized by the
sets S j and probabilities q j ) that maximizes μ, which in view of Theorem 3 optimizes
the convergence rate of the method.

4.1 Serial setting

Consider the serial version of NSync (Prob(|Ŝ| = 1) = 1). We can model this via
c = n, with Si = {i} and pi = qi for all i ∈ [n]. In this case, using (11) and (12), we
get wi = w∗

i = Li + vi . Minimizing � in (4) over the probability vector p gives the
optimal probabilities (we refer to this as the optimal serial method)

p∗
i = (Li + vi )/vi∑

j (L j + v j )/v j
, i ∈ [n], (13)

and optimal complexity

�OS =
n∑

i=1

Li + vi

vi
= n +

n∑

i=1

Li

vi
, (14)

Note that the uniform sampling, defined by pi = 1/n for all i ∈ [n], leads to
�US := n + nmax

j

L j

v j
.
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Note that this can be much larger than �OS . We refer to NSync utilizing this
sampling as the uniform serial method.

Moreover, the condition numbers Li/vi can not be improved via such a change
of variables. Indeed, under the change of variables y = Diag(d)x , the gradient of
f d(y) := f (Diag(d−1)y) has coordinate Lipschitz constants Ld

i = Li/d2i , while the
weights in (10) change to vdi = vi/d2i .

4.2 Optimal serial method can be faster than the fully parallel method

Tomodel the “fully parallel” setting (i.e., the variant ofNSync updating all coordinates
at every iteration), we can set c = 1 and τ = n, which yields

�FP = ω + ωmax
j

L j

v j
.

Since ω ≤ n, it is clear that �US ≥ �FP . However, for large enough ω it will be
the case that �FP ≥ �OS , implying, surprisingly, that the optimal serial method can
be faster than the fully parallel method.

4.3 Parallel setting

Fix τ and sets S j , j = 1, 2, . . . , c, and define

θ := max
j

(
1 + (τ − 1)(ω j − 1)

max{1, |S j | − 1}
)

.

Consider running NSync with stepsizeswi = θ(Li +vi ) (note thatwi ≥ w∗
i , so we

are fine). From (4), (11) and (12) we see that the complexity of NSync is determined
by

� = max
i

wi

pivi
= θ

τ
max
i

(
1 + Li

vi

) ⎛

⎝
c∑

j=1

q j
δi j

|S j |

⎞

⎠
−1

.

The probability vector q minimizing this quantity can be computed by solving a linear
program with c + 1 variables (q1, . . . , qc, α), 2n linear inequality constraints and a
single linear equality constraint:

max
α,q

⎧
⎨

⎩α subject to α ≤ (bi )T q for all i, q ≥ 0,
∑

j

q j = 1

⎫
⎬

⎭,

where bi ∈ Rc, i ∈ [n], are given by

bij = vi

(Li + vi )

δi j

|S j | .
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Fig. 1 Left optimal sampling (OS) is better than uniform sampling (US). Right nonuniform serial method
(NS), updating a single coordinate in each iteration, can be faster than the fully parallel (FP) method, which
updates all coordinates in each iteration

5 Experiments

We now conduct two preliminary small scale experiments to illustrate the theory; the
results are depicted in Fig. 1. All experiments are with problems of the form (10) with
f chosen as in Example 1.
In the left plotwe chose A ∈ R2×30, γ = 1, v1 = 0.05, vi = 1 for i �= 1 and Li = 1

for all i . We compare the US method (pi = 1/n, blue) with the OS method [pi given
by (13), red]. The dashed lines show 95 % confidence intervals (we run the methods
100 times, the line in the middle is the average behavior). While OS can be faster, it
is sensitive to over/under-estimation of the constants Li , vi . In the right plot we show
that a nonuniform serial (NS) method can be faster than the fully parallel (FP) variant
(we have chosen m = 8, n = 10 and three values of ω). On the horizontal axis we
display the number of epochs, where one epoch corresponds to updating n coordinates
(for FP this is a single iteration, whereas for NS it corresponds to n iterations).
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17. Qu, Z., Richtárik, P., Takáč, M., Fercoq, O.: Stochastic Dual Newton Ascent for Empirical Risk
Minimization. arXiv:1502.02268

18. Qu, Z., Richtárik, P., Zhang, T.: Randomized Dual Coordinate Ascent with Arbitrary Sampling.
arXiv:1411.5873 (2014)
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