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Brief Communications

Maturation of AMPAR Composition and the GABAAR
Reversal Potential in hPSC-Derived Cortical Neurons

Matthew R. Livesey,1,2,3* Bilada Bilican,2,3,4* Jing Qiu,1 Nina M. Rzechorzek,2,3,4 Ghazal Haghi,1,2,3 Karen Burr,2,3,4

Giles E. Hardingham,1 Siddharthan Chandran,2,3,4 and David J.A. Wyllie1

1Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; and 2Euan MacDonald Centre for MND Research,
3Centre for Clinical Brain Sciences, and 4MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom

Rodent-based studies have shown that neurons undergo major developmental changes to ion channel expression and ionic gradients that
determine their excitation-inhibition balance. Neurons derived from human pluripotent stem cells theoretically offer the potential to study
classical developmental processes in a human-relevant system, although this is currently not well explored. Here, we show that excitatory
cortical-patterned neurons derived from multiple human pluripotent stem cell lines exhibit native-like maturation changes in AMPAR compo-
sition such that there is an increase in the expression of GluA2(R) subunits. Moreover, we observe a dynamic shift in intracellular Cl� levels,
which determines the reversal potential of GABAAR-mediated currents and is influenced by neurotrophic factors. The shift is concomitant with
changes in KCC2 and NKCC1 expression. Because some human diseases are thought to involve perturbations to AMPAR GluA2 content and
others in the chloride reversal potential, human stem-cell-derived neurons represent a valuable tool for studying these fundamental properties.

Key words: GABA; glutamate; neurotransmitter; patch clamp; qRT-PCR; stem cells

Introduction
The ability to generate in vitro cortical neuronal populations
from human pluripotent stem cells (hPSCs) provides an experi-
mental resource for the investigation of human cortical physiol-
ogy and disease (Hansen et al., 2011). hPSCs have been used to
derive human excitatory cortical neurons (hECNs) in vitro that
appear to recapitulate aspects of in vivo cortical development
(Johnson et al., 2007; Zeng et al., 2010; Shi et al., 2012; Espuny-
Camacho et al., 2013). We have developed a protocol that enables
the generation of a propagatable pool of anterior neural precur-
sor cells (aNPCs) from human embryonic stem (ES) cell and
induced pluripotent stem cell lines (Bilican et al., 2014). aNPCs
can be efficiently differentiated as a monolayer of excitatory cor-
tical neurons that are representative of neuronal populations
present within native upper and lower cortical layers. Our recent
study (Bilican et al., 2014) demonstrated the ability of hECNs to

fire action potentials, express voltage-gated and ligand-gated ion
channels, and exhibit putative synaptic activity; however, there is
a need to identify specific physiologically postnatal/adult proper-
ties of such neurons to aid in vitro human studies of neurodevel-
opmental physiology and modeling of neurodevelopmental and
adult diseases (Yang et al., 2011; Sandoe and Eggan, 2013).

Here, we demonstrate that hECNs differentiated from
aNPCs exhibit native-like maturation shifts in AMPAR subunit
composition and in the relative expression of the Na�-K�-Cl�

cotransporter-1 (NKCC1) and K�-Cl� cotransporter-2 (KCC2)
subunits to reduce intracellular chloride concentration ([Cl�]INT),
which determine the nature of GABA receptor type-A (GABAAR)
function (Blaesse et al., 2009). Beyond a platform for the study of
maturation, these hECNs are of interest for studies of human dis-
eases in which AMPAR and [Cl�]INT regulation are disrupted
(Blaesse et al., 2009; Wright and Vissel, 2012).

Materials and Methods
In vitro hECN preparation. A detailed description of the derivation of
hECNs, including immunohistochemistry protocols, can be found in
Bilican et al. (2014) and is summarized in Figure 1A. The H9 (female),
hereafter referred to as ES1 (WiCell) and SHEF4 (male), referred to as
ES2 (UK Stem Cell Bank) human ES cell lines were obtained under full
ethical/Institutional Review Board approval of the University of Edin-
burgh. For IPS1 (male M337V mutant line 1; Bilican et al., 2012) and
IPS2 (female in-house control line) human IPS cell lines, written in-
formed consent was obtained from each participant.

hECN culture media supplements. Forskolin (10 �M) was present dur-
ing weeks 1–3 of differentiation. For AMPAR characterization, medium
was supplemented with BDNF and GDNF (both 5 ng/ml) from week 3
onward. For experiments to determine [Cl �]INT, BDNF and GDNF were
omitted unless otherwise stated. When cultures were maintained beyond
5 weeks, the culture medium was supplemented with IGF1 (10 ng/ml)
from week 4 of differentiation.
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qRT-PCR. Protocols were performed as described previously (Bilican
et al., 2014). Forward and reverse sequences (5�33�) of primers used
were as follows: GRIA1: TGCTTTGTCGCAACTCACAGA, GGCAT
AGACTCCTTTGGAGAAC; GRIA2: CATTCAGATGAGACCCGACCT,
GGTATGCAAACTTGTCCCATTGA; GRIA3: ACCATCAGCATAGGTG-

GACTT, GGTTGGTGTTGTATAACTGCACG;
GRIA4: TTCCGAGCAGCGTGCAAATA, GCA
TTGGGGCTGGTGTTATGA; SLC12A2: TG-
GTGGTGCAATTGGTCTAA, TCCCACTCCA
TTCCAGCTAC; SLC12A5: GGAAGGAAATGA
GACGGTGA, TCCCACTCCTCTCCACAATC.

Electrophysiology. Whole-cell patch-clamp re-
cordings were made from hECNs using an Axon
Multiclamp 700B amplifier (Molecular Devices).
AMPA-evoked currents were made at a holding
potential of �74 mV in the presence of picro-
toxin (50 �M), strychnine (20 �M), and TTX (300
nM). GABA-evoked currents were made at a
holding potential of �14 mV in the presence of
CNQX (5 �M), D-APV (50 �M), strychnine, and
TTX. Patch electrodes were filled with a so-
lution containing the following (in mM): 155
K-gluconate, 2 MgCl2, 10 Na-HEPES, 10 Na-
PiCreatine, 2 Mg2-ATP, and 0.3 Na3-GTP, pH
7.3, 300 mOsm, resistances 4 –7 M�. Cover-
slips containing hECNs were placed in the re-
cording chamber and perfused using gravity
feed with an extracellular solution composed
of the following (in mM): 152 NaCl, 2.8 KCl, 10
HEPES, 2 CaCl2, 10 glucose, pH 7.3, 320 –330
mOsm. Recordings were made at 20 –23°C.
The liquid junction potential (LJP) was calcu-
lated to be �14 mV (JPCalc; Clampex). Perfo-
rated whole-cell recordings were performed
using a gramicidin (50 –100 �g/ml) supple-
mented patch-pipette solution containing the
following (in mM): 145 KCl, 1 MgCl2, 0.1
CaCl2, 1 EGTA, 10 HEPES, pH 7.3, 320 –330
mOsm; the LJP was calculated to be �4.3 mV.
The progress of perforation in the voltage-clamp
configuration was monitored by the development
of capacitive transients. Abrupt rises in transients
indicated membrane rupture to the whole-cell con-
figuration and the experiment was terminated.
Once perforation stability was established, series re-
sistances were �40 M�.

Data analysis. Nonstationary fluctuation
analysis of slowly rising whole-cell currents
evoked by AMPA were used to estimate the AM-
PAR unitary single-channel current. The analysis
of AC and DC currents was performed as de-
scribed previously (Brown et al., 1998) with the
exception that the AC-coupled signal was filtered
with a 1–1200 Hz band-pass frequency. All other
recordings were low-pass filtered online at 2 kHz
and all recordings were digitized at 10 kHz and
recorded to computer hard disk using the
WinEDR V2.7.6 Electrophysiology Data Re-
corder (J. Dempster, University of Strathclyde,
United Kingdom; www.strath.ac.uk/Departments/
PhysPharm/). [Cl�]INT was calculated using
the Nernst equation in which extracellular
[Cl �] was converted into activity using an
activity coefficient.

Data are presented as mean � SEM. The
number of experimental replicates is de-
noted as n and N represents the number of de
novo preparations of batches from which n is
obtained.

Results
Developmental maturation of AMPARs in hECNs
Functional AMPAR expression was assessed, at weekly intervals,
by the ability of AMPA (50 �M) to elicit whole-cell currents. With

Figure 1. AMPAR maturation. A, Schematic representation of hECNs derived from OTX2 � and Nestin � aNPCs. Neuronal differentia-
tion is initiated by the removal of FGF2 and cultures are maintained in a 3% O2 atmosphere (Bilican et al., 2014). Immunocytochemistry for
neuronal (�3-tubulin) astrocyte (glial fibrillary acidic protein; GFAP) and aNPC (Nestin) markers indicates increasing neuronal differentia-
tion with time in culture and sparse astrocytes throughout. Bar graph displays cell marker counts as a percentage of DAPI-stained nuclei.
hECNs are also immunopositive for deep and superficial cortical layer markers CTIP2 and SATB2, respectively. B, Weekly percentage re-
sponse (orange) to AMPA and the mean AMPA-mediated current density (black). n � 22–35, N 	 3. C, Mean normalized mRNA fold
expression data for AMPAR subunits GluA1-GluA4 in week 2 and 5 cells as assessed by qRT-PCR. n�4 – 6, N�3, unpaired t test. Relative
expression of each subunit of one of the week 2 samples is set to 1 after normalizing to �-actin. D, Example nonstationary fluctuation
analysis of AMPAR-mediated whole-cell currents from a week 2 (orange) and 5 (black) neurons. E, Plot of the relationship between the
variance of the AC-coupled current and DC-current amplitude for the respective recordings of week 2 (orange) and week 5 neurons (black)
shown in D. Linear regression analysis of the relationships for week 2 and 5 data gave respective unitary single-channel current amplitude
estimates of �1 pA and �0.3 pA from which the unitary conductance was calculated. F, A decrease in mean conductance is observed in
otherhPSClines.n�4 –13,N�1–3,unpaired ttest. G,TheswitchtolowerconductanceAMPARswasnotpreventedbyantagonists.n�
5–9, N � 1–2, one-way ANOVA with post hoc Tukey’s test.
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time, hECNs displayed an increase in AMPAR-mediated current
densities together with an increase in the proportion of hECNs
that responded to application of AMPA. Five weeks after aNPC
plate-down, 
90% of all cells gave currents (Fig. 1B) that could
be blocked by CNQX. AMPARs are tetrameric assemblies of dif-
ferent combinations of GluA1, GluA2, GluA3, or GluA4 sub-
units. AMPAR composition in rodent and human excitatory
cortical neurons is developmentally regulated; GluA1/GluA4-
containing stoichiometry predominates in immature neurons,
whereas mature neurons have an increased expression of GluA1
and GluA2 subunits (Monyer et al., 1991; Talos et al., 2006a,
2006b; Orlandi et al., 2011). We assessed relative AMPAR subunit
mRNA expression levels at 2 and 5 weeks after aNPC plate-down
by qRT-PCR (Fig. 1C) and found significant increases in the
relative mRNA expression levels for each of the AMPAR
subunits.

GluA2 subunits are RNA edited, resulting in a gene-encoded
glutamine codon in the M2 reentrant loop region being replaced
by an arginine codon in 
99% of mRNA transcripts (for review,
see Wright and Vissel, 2012). Moreover, the biophysical proper-
ties of AMPARs are considerably influenced by the presence of
edited GluA2 [GluA2(R)] subunits that give rise to AMPARs that
possess low single-channel conductances, low Ca 2� permeabil-
ity, and insensitivity to polyamine-mediated channel block
(Traynelis et al., 2010). To assess whether AMPARs expressed by
hECNs show a developmental increase in the proportion of re-
ceptors containing GluA2(R) subunits, we performed nonsta-
tionary fluctuation analysis to estimate the mean unitary
conductance (�) of AMPARs at weeks 2 and 5 after aNPC plate-
down. Current-variance plots constructed from AC- and DC-
coupled components of whole-cell AMPAR-mediated responses
were used to estimate unitary conductances (Fig. 1D,E). Figure
1F illustrates that, for the ES1 cell line, the mean unitary conduc-
tance decreases at week 2 from 10.9 � 1.0 pS (n � 13, N � 2) to
4.5 � 0.4 pS at week 5 (n � 12, N � 3, p � 0.001, unpaired t test).
Significant decreases in conductance over this same period were
also observed in hECNs derived from a separate ES cell line (de-
noted ES2) and from two independent IPS cell lines (Fig. 1F).
The factors that control the developmental increase in the expres-
sion of GluA2(R)-containing AMPARs remain largely unknown
(Traynelis et al., 2010) and we found no evidence that this regu-
lation is mediated by excitatory or inhibitory neurotransmitter
action or is regulated by an activity-dependent process, because
pharmacological blockade from weeks 1–5 of AMPAR, NMDAR,
GABAAR, and glycine receptors by CNQX (15 �M), D-AP5 (25
�M), bicuculline (100 �M), and strychnine (400 �M), respec-
tively, and voltage-dependent Na� channels by TTX (1 �M) did
not prevent the decrease in conductance that occurs between
weeks 2 and 5 after aNPC differentiation (Fig. 1G). Furthermore,
media supplements (see Materials and Methods) are not impli-
cated in the reduction of conductance, because hECNs main-
tained in the absence of supplements displayed equivalent
estimates of conductance at week 2 (12.7 � 1.5; n � 11, N � 3)
and week 5 (5.0 � 1.1; n � 5, N � 1).

An increase in the proportion of AMPARs containing GluA2(R)
subunits was confirmed in hECNs by assessing the polyamine sensi-
tivity of AMPAR-mediated current to 1-naphthyl acetyl spermine
(NASPM), a selective antagonist of GluA2(R)-lacking AMPARs
(Koike et al., 1997). At week 2, NASPM (3 �M) strongly inhibited
(77 � 5%) AMPA-evoked steady-state whole-cell currents (Fig.
2A). The extent of this block is consistent with the expression of
AMPARs that lack GluA2(R) subunits. At week 5, NASPM gave
only modest inhibition (Fig. 2B,C). Overall, these data, together

with a development switch in unitary conductance of AMPARs,
are entirely consistent with a switch from a GluA2(R)-lacking to
a GluA2(R)-containing AMPAR population.

hECNs show a developmental reduction in [Cl �]INT

Functional GABAAR expression was assessed at weekly intervals
by the ability of GABA (100 �M) to elicit whole-cell currents. The
magnitude of steady-state GABA-evoked currents increased with
increasing periods of culture and, after 4 weeks of differentiation,
all cells responded to GABA (Fig. 3A) with robust currents that
were blocked by picrotoxin.

Fast depolarizing actions of GABA on neural precursor cells
and immature cortical neurons are well documented and are a
consequence of higher [Cl�]INT (
25 mM) due to the higher
relative expression level of NKCC1 over KCC2 (Ben-Ari et al.,
2007). In both rodent and human cortex, the postnatal expres-
sion levels of KCC2 increase (Dzhala et al., 2005), leading to a net
extrusion of Cl� from excitatory neurons and levels of [Cl�]INT

of 5–10 mM, which results in a net inward movement of Cl� and
a hyperpolarizing response in neurons at or near their resting
membrane potentials (Blaesse et al., 2009). Using gramicidin-
perforated current-clamp recording to prevent disruption of
[Cl�]INT (Kyrozis and Reichling, 1995), we assessed the nature of
the GABA response in hECNs when held at a potential of �60
mV. After 1 week of culture after aNPC plate-down, GABA elic-
ited a depolarizing response (Fig. 3B), whereas at later periods,
the response was hyperpolarizing (Fig. 3C). To determine the

Figure 2. NASPM block. Example recordings from week 2 (A) and week 5 (B) neurons dem-
onstrating NASPM inhibition of the steady-state current response evoked by AMPA. C, Mean
percentage block of AMPA currents by NASPM. n � 6 – 8, N � 2, unpaired t test.
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reversal potential for GABAAR-mediated responses (EGABA), per-
forated voltage-clamp recordings were made from hECNs at var-
ious time points after aNPC differentiation. Figure 3D illustrates
a series of GABA-activated current traces obtained from a week 5
hECNs and recorded at holding potentials that allowed EGABA to
be determined. Figure 3E summarizes the extent to which EGABA

changes with time in culture. At week 1, the mean EGABA is
�43.0 � 2.0 mV (n � 12, N � 3) and becomes progressively
more negative such that, at week 5, it is �59.2 � 1.5 mV (n � 11,
N � 2, p � 0.001). To examine the possibility that EGABA could
become more negative, we extended the culture period of hECNs
to 7 weeks, which necessitated the inclusion of IGF1 in the culture
media to improve cell viability (see Materials and Methods), and
observed a further decrease in EGABA to �70.3 � 0.7 mV (n � 13,
N � 3, p � 0.001). IGF1 was unlikely to have directly affected the
change in EGABA because hECNs at week 5 cultured in the
presence of IGF1 did not show any change in EGABA (�62.9 �
2.3 mV; n � 10, N � 2). In these experiments, BDNF and
GDNF were omitted because these neurotrophic factors have been
reported to cause alterations in Cl� transporter function and
expression (Blaesse et al., 2009). Indeed, although EGABA becomes
more negative in the presence of BDNF and GDNF, it remains

10 mV more positive than is observed for hECNs cultured in
the absence of neurotrophic factors (Fig. 3E).

Figure 3F illustrates the estimated
[Cl�]INT derived using the Nernst equa-
tion at each of the time points studied in
Figure 3E. At week 1, the mean [Cl�]INT is
23.5 � 1.9 mM and this decreases by week
7 to 7.9 � 0.2 mM. In the presence of
BDNF and GDNF, [Cl�]INT remains ele-
vated at weeks 5 and 7. A reduction in
[Cl�]INT was also observed in hECNs de-
rived from other hPSC lines (Fig. 4A). The
underlying regulation of native neuronal
NKCC1/KCC2/[Cl�]INT development is
controversial (Ben-Ari et al., 2012). We
have demonstrated that the reduction in
[Cl�]INT in hECNs cannot be prevented
by pharmacological blockade, from weeks
1 to 7, of ion channels and neurotransmit-
ter systems, as described previously for
AMPAR development (Fig. 4B). The re-
duction of [Cl�]INT in hECNs is therefore
activity-independent. Finally, using qRT-
PCR analysis, we examined whether
hECNs displayed shifts in NKCC1/KCC2
mRNA transcript levels. At week 1,
NKCC1 mRNA levels were 4.8-fold
higher than that of KCC2, but by week 7,
KCC2 mRNA levels were 3.1-fold higher
than NKCC1 (Fig. 4C). Such findings
are consistent with the change in the ex-
pression levels of NKCC1 and KCC2
that are observed in rodent neurons
when [Cl �]INT decreases during devel-
opment (Blaesse et al., 2009). In addi-
tion, hECNs cultured in the presence of
BDNF and GDNF, which resulted in a
smaller fall in [Cl �]INT, exhibited
smaller relative shifts in the expression
of KCC2 mRNA to that of NKCC1.

Discussion
We have demonstrated the ability of hECNs to functionally ex-
press mature GluA2(R)-containing AMPARs and exhibit a re-
duction in [Cl�]INT to adult-like levels. Importantly for the
interpretation of our results, differentiating aNPCs are likely to
be the predominate cellular phenotype at early culture time
points (weeks 1 and 2) and, by later time points (�week 4), the
cultures are predominantly of hECN identity (Fig. 1A; Bilican et
al., 2014).

We demonstrate that AMPAR single-channel conductance at
weeks 2 and 5 significantly reduces from 10.9 to 4.5 pS in accor-
dance with increased functional expression of the GluA2(R) sub-
unit that confers a lower conductance to the AMPAR complex.
Indeed, the conductance values at weeks 2 and 5 are directly
comparable to conductance measurements of AMPAR-mediated
events from rodent excitatory cortical neurons during a postnatal
developmental period involving the upregulation of the
GluA2(R) subunit (Brill and Huguenard, 2008). Furthermore,
week 5 data correspond well to those of recombinantly expressed
heteromeric GluA2(R)-containing AMPARs (Swanson et al.,
1997). A GluA2(R)-lacking to GluA2(R)-containing switch in
AMPAR subunits is confirmed by the observed high sensitivity of

Figure 3. Determining [Cl �]INT. A, Weekly percentage response (orange) to GABA and the mean GABA-mediated current
density (black; n � 20 –34, N � 1– 4). B, C, Example perforated current-clamp recordings, at �60 mV from week 1 (B) and week
7 (C) neurons in which either a depolarizing or hyperpolarizing response to GABA is observed. D, Representative voltage-clamp
recordings used to determine EGABA. E, The relationship between mean EGABA in the absence (n � 12–13, N � 2–3) and presence
of BDNF and GDNF (n � 4 –19, N � 1–3). F, Mean [Cl �]INT development. Data at week 7 were obtained in the presence of IGF1.
n � 12–13, N � 2–3.

Livesey, Bilican et al. • AMPAR and GABAAR Function in hPSC-Derived Neurons J. Neurosci., March 12, 2014 • 34(11):4070 – 4075 • 4073



AMPAR-mediated currents at week 2, but not at week 5, to
GluA2(R)-lacking the AMPAR blocker NASPM.

The principal AMPAR composition in native cortical prepa-
rations has been described to develop from an immature GluA1/
GluA4-containing to an adult GluA1/GluA2-containing AMPAR
complex (Monyer et al., 1991; Talos et al., 2006a, 2006b; Orlandi
et al., 2011). Our data are consistent with an upregulation of the
GluA2 subunit from weeks 2 to 5, however, the mRNA data for
hECNs also demonstrate an equivalent upregulation of the
GluA4 subunit. Nevertheless, these data do not indicate the level
of functional protein. At week 2, the cultures contain a mixture of
neurons and aNPCs, so it is interesting that native primary hu-
man embryonic cortical NPCs express unedited forms of the
GluA2 subunit [GluA2(Q)] and, upon neuronal differentiation,
express the edited GluA2(R) subunit over an equivalent culture
period (Whitney et al., 2008).

The underlying mechanism of this AMPAR subunit shift has
not yet been described in native excitatory cortical neurons. Here,
we demonstrate that the reduction of AMPAR conductance is not

prevented by antagonists of neurotransmitter ligand-gated ion
channels and voltage-gated ion channels, indicating that the de-
velopmental upregulation of GluA2(R)-containing AMPARs is
activity-independent. Indeed, it has been reported that NPC dif-
ferentiation results in a large upregulation of the ADAR2 enzyme
responsible for the editing of the GluA2 subunit Q/R site (Whit-
ney et al., 2008).

We next investigated the regulation of [Cl�]INT. The under-
standing regarding the regulation, expression, and activity of Cl�

transporters and [Cl�]INT regulation is relevant to development
and disease associated with GABAAR (and other Cl� channel)
function (Blaesse et al., 2009). Perforated-patch clamp measure-
ments of EGABA from weeks 1 to 7 show that [Cl�]INT reduces
from 24 to 8 mM. This is directly comparable to studies examin-
ing the maturation of [Cl�]INT from NPCs to postnatal neurons
in the rodent cortex (Owens et al., 1996; Yamada et al., 2004). In
direct accordance with native mechanisms regulating [Cl�]INT, a
reduction in [Cl�]INT coincided with a switch in the relative
mRNA expression levels of the Cl� transporters NKCC1 and
KCC2 (Blaesse et al., 2009). This implies that the high [Cl�]INT

observed at week 1 is due to dominant NKCC1 activity and the
low [Cl�]INT observed at week 7 is a result of overriding KCC2-
mediated Cl� extrusion.

To obtain a reduction in [Cl �]INT, hECNs had to be cul-
tured for extended periods in the absence of BDNF and GDNF
but with IGF supplementation. IGF1 was shown not to have an
effect upon EGABA in week 5 hECNs, but has previously been
associated with an upregulation of KCC2 expression in rodent
hippocampal neurons (Kelsch et al., 2001). The inclusion of
BDNF and GDNF, however, appears to slow the developmen-
tal [Cl �]INT reduction. Neurotrophic supplements are com-
monly used in hPSC-derived neuronal cultures with little
regard for their potential impact on neuronal Cl � transporter
function (Blaesse et al., 2009) and receptor densensitization
(Frank et al., 1996). We thus advocate caution when using
these agents, particularly for functional studies.

The mechanistic control of neuronal of [Cl�]INT develop-
ment has received considerable attention and specific reports of
mechanisms of NKCC1 and KCC2 regulation have been contro-
versial (Ben-Ari et al., 2012). The inability to prevent the reduc-
tion of [Cl�]INT by chronic blockade of ion channel activity are in
agreement with an activity-independent mechanism in hECNs
that has been observed in native neuronal preparations (Ben-Ari
et al., 2007).

In summary, we show the ability of hECNs to functionally
express mature GluA2(R)-containing AMPARs. This enables in-
vestigation into disease mechanisms that may affect the editing at
the Q/R site. Furthermore, the ability of hECNs to exhibit a re-
duction in [Cl�]INT to adult levels enables homeostatic and dis-
ease studies that potentially affect Cl� transporter function.
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