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Independence from Kinetoplast DNA Maintenance and Expression Is
Associated with Multidrug Resistance in Trypanosoma brucei In Vitro

Matthew K. Gould,* Achim Schnaufer

Centre for Immunity, Infection & Evolution, Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom

It is well known that several antitrypanosomatid drugs accumulate in the parasite’s mitochondrion, where they often bind to the
organellar DNA, the kinetoplast. To what extent this property relates to the mode of action of these compounds has remained
largely unquantified. Here we show that single point mutations that remove the dependence of laboratory strains of the sleeping
sickness parasite Trypanosoma brucei on a functional kinetoplast result in significant resistance to the diamidine and phenan-
thridine drug classes.

Trypanosomes are protist parasites that are the causative agents
of a range of pathogenic infections in humans and in animals.

A defining characteristic of these organisms is the presence of the
kinetoplast, a unique structure comprising the cell’s mitochon-
drial genome (kDNA). In the disease-causing long slender blood-
stream forms (BF) of Trypanosoma brucei, subspecies of which
cause human African trypanosomiasis (HAT) (or sleeping sick-
ness, caused by T. brucei rhodesiense and T. brucei gambiense) and
animal African trypanosomiasis (AAT) (caused by T. brucei bru-
cei), the presence of a functional kinetoplast is essential (1–3).
However, the closely related animal pathogens Trypanosoma
equiperdum and Trypanosoma evansi are dyskinetoplastic (DK)
(i.e., lacking all or critical parts of their kDNA), with no apparent
detrimental effect (4, 5). Single point mutations had been identi-
fied in the nuclearly encoded subunit � of the mitochondrial F1F0-
ATPase of the naturally DK trypanosomes T. evansi and T. equipe-
rdum (6) and in a laboratory strain of T. brucei brucei (7) that was
chemically induced to lose its kinetoplast through long-term ex-
posure to the DNA intercalator acriflavine (8). We recently re-
ported that some of these mutations are sufficient to fully com-
pensate for the complete loss of kDNA in BF T. brucei (9). The
mechanism involves F0-independent generation of the essential
mitochondrial membrane potential (��m), obviating the need
for expression of the kDNA-encoded F0 subunit a (9).

A number of current and potential trypanocidal chemothera-
pies, and their related compounds, have been shown to accumu-
late in the mitochondrion and/or interact with kDNA (10–13).
Other compounds have been proposed to act, at least in part, by
disrupting the replication of kDNA through the inhibition of key
enzymes, such as the topoisomerases (14–18). Until now, at-
tempts to quantify the degree to which compounds target the kin-
etoplast have relied upon comparing the sensitivities of divergent
strains and species (16, 19–21). Consequently, the ability to draw
definitive conclusions was limited by unknown effects of inter-
strain/species variations acquired through differing evolutionary
selection pressures or culturing histories.

We generated BF T. brucei brucei strain Lister 427 trypano-
somes ectopically expressing F1F0-ATPase subunit � with an
L262P or A281del mutation with both endogenous alleles
knocked out. We generated a reference cell line that constitutively
expressed ectopic wild-type (WT) subunit � in a double-endoge-
nous knockout background. DK versions of each mutant �-ex-

pressing cell line were obtained by exposure to 20 nM acriflavine
for 7 days (9).

The generation of otherwise isogenic cell lines, either depen-
dent or not on functional kDNA, allowed us to conclusively estab-
lish to what extent the mode of action of antitrypanosomatid
compounds is related to the parasite’s dependence on kDNA
maintenance or expression. The 50% effective concentrations
(EC50s) were determined for a panel of trypanocidal compounds
using a slightly modified version of the alamarBlue method (22) as
described previously (9).

For the topoisomerase inhibitors etoposide, camptothecin,
norfloxacin, and enoxacin, no major change in sensitivity was
observed in the kinetoplast-independent �L262P-expressing try-
panosomes, either with or without the kinetoplast, compared to
that of the �WT-expressing controls (see Table S1 in the supple-
mental material). These data suggest that for these compounds,
the dominant mode of action is not related to kDNA maintenance
or expression, which contrasts with a study in Trypanosoma cruzi
that reported a kDNA-specific effect for norfloxacin and enoxacin
(17). Similarly, for the antimalarial atovaquone, a compound that
targets the mitochondrial cytochrome bc1 complex in Plasmodium
falciparum (23), no differences in sensitivity were observed (see
Table S1). This is not surprising, since this complex is not ex-
pressed in BF T. brucei (24). Interestingly, proguanil, a compound
that acts synergistically with atovaquone, presumably by inhibit-
ing an alternative mode of generating the essential mitochondrial
membrane potential (��m) that is independent of the mitochon-
drial electron transport chain (23), also displayed no differences in
potency. Hence, the alternative mechanism for generating the
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��m that operates in DK trypanosomes is sufficiently different
from the one in atovaquone-treated Plasmodium to be insensitive
to proguanil.

Of the compounds tested that are currently used to treat HAT
and AAT, nifurtimox, suramin, and melarsen oxide showed no
kinetoplast-specific activity (see Table S2 in the supplemental ma-
terial); however, major resistance to the diamidine and phenan-
thridine trypanocide classes was displayed. For pentamidine, mi-
nor resistance factors of 2.7 and 2.5 for �L262P-expressing
trypanosomes with and without kDNA, respectively, were ob-
served (Table 1). The resistance to diminazene was more pro-
nounced, resulting in average EC50s that were higher by factors of
8.1 or 8.5 (with or without kinetoplast, respectively) (Table 1).
Likewise, for the fluorescing DNA stain 4=,6-diamidino-2-phe-
nylindole (DAPI), also a diamidine, resistance factors of 32.0 and
31.5, respectively, were displayed by the same mutant cell lines
(Table 1). The highest resistance shown by �L262P-expressing cell
lines for any of the diamidine compounds tested was for DB829,
with resistance factors of 35.5 and 41.7 (with and without kineto-
plast, respectively) (Table 1).

Even greater resistance was displayed by the �L262P mutants
to the phenanthridine class of drugs, used for AAT chemotherapy
(25). The average EC50s for �L262P-expressing cells that still re-
tained a kinetoplast were higher by factors of 82.3, 217.3, and
140.0 for isometamidium, ethidium bromide (EtBr), and dihy-
droethidium, respectively (Table 1). These EC50s (derived from a
modified 3-day alamarBlue assay) were confirmed to be broadly
representative of the long-term effects on parasite growth by con-
ducting cumulative growth curves over 7 days in the presence of
various concentrations of isometamidium for �L262P and �WT-
expressing trypanosomes (see Fig. S1A and B in the supplemental
material). In the DK version of the �L262P mutants, the resistance
factors for the phenanthridines were significantly increased by a
further 1.9- (isometamidium), 1.3- (EtBr), and 1.9-fold (dihydro-
ethidium), suggesting that the potency of this compound class is
slightly enhanced by the presence of kDNA, even though the cells
are no longer dependent on its expression. Exposure to diami-
dines and phenanthridines invariably resulted in kDNA loss (data
not shown), confirming the reported interference of these com-
pounds with kDNA maintenance (12, 14–18). The effect of EtBr
on kDNA was investigated in great detail and was shown to inhibit
replication initiation of free minicircles (16).

T. brucei cells expressing the �A281del mutation retain some
dependence on a functional kinetoplast, at least in vitro (9); how-
ever, after a period of �7 days in the presence of acriflavine, the
mutants can adapt to the kinetoplast loss (9). This requirement for
additional adaptations in the �A281del cell line is consistent with
the generally low level of resistance displayed against the di-
amidine and phenanthridine compounds, compared to its DK
version or the �L262P cell lines (Table 1). Since the alamarBlue
assay is conducted over only 3 days, the kinetoplast-retaining
�A281del mutants do not have enough time to adapt to test com-
pound-induced loss of kinetoplast expression and consequently
have EC50s close to those of �WT-expressing trypanosomes.

The lack of resistance to DB75 by the �A281del cell lines (with
or without kinetoplast) mirrors the minor resistances presented
by the �L262P-expressing trypanosomes, in contrast to the major
resistance to DB829 that was observed. DB829 and its prodrug
version DB868 are currently under intensive development as po-
tential new chemotherapies for stage II HAT (26–28). Interest- T
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ingly, the only difference between DB75 and DB829 is the substi-
tution in DB829 of one carbon in each of the two benzene rings for
nitrogen (26). This single change partially links the mode of action
of DB829 to the parasite’s dependence on kDNA.

In order to test whether the cell lines with mutated ATP syn-
thase � remained viable in vivo and still retained drug resistance,
MF1 mice were inoculated intraperitoneally with each of the cell
lines that had been tested in vitro (1 � 106 trypanosomes per
infection) and treated with normally curative doses of EtBr (Fig. 1;
see also Fig. S2 in the supplemental material). For �WT-express-
ing cells, parasitemia in the mice peaked around 48 h postinocu-
lation, and trypanosomes were entirely absent from the blood
after 4 days (by microscopic inspection of blood smears [29]). In
contrast, the mutant �-expressing cell lines were apparently unaf-
fected by EtBr treatment, with parasitemia increasing exponen-
tially until the experiment was ended, clearly demonstrating that
trypanosomes with single point mutations in ATP synthase � that
circumvent dependence on kDNA are viable and drug resistant in
animal models. In vivo, no noticeable adaptation period was ap-
parent upon EtBr-induced loss of the kinetoplast for the �A281del
mutant, with parasitemia progressing at rates similar to those for
the other mutants and with no discernible difference to that of its
DK cell line (Fig. 1; see also Fig. S2). This suggests that, in vivo,
either the A281del mutation is fully sufficient to compensate for
kDNA loss or any secondary adaptation occurs much faster than
in vitro. A third mutation conferring independence from the kin-
etoplast, �A273P (in this case, ectopically expressed in a single
endogenous knockout background) (9), showed resistance to
EtBr similar to that of the �WT-expressing cell line.

Finally, we investigated the possibility of a change in drug ac-
cumulation being responsible for the observed resistance pheno-
types. Whole-cell uptake of the naturally fluorescent phenanthri-
dines isometamidium and EtBr was monitored using a previously
described oil-stop method to halt uptake at specific time points
(30). Over 20 min, no significant differences were observed in the
rates of uptake of either compound by �L262P-expressing try-
panosomes (with or without kinetoplast) compared to that of
�WT-expressing trypanosomes (see Fig. S3 in the supplemental
material). Thus, mutations to ATP synthase � do not affect the
overall uptake of phenanthridines into the cell, although differ-

ences in the rate of accumulation by the mitochondrion cannot be
ruled out.

In summary, we have exploited single point mutations in the
F1F0-ATPase to demonstrate that the uncoupling of viability of
laboratory strains of T. brucei from a functional kinetoplast results
in 	80-fold resistance to isometamidium, 	200-fold resistance
to EtBr, and 	30-fold resistance to some diamidines. While an
obvious explanation for these findings could be that these drugs
interfere with the maintenance and/or expression of kinetoplast-
encoding genes, we presently cannot rule out that they have addi-
tional, relevant mitochondrial targets and that the altered mech-
anisms for generating a mitochondrial membrane potential
(��m) in the mutant cells affect drug accumulation in the mito-
chondrion. Although the overall drug accumulation of at least
phenanthridines was unaffected, a potentially lower ��m in cells
expressing the L262P or A281del mutation could change the in-
tracellular drug distribution. This requires further study.

It seems likely that the levels of resistance we observed can be
relevant in the field. For example, it has been reported that Chi-
nese T. evansi isolates (most, if not all, of which have the A281del
mutation) have innate resistance to isometamidium (31), and our
results strongly suggest that independence from the kinetoplast
plays an important role in this resistance. A report concluding that
dyskinetoplastidy is not associated with isometamidium resis-
tance was misled by comparing the sensitivities of T. evansi and T.
equiperdum strains before and after complete deletion of kDNA
(21). As we now know, all strains of these species are already pre-
adapted to kDNA loss (9); whether certain parts of kDNA remain
or not is largely irrelevant for phenanthridine resistance.
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