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Early detection of new or novel variants of nosocomial pathogens
is a public health priority. We show that, for healthcare-associated
infections that spread between hospitals as a result of patient
movements, it is possible to design an effective surveillance system
based on a relatively small number of sentinel hospitals. We apply
recently developed mathematical models to patient admission data
from the national healthcare systems of England and The Nether-
lands. Relatively short detection times are achieved once 10–20%
hospitals are recruited as sentinels and only modest reductions are
seen as more hospitals are recruited thereafter. Using a heuristic
optimization approach to sentinel selection, the same expected time
to detection can be achieved by recruiting approximately half as
many hospitals. Our study provides a robust evidence base to un-
derpin the design of an efficient sentinel hospital surveillance sys-
tem for novel nosocomial pathogens, delivering early detection
times for reduced expenditure and effort.

patient referrals | network

There is a worldwide concern about the recent emergence, and
rapid widespread dissemination, of novel strains of existing

nosocomial pathogens as well as of new genetic determinants of
virulence and resistance (1–5). Local and national surveillance is
considered an important component of the strategy to control
these strains (6–8). However, surveillance is costly in monetary
terms, effort, and facilities and it is important to consider ways in
which surveillance systems can be made more efficient both at
the hospital and the national level. Although this is widely rec-
ognized (9, 10), there is still no good evidence base to inform the
design of efficient surveillance systems at the national level. A key
question is how many hospitals should be included in enhanced
surveillance programs.
Reflecting this, existing surveillance programs are markedly

diverse. For example, in The Netherlands the national antibiotic
resistance surveillance system (11) consists of 30 participating
laboratories serving ∼50% of hospitals beds in the country. In
Britain, the most prominent surveillance schemes include the
voluntary reporting of all bacteraemias (90% of clinical labora-
tories in England, Wales, and Northern Ireland), mandatory
bacteraemia surveillance (all acute health trusts in England), and
the British Society for Antimicrobial Chemotherapy Resistance
Surveillance Project (20–25 collecting laboratories covering the
United Kingdom and Ireland) (12). Here, we consider a single,
simple, generic approach to this problem that is applicable to
a range of nosocomial pathogens including, importantly, novel
pathogens or variants whose epidemiology is, by definition, un-
known. The only condition is that the major transmission route is
the movement of patients between hospitals.
The movement of patients between hospitals in a national

healthcare system plays an important role in the spread of
healthcare-associated infections (HCAIs) (13–17). Patient move-
ments have also been suggested as an important factor in the
spread of antimicrobial resistance between healthcare institutions
(18, 19). Mathematical models have confirmed the importance of

patient movements in the propagation of nosocomial patho-
gens (20–25). Further support for the important role of
interhospital transmission of HCAIs has been gained, in the
case of MRSA, through population genetics and phylogenetic
approaches (26, 27).
Although this extensive body of work highlights the role of

patient movements in the spread of nosocomial infections, the
impact of between-hospital connectivity on the performance of
transmission control strategies, such as surveillance programs
and eradication, has not been addressed. In the context of in-
dividual contact networks, there is an increasing body of research
on the early detection and control of outbreaks by careful se-
lection of a small fraction of the population (28, 29). There has
also been one study (21) that evaluated methods of selectively
targeting hospitals to more efficiently control the dissemination
of highly resistant hospital-acquired microorganisms in the spe-
cific context of critical care transfers. Here, however, we consider
the entire patient population.
We build on previous work to quantify the expected gains in

efficiency of carefully targeted, national scale, sentinel surveil-
lance systems for novel nosocomial pathogens. In the context
of established healthcare-associated pathogens, such as methicillin-
resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant
Enterococci (VRE), we use the same analytical framework to
consider a closely related question: How rapidly do hospitals
become reaffected following successful infection control programs?
To study the dissemination of novel nosocomial pathogens, we

use a hospital-based susceptible-infected (SI) epidemic model.

Significance

Early detection of new or novel variants of nosocomial patho-
gens (such as hospital-acquired methicillin-resistant Staphylo-
coccus aureus) is a public health priority. However, surveillance
effort is often limited by financial and practical constraints.
Although this is widely recognized, no good evidence base exists
to inform the design of efficient hospital-based surveillance
systems. We address the key questions of how many and which
hospitals should be included in such a surveillance system. Using
hospital admissions data from England and The Netherlands, we
model the spread of a pathogen among the network of hospitals
connected by the movement of patients between them. We
show how it is possible to design hospital-based surveillance
systems that deliver earlier detection times for reduced effort.
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Each patient discharged from an affected hospital is associated
with a probability β of successfully introducing the pathogen in
the hospital of most recent admission. We apply our model to
patient admission data from England (n = 146 acute trusts) and
The Netherlands (n = 98 acute hospitals). Sentinel surveillance
systems are modeled by building a hospital priority list {H1,
H2,. . .,HN} from which we recruit the first k hospitals when k
sentinels are required. We propose a gold standard for sentinel
selection, which involves a heuristic optimization approach based
on minimization of two different public health measures: time to
detection, and number of affected hospitals. We also explored
hospital prioritization based on a set of six standard metrics,
which quantify hospital connectivity with other hospitals in the
country. These methods were compared with random orderings
of hospitals.
To simulate the effect of hospital infection control measures,

we use a susceptible-infected-susceptible (SIS) epidemic model,
in which hospitals, after becoming affected by the novel patho-
gen, recover an unaffected status at an average rate γ (elimina-
tion rate). This results in an endemic regime in which we measure
mean pathogen-free time, i.e., the average time a hospital remains
unaffected after recovery, before newly admitted patients suc-
cessfully reintroduce the nosocomial pathogen.
We use a baseline configuration (β = 0.001, γ = 0) that yields,

for the English data, 146 affected hospitals over a period of 5–6 y.
This is comparable with the observed increase in hospital-level
prevalence of the MRSA strain EMRSA-15 in England and
Wales between the years 1992 and 1997 (30). We later repeat our
analysis for different values of β and, where appropriate, γ.

Results
We determined, during a 1-y period, the number of movements
of patients between all pairs of hospitals in both England and
The Netherlands. We consider as movements direct interfacility
patient transfers, as well as indirect transfers, i.e., patients being
discharged from hospital into the community, and being later
admitted to a different hospital.
There were 531,977 patient movements between the 146 English

acute trusts during the 1-y period 2006–2007, which realized 73%
of all possible connections between them (15,514 out of 21,170).
The median time between discharge and subsequent admission was
17 d (90th percentile: 134; the corresponding probability distribu-
tion is shown in SI Appendix, Fig. S1). On average, there were 3,643
patient movements per trust, and there were 34 movements along
each of the existing connections (median: 3, range: 1–6,619). Anal-
ogously, there were 129,620 movements among the 98 Dutch
acute hospitals during the year 2004, which realized 58% of all
possible connection (5,501 out of 9,506). The median time be-
tween discharge and subsequent admission was 25 d (90th per-
centile: 145; the corresponding probability distribution is shown
in SI Appendix, Fig. S1). On average, there were 1,323 patient
movements per hospital, and each existing connection supported
24 movements (median: 2, range: 1–1199). In addition, the
healthcare networks of both countries are strongly connected,
and any two hospitals can be epidemiologically linked following
the path of patient movements. Additional properties of these
movement networks are listed in refs. 20, 25.
The simulation model predicts that for our choice of trans-

mission probability and no infection control measures (β = 0.001,
γ = 0), a single introduction in a randomly selected hospital will
result in the totality of the English hospitals becoming affected
by the pathogen, on average, after a period of 5.7 y. In 90% of
the simulated epidemics the pathogen reaches all hospitals after
4.1–7.7 y. In The Netherlands, the model predicts that all hos-
pitals will become affected, on average, after a period of 25.5 y,
with the pathogen reaching all hospitals after 11.1–55.9 y in 90%
of the simulated epidemics.

For each hospital we estimated, through time, the probability
of becoming affected following single introduction in a randomly
selected hospital at time t = 0. In mathematical terms, we
obtained the probability density function of time to first in-
fection. The results, displayed in Fig. 1, show considerable
variation between hospitals. In England, the mean time to first
successful introduction ranges, among the different hospitals,
from 1.73 y [90% confidence interval (C.I.) 0.29–3.45] up to 3.44 y
(90% C.I. 1.28–6.05). Analogously, the time to first successful
introduction in Dutch hospitals ranges, on average, from 3.26 y
(90% C.I. 0.55–6.73) up to 20.75 y (90% C.I. 3.49–55.24). These
results suggest that a careful selection of sentinel hospitals could
lower detection times in hospital-based surveillance programs,
improving their performance.
Fig. 2 shows, in the baseline configuration (β = 0.001, γ = 0),

detection time (Fig. 2A), and number of affected hospitals at
detection time (Fig. 2B), versus the fraction of hospitals used as
sentinels (k/N), obtained with the gold-standard and random
selection schemes. Results in Fig. 2A were obtained by mini-
mizing detection time, whereas results in Fig. 2B were obtained
by minimizing the number of affected hospitals at detection time.
Mean detection times, as well as 90th percentiles, when 20% of
hospitals are recruited as sentinels according to the different
selection schemes, are shown in SI Appendix, Table S1. It is clear
from Fig. 2 that, with both selection schemes, detection time
follows a law of diminishing returns. As the number of sentinels
increases, the contribution of each additional hospital to the
improvement in detection time becomes smaller. The fraction of
English hospitals required as sentinels to detect a novel circu-
lating pathogen within 1 y yields, with the greedy algorithm and
detection time minimization, 4%. This compares favorably with
the required fraction when hospitals are chosen randomly, which
is 8%. In The Netherlands, detecting a novel circulating patho-
gen within 1 y requires selecting, with the greedy algorithm, 21%
of all hospitals, whereas the required fraction when hospitals are
chosen randomly is 37%. Another metric of performance is the
number of sentinels that are required to obtain detection times
comparable to those obtained with the gold-standard method
and 20% of hospitals acting as sentinels. In this case, an emer-
gent pathogen is detected, on average, after 0.41 and 1.02 y in
England and The Netherlands, respectively (compare SI Ap-
pendix, Table S1). With random selection, comparable detection
times can be achieved, in both countries, only with a fraction of
sentinel hospitals of 30–40%. In other words, considering as
a measure of efficiency the fraction of hospitals required as
sentinels, these results suggest that targeted surveillance can
be up to twice as efficient as random selection of hospitals.
This improvement in efficiency is also observed when the

priority list is obtained by minimizing the number of affected

Fig. 1. Probability, estimated as relative frequency through time, of each
individual hospital in England (A) and The Netherlands (B) becoming af-
fected by a novel nosocomial pathogen, following single introduction in
a randomly selected hospital at time t = 0. Results obtained in the baseline
scenario (β = 0.001 and γ = 0). Hospitals have been sorted along the y axis
according to increasing value of median time to first infection.
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hospitals (Fig. 2B; SI Appendix, Table S2). Twenty percent of
hospitals selected as sentinels with the greedy algorithm are able
to detect the emerging outbreak when, on average, 2–3 hospitals
are affected. Conversely, to obtain a similar performance using
the random selection scheme would require 40–45% of hospitals
acting as sentinels.
Along the top of Fig. 2 we include information on hospital

category. According to increasing hospital size and complexity,
English acute trusts are classified into small acute trusts, medium
acute trusts, large acute trusts, and teaching trusts (31); Dutch
hospitals are classified into general hospitals, top clinical hos-
pitals, and university medical centers (32). Here, the color of the
symbol at position k/N corresponds to the type of the kth hospital
(Hk) in the priority list built with the greedy algorithm (see SI
Appendix, Fig. S2 for a version including, in addition to hospital
class, all network metrics). In both the English and Dutch health-
care networks, teaching trusts and university medical centers, re-
spectively, are placed high in the priority list. We can compare
the performance of these hospitals used as unique sentinels with
that of the same number of hospitals selected according to the
greedy algorithm. However, detection times obtained in England
and The Netherlands are not to be compared between them, be-
cause the number of tertiary hospitals is different in both countries

(25 and 8, respectively). Selecting the 25 teaching trusts as sentinels
in England yields an average detection time of 0.51 y. This value is
comparable with the result obtained with the first 25 hospitals from
the empirically built priority list (0.45 y). Similarly, average de-
tection time in The Netherlands with the eight university medical
centers used as sentinels is 1.70 y, comparable with using the first
eight hospitals from the empirically built priority list (1.57 y).
Moreover, the 25 English tertiary hospitals are able to detect the
emerging outbreak when, on average, 2–3 hospitals have been af-
fected. To achieve this detection efficiency with randomly selected
sentinels, an average of 50 hospitals would be required. The eight
Dutch university medical centers are able to detect the emerging
outbreak when, on average, 3–4 hospitals have been affected. A
similar outcome can be achieved by randomly selecting, on average,
27 hospitals.
In both England and The Netherlands, the greedy algorithm is

always the best-performing one, for both time to detection and
number of hospitals affected, although the metrics in-flux, in-
degree, and h index also improved efficiency compared with
random selection in some scenarios (compare SI Appendix, Fig.
S3, Tables S1 and S2).
For surveillance programs which require a fixed effort per

hospital, the y axes in Fig. 2 also represent the total effort (and so
the total cost of the program). If the effort invested per hospital
is a function of hospital size, then an approximate estimate of the
costs could be obtained by measuring the number of beds under
surveillance. In this situation, the greedy algorithm may not be
the least costly (SI Appendix, Table S1), and the increased costs
of targeted surveillance would need to be weighed against the
benefits of earlier detection.
Using the SIS model for established nosocomial pathogens, we

measure the average time for a hospital to become reaffected by
a pathogen after successful implementation of infection control
measures. We have estimated the infection pressure on each
individual hospital by measuring the median HCAI-free time
after successful pathogen elimination. We first calculated, in the
endemic regime, the median time each hospital remains free of
the pathogen. Next we grouped, according to hospital category,
the 146 values obtained with the English healthcare network into
4 subsets, and the 98 values obtained with the Dutch network
into 3 subsets. For each of these subsets, we calculated the 5th,
25th, 50th, 75th, and 95th percentiles, and display these results
for γ = 0.25, 0.50, 0.75, and 1.00 y−1 with box plots in Fig. 3.
Teaching trusts and university medical centers remain free of

infection for a shorter period than small acute trusts and general
hospitals, respectively. Median reinfection times differ between
these types of hospitals, for the chosen elimination rates, by
approximately a factor of 4–6. This shows that the need for ef-
fective infection control against endemically established HCAIs
may be substantially greater for tertiary hospitals than for the
other hospital categories.
The effects of varying model parameters and assumptions are

reported in SI Appendix, SupportingMethods. Although, as expected,
the rate of spread (and, consequently, the speed of detection)
increases with increasing β (and with increasing discharge–admission
interval cutoff), the main comparisons between different priori-
tizations of hospitals for targeted surveillance are essentially un-
changed. We observe a similar outcome in model configurations
with larger β associated with patient movements from/to tertiary
hospitals. All this implies that our key results are robust for a wide
range of pathogens and epidemiological scenarios.

Discussion
A variety of nosocomial pathogens––such as newly emergent
variants of MRSA or Klebsiella pneumonia––can spread between
hospitals as a consequence of patient movements. Hospitals
occupy different positions in the network of movements and this
translates into differences in the risk of being affected or reaffected

Fig. 2. Mean detection time of a novel nosocomial pathogen (A), and mean
number of affected hospitals at detection time (B), following emergence in
a single, randomly selected hospital, versus fraction of hospitals participating
in a sentinel surveillance program. The continuous lines correspond to results
obtained using the greedy algorithm with the English (EN: greedy) and
Dutch (NL: greedy) data sets. The optimization metric was time to detection
(A) and number of affected hospitals at detection (B). The shaded region and
the dashed lines (EN, random, and NL, random) correspond to 1,000 random
selections of sentinel hospitals and their mean, respectively. (A and B, Upper)
Information on hospital category for England (EN) and The Netherlands (NL):
the symbol corresponding to the ith element in the priority list obtained with
the greedy algorithm is displayed at position i/N along the x axis, with N the
total number of hospitals in the country. All curves obtained in the baseline
scenario (β = 0.001 and γ = 0).

Ciccolini et al. PNAS | February 11, 2014 | vol. 111 | no. 6 | 2273

M
ED

IC
A
L
SC

IE
N
CE

S
A
PP

LI
ED

M
A
TH

EM
A
TI
CS

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1308062111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1308062111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1308062111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1308062111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1308062111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1308062111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1308062111/-/DCSupplemental/sapp.pdf


by such pathogens (13–17, 20–25). Here we have shown that
these differences also provide an opportunity to design more
efficient surveillance programs based on a relatively small number
of hospitals acting as sentinels. This addresses the current lack of
evidence available to policy makers aiming to design efficient
surveillance systems at a national level.
Three key results emerge from our analyses. First, there is

a marked effect of diminishing returns: Detection time or
number of affected hospitals both decline rapidly as up to 20% of
hospitals are recruited in the surveillance system, but much less
rapidly thereafter. Second, the surveillance system can be made
considerably more efficient if, instead of randomly targeting a set
of hospitals, sentinels are selected on the basis of their position
in the movement network; to a good approximation, an equiva-
lent expected time to first detection of a novel pathogen can be
achieved by selecting half as many hospitals. Third, although
hospitals to be targeted can be identified using the computa-
tional methods described here, a near-optimal solution is to
prioritize hospitals simply on the basis of the number of admitted
patients that have previously been discharged from a different
hospital. This corresponds well to prioritizing tertiary hospitals.
Tertiary hospitals have previously been suggested as potential

sentinels based on arguments of feasibility and adequate patient
volume (33, 34). Here we provide evidence that supports this
choice from the perspective of HCAI transmission dynamics. If
the healthcare network cannot be reconstructed, targeting these
hospitals still yields a considerable improvement in detection
times, becoming a useful alternative to the gold-standard method.
For endemically established nosocomial pathogens, tertiary

hospitals become reaffected, after successful implementation of
infection control measures, 4–6× faster than small acute trust
and general hospitals. Consequently, tertiary hospitals must im-
plement control measures more frequently, and incur higher
yearly associated costs, to remain free from the HCAI. This
further supports the need to target resources in these hospitals.
We obtained essentially the same results for a wide range of

parameter values, confirming that our findings should be rele-
vant not only to MRSA but to other nosocomial pathogens as
well. There are, however, some factors which we have not been
able to fully include in our model and that may, a priori, impact
the results of our analysis. These are the correlation between
probability of transmission and type of hospital, the impact of
single-hospital random seeding, transmission in the community
and other nonacute care facilities, data censoring, administrative
scale, and the overall optimality of the greedy algorithm.

Probability of transmission could be positively correlated with
hospital type (i.e., higher β for movements associated with ter-
tiary hospitals). Patients admitted to tertiary hospitals after dis-
charge from other hospitals are more at risk for carrying a
hospital-acquired infection (20, 25). Moreover, admission data
show that patients discharged from tertiary hospitals have
a higher probability of readmission to a different hospital within
comparatively shorter times. Increasing transmission probabili-
ties associated with patient movements to/from tertiary hospitals
yields, for England, an increase in the efficiency of our approach
compared with random selection. In other words, the benefit of
our method would be even greater if the prioritized hospitals also
represented the most at-risk patients [as is the case for hospital-
acquired MRSA (25)].
We have assumed that a novel pathogen originates in a single,

randomly chosen hospital. Other scenarios are possible; for ex-
ample, the probability of emergence in a particular hospital
could depend on its size or other attributes. This would influence
our results insofar as this dependence was positively (or, con-
ceivably, negatively) correlated with the risk associated with
network properties, potentially amplifying (or reducing) heter-
ogeneities in time to first infection.
We assumed that no transmission occurs outside the hospital

setting. The impact of community transmission on our results
would be twofold. Firstly, per-patient probability of transmission
would increase with increasing time spent in the community
between successive hospital admissions. We expect this effect to
be small, as patients that spend longer periods of time in the
community are also the ones with low numbers of readmissions
(20). Secondly, first-time admissions, i.e., admission of patients
that have never been admitted to hospital before, will also result
in a probability of pathogen introduction. The impact of the
latter will depend on the relative rates of first admissions of
different types of hospitals. We do not model the effect of nursing
homes and other long-term care facilities, which are recognized as
important community reservoirs of nosocomial pathogens (35, 36).
The impact of excluding these care facilities in our analysis would
depend on their relative position in the movement structure (37).
Our use of patient movement data from a single calendar year

means that these data are right censored and true movement
rates are underestimated. Because the median intervals between
discharge and readmission were short (and longer intervals may
correspond to reduced risk) we expect the effects of this to be small.
There are differences in the administrative scale of the

reconstructed English and Dutch healthcare networks. Whereas
the most fundamental element in the Dutch network is a hospi-
tal, the corresponding element in England is a hospital trust (i.e.,
a group of hospitals under the same management). Most English
acute trusts are dominated by a single large hospital, responsible
for most patient movements between its trust and other trusts in
the country (although a few trusts consist of two or more dom-
inant hospitals; see ref. 38). Therefore, we do not regard these
systems as directly comparable, but our aim is to demonstrate the
general applicability of our approach.
These issues notwithstanding, we suggest that our key findings

will be both robust and likely to be widely applicable. This is
because the crucial component is the network of patient move-
ments between hospitals, which is well-characterized for both
England and The Netherlands. However, there is clearly scope
for further research on the contributions of heterogeneities in
transmission rate and seeding of infection, the gain and loss of
infection outside hospitals, or fine structure of the movement
network. More detailed models incorporating these features
could be parameterized for specific pathogens, not only in terms
of epidemiological variables but also the costs and constraints
of surveillance.
We should also mention a more general issue worthy of fur-

ther research: the optimality of the greedy algorithm. Although

Fig. 3. Box plots of median HCAI-free time in the endemic regime in England
(A) and The Netherlands (B). Results obtained with the baseline transmission
probability β = 0.001. Median times have been grouped according to type of
hospital. Different colors correspond to different values of γ. Box bottom and
top represent the lower and upper quartiles, respectively. Lower and upper line
ends represent 5th and 95th percentiles, respectively. The horizontal bar cor-
responds to the median. Elimination rates (γ) are expressed in units of y−1.
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in our analysis, of all of the considered alternatives, the greedy
algorithm was the best-performing selection scheme, the corre-
sponding priority list may not be the true optimal one (i.e., the
one yielding the absolute minimum detection time among all
possible alternatives). This is a general feature of greedy algo-
rithms, which make a locally optimal choice that may not result
in a globally optimal solution (39). We note that although a
better priority list may exist, sentinel selection according to the
greedy algorithm has already allowed us to design a more effi-
cient surveillance strategy.
In conclusion, based on data from two countries, we have

shown that efficient hospital-based, sentinel surveillance systems
for novel nosocomial pathogens transmitted by means of patient
movements are a practical proposition. Relatively rapid detection
can be achieved by prioritizing a small fraction of hospitals, and
this fraction can be further reduced by targeting surveillance at
specific hospitals or categories of hospital. We believe that this
kind of evidence-based approach to the design of surveillance
systems can both decrease detection times and/or decrease costs to
national governments, facilitating reduction of the substantial public
health burden imposed by nosocomial pathogens.

Materials and Methods
Patient-Movement Data. To quantify the amount of contact between hos-
pitals we use patient-movement rates. We consider as movements direct
interfacility patient transfers, as well as indirect transfers, i.e., the instance of
a patient being discharged from hospital into the community, and being
later admitted to a different hospital. For every pair of hospitals (i, j) in
England and The Netherlands, we calculated the annual patient-movement
rate wij from hospital j to hospital i by counting the number of patients that
were admitted to hospital i, following discharge from hospital j, during
a period of 1 y (with or without an intermediate stay in the community). This
procedure yields an N × N movement matrix, where N is the number of
hospital in the chosen country.

The English movement matrix was obtained from patient admission data
covering the 1-y period April 1, 2006–March 31, 2007, provided by the Na-
tional Health Service Hospital Episode Statistics. We consider the n = 146
acute trusts in the English National Health Service. An acute trust is defined
as a group of hospitals under the same management with 85% or more of its
expenditure in acute specialties [medicine, surgery, accident and emergency
(A&E), and maternity], an A&E department, and all core acute specialties.
These trusts are classified into 4 categories: small acute trusts (n = 29), me-
dium acute trusts (n = 50), large acute trusts (n = 42), and teaching trusts
(n = 25), corresponding to increasing hospital size and complexity (31).

The Dutch movement matrix was obtained from patient admission data
covering the 1-y period January 1, 2004–December 31, 2004, provided by the
Dutch National Medical Register (Landelijke Medische Registratie; Prismant).
We consider the n = 98 hospitals consisting, in increasing hospital size and
complexity, of all general hospitals (n = 71), all top clinical hospitals (n = 19),
and all university medical centers (n = 8) (32).

Teaching trusts and university medical centers are associated with a uni-
versity, and usually act as top referral centers. They correspond to “tertiary
hospitals” according to the hospital type definition used by the European
Centre for Disease Prevention and Control (e.g., ref. 40).

Further details on the raw patient admission data, and their use to obtain
annual movement rates, can be found in refs. 20, 25.

Hospital Size Data. The number of available beds in each English acute trust
during fiscal year 2006–07 was retrieved from the Estates Return Information
Collection, hosted at the National Health Service Hospital Estates and Fa-
cilities Statistics website (www.hefs.ic.nhs.uk/).

Mathematical Model. We use a hospital-based SI compartmental model in
which each hospital can be in one of two possible states: susceptible to, and
free of, the pathogen (S), or affected by it (I). Affected hospitals harbor one
or more colonized or infected patients, and/or an environmental reservoir of
the pathogen. Susceptible hospitals become affected when they admit
infected or colonized patients that shed the pathogen in the environment,
or that transmit the pathogen to other susceptible patients in the hospital.
Interhospital transmission is a complex process that involves a patient being
infected or colonized when discharged from hospital, remaining infectious
until the next admission, and successfully introducing the pathogen in the

admitting hospital. We combine the effect of this sequence of events into
a single probability of transmission (β).

Reports of interhospital outbreaks (2, 41) have shown that after a period
of rapid intrahospital spread (typically 1 or 2 mo), pathogens spread to other
hospitals on time scales under 1 y. Moreover, mathematical models including
within-hospital dynamics show that colonized patients are able to spread
the pathogen to other hospitals within days (20, 24). We therefore assume
that once a hospital becomes affected all patients who are subsequently
admitted to a different hospital (which in 50% of cases occurs within 17–25 d)
have a fixed, low probability of introducing infection into the second hospital.
In the case of England, we make a similar assumption at the trust level:
Transmission within all hospitals in each acute trust occurs faster than between
hospitals belonging to different trusts.

To simulate the introduction of infection control measures we use an SIS
model. We assume that once a hospital becomes affected by the pathogen it
will recover a susceptible status, following complete pathogen eradication,
after an average time 1/γ, with γ the average elimination rate.

The twomodels are stochastic, and progress in discrete time steps of length
δt = 1 d. The probability of a susceptible hospital becoming affected by the
emergent pathogen during one time step [PS→I(t)] is a function of the per-
patient transmission probability (β), and the rates at which other affected
hospitals move patients onto it. In the SIS model, the probability of an af-
fected hospital recovering a susceptible status during one time step [PI→S(t)]
is a function of the elimination rate (γ). Mathematical formulae defining
these probabilities are listed in SI Appendix, Supporting Equations.

Hospital-Based Surveillance. To simulate the implementation of a sentinel
surveillance system, a method for selecting the hospitals that will act as
sentinels is needed. A selection scheme involves building a hospital priority
list {H1, H2,. . .,HN} from which we use the first k hospitals when k sentinels
are required.

We compare the performance of eight different selection schemes. In
addition to random selection (i.e., the priority list is just a random ordering of
all of the hospitals in the country), we prioritize hospitals according to values
for a set of six standard metrics which quantify their connectivity with other
hospitals in the network. These are the number of hospitals from which
a sentinel admits moved patients in a 1-y period (i.e., in-degree), the number
of patients admitted following discharge from other hospital (i.e., in-flux),
hospital h index (42), and three measures of hospital network prominence:
betweenness, closeness, and eigenvector centrality (43).

We also propose a gold standard for sentinel selection, which involves the
following procedure (known as a “greedy” algorithm). The first hospital in
the list (H1) is selected such that, on average, it is the earliest affected hos-
pital following emergence of the novel pathogen in an arbitrary hospital.
The second hospital (H2) is chosen such that, together with the already se-
lected sentinel, they minimize detection time, i.e., the earliest time at which
any of the sentinels becomes affected by the pathogen. This procedure is
repeated, increasing one by one the number of sentinels, yielding the re-
quired hospital priority list. Alternatively, instead of building the priority list
by minimizing detection time, other quantities of interest may be optimized.
We illustrate this by using the greedy algorithm to minimize the number of
hospitals affected by the pathogen at detection time.

Pathogen Reintroduction. The SIS model variant is suitable for describing
endemically established pathogens, such as MRSA and VRE. In this case, the
simulation model yields, with a probability that depends on the values of the
model parameters, an endemic regime in which the prevalence of affected
hospitals is, in general, lower than 100%.

In the endemic regime, when affected hospitals regain a susceptible status,
they remain HCAI-free for a period of time before becoming reaffected by
the pathogen. We estimate the infection pressure on each individual hospital
by measuring the median HCAI-free time after successful pathogen elimi-
nation. We then compare, for a range of elimination rates, the reinfection
times associated with different categories of hospital. We stress that this
analysis is only relevant for endemically established pathogens, such that
a stable, nonzero hospital-level prevalence has already been reached. Only in
this regime can the impact on our results of the order in which hospitals
become affected by the pathogen be ignored.

Model Parameters and Simulation Configurations. We initially focus on the
effect of patient movements, assuming that β is constant through time and
does not depend on hospital or individual patient characteristics. We later
repeat our analysis relaxing this homogeneity assumption.

We present results corresponding to a baseline scenario defined by β= β0≡
0.001 and, in the SIS model, a range of elimination rates γ = 0.25, 0.50, 0.75,
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and 1.00 y−1. For β = β0 our model predicts that, with unconstrained trans-
mission (γ = 0), all English hospitals become affected by a novel nosocomial
pathogen in an average period of 5.7 y (4.1–7.7 y in 90% of simulated
outbreaks), after single introduction in a randomly selected hospital. This
result is comparable with the observed increase in hospital-level prevalence
of EMRSA-15 in England and Wales between the years 1992 and 1997 (30).

To explore the generality of the results for pathogens other thanMRSAwe
repeat our analyses for different values of β and, where appropriate, γ. We
consider values of β in the range 0.1×–10× of the baseline value. Higher
β-values correspond to higher rates of spread between hospitals, whereas
lower β-values are associated with lower dissemination rates. For γ, we
consider values ranging from 0.025 to 10.0 per y. We also introduce de-
pendence of the per-patient transmission probability on the time a patient
remains in the community before being readmitted to hospital. This allows
us to consider pathogens that affect patients only in a transient manner. We
repeat our analyses assuming patients can only transmit the pathogen if the

time between discharge and subsequent admission does not exceed a cutoff
value chosen in the range 30–180 d.

All simulations were started by randomly selecting one single affected
hospital. The model was run for a period of at least 30 y, enough for the
median prevalence of affected hospitals to reach 100% in the baseline
configuration, or for the system to reach a quasistationary endemic regime
when control measures are implemented. Results were obtained with at least
10,000 simulation replicates.
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