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Abstract

This paper describes modification of a TTS system for im-
proving the intelligibility of speech in various noise conditions.
First, the GlottHMM vocoder is used for training a voice with
modal speech data. The vocoder and voice parameters are then
modified to mimic the properties of Lombard effect based on a
small amount of Lombard speech from the same speaker. More
specifically, the durations are increased, fundamental frequency
is raised, spectral tilt is decreased, the harmonic-to-noise ratio
is increased, and a pressed glottal flow pulses are used in cre-
ating excitation. The formants of the speech are also enhanced
and finally the speech is compressed in order to increase noise
robustness of the voice. The evaluation results of the Hurricane
Challenge 2013 indicate that the modified voice is mostly less
intelligible than the unmodified natural speech, as expected, but
more intelligible than the reference TTS voice, especially in the
low SNR conditions.
Index Terms: Hurricane challenge, speech synthesis,
GlottHMM, Lombard speech, intelligibility

1. Introduction
Due to recent advances in speech synthesis research, especially
with hidden Markov model (HMM) based speech synthesis
[1] and related hybrid approaches, the intelligibility of neutral
synthesized speech in silent conditions is no longer an issue.
Hence, the focus of research has been shifted towards more ad-
verse listening conditions and noise robustness.

Within this line of research, two trends can be identified.
Some studies attempt to maximize the intelligibility of syn-
thetic speech by optimizing the speech parameters according to
some objective measure such as perceptual evaluation of speech
quality (PESQ) [2] or glimpse proportion (GP) [3]. Here, the
modifications can become quite unintuitive compared to human
speech. For example, in some noise conditions, lowering the
fundamental frequency (F0) can be beneficial [4], which hu-
mans rarely do in the presence of noise. The underlying as-
sumption seems to be that the human speech production appa-
ratus has certain physical constraints and that some effects of
increased vocal effort are unintended consequences which are
not beneficial to intelligibility of speech.

On the other hand, some studies have focused on the mod-
eling of human speech production in noise, or the Lombard ef-
fect, with the assumption that what humans do in the presence
of noise, also increases the intelligibility of the modeled speech.
The drawback of this approach is that either a priori knowledge
of the relevant changes in acoustic features have to be utilized,
such as in [5], or that fairly large labeled corpus of Lombard

speech have to be acquired in order to use data driven tech-
niques such as HMM-adaptation [6].

In this study, we attempted to model the Lombard effect by
a simple voice conversion technique. Compared to the approach
in [6], which uses HMM-based adaptation, the current method
requires only few utterances of unlabeled Lombard speech data
from the target speaker. Thus, the current method is closer to
the method in [5], which uses the tuning of the vocoder param-
eters. However, a data-driven technique is used in this study,
thus requiring less a priori information about the modifications
and possibly yielding higher quality speech. The assumption
is that the current method is able to generate very intelligible
synthetic speech with less effort in voice building compared to
previous methods.

2. Speech synthesis system
In this study, the GlottHMM statistical parametric speech syn-
thesis system [7] is used. GlottHMM aims to accurately model
the speech production mechanism by decomposing speech into
the vocal tract filter and the voice source signal using glot-
tal inverse filtering and emphasizing the modeling of the voice
source. It is built on a basic framework of HMM-based speech
synthesis system [8, 9], but it uses a distinct type of vocoder for
parameterizing and synthesizing speech. GlottHMM has been
shown to yield high-quality and intelligible synthetic speech
[5, 7, 10, 11] and also highly intelligible Lombard modified
speech [5] and Lombard speech [6]. Since the conception of
GlottHMM [12], it has been constantly developed. It is most
thoroughly described in [7], but further developments have been
made to the system since then, of which some are described in
[5, 10, 11, 13]. In order to give a concise description of the
system used in this study, GlottHMM is shortly described next.

2.1. Parametrization

In the parameterization of speech with GlottHMM, speech is
first high-pass filtered with a cut-off frequency of 70 Hz in order
to remove possible low-frequency ripple. Then, speech signal is
windowed and iterative adaptive inverse filtering (IAIF) [14, 15]
is used to estimate the vocal tract filter and the voice source sig-
nal from speech. Linear prediction (LP) is used for spectral
estimation in the IAIF method, and the estimated vocal tract fil-
ter is converted to line spectral frequencies (LSF) [16] for bet-
ter representation of the LP information in HMM-training [17].
The estimated voice source signal is further parameterized with
fundamental frequency (F0), harmonic-to-noise ratio (HNR) of
five bands, and voice source LP spectrum, which is also con-
verted to LSFs. Finally, the glottal closure instants (GCIs) of
the voice source are detected and individual glottal flow pulses
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are extracted, from which a library of pulses is constructed. The
library consists of windowed two-period glottal flow derivative
waveforms, which are linked with their corresponding voice
source parameters. The analysis parameters of GlottHMM are
shown in Table 1.

2.2. Synthesis

In synthesis, the extracted natural glottal flow pulses from the
library can be utilized in several ways. Originally, only a single
pulse was used by interpolating the pulse in time and scaling in
amplitude [7, 12]. Alternatively, a pulse selection scheme [13]
can be used to construct the voice source or the mean of the
pulse library [18] can be used as a basis for synthesis. In this
work, a pulse library scheme [13] is used for constructing the
voice source. Glottal flow pulses from the library are selected
for each time instant according to the target cost of the voice
source parameters, ensuring the selection of pulses with appro-
priate voice source characteristic, and according to the concate-
nation cost of adjacent pulses, ensuring that the change between
adjacent pulses is not too large, which could induce harsh voice
quality. This process is optimized by the Viterbi search. Af-
ter the selection, pulses are interpolated in time according to F0
and scaled in amplitude according to energy. Next, in order to
control the degree of voicing of the excitation, noise is added to
the pulse in five bands in spectral domain according the HNR
measure. The pulses are then overlap-added and filtered with
the vocal tract filter to create speech.

2.3. HMM training and parameter generation

A synthetic voice used in this work was trained from the pro-
vided modal speech training data: 3 hours (2861 sentences) of
newspaper style sentences, modified rhyme test sentences, and
Harvard sentences read by a male British English speaker. The
speech data was downsampled to 16 kHz prior to feature extrac-
tion.

The voice was trained using methods and tools based on
the EMIME 2010 Blizzard Entry [20], which in turn are based
on the HTS speech synthesis toolkit [8, 9]. Context-dependent
multi-space distribution hidden semi-Markov models (MSD-
HSMM) were trained on the acoustic feature vectors described
in Section 2.1. The stream structure was modified to accommo-
date the parameters of the GlottHMM vocoder. The vocal tract
spectrum was trained together with energy in a single stream,
while HNR and voice source spectrum were trained alone in
separate streams, and F0 was modeled in multi-space distribu-
tion (MSD) stream. Model training was initialized from aligned
data, and model clustering was done incrementally over several
rounds. The full-context labels for training and test utterances
were created with Festival system [21] using UniRPX phone set
and rules.

Table 1: Speech features and the number of parameters.

Feature Number of parameters
Vocal tract spectrum LSF 24
Energy 1
Fundamental frequency (F0) 1
Harmonic-to-noise ratio (HNR) 5
Voice source spectrum LSF 6
Pulse library 5275 pulses

+ corresponding parameters 5275× 37
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Figure 1: Normalized average two-period glottal flow deriva-
tive waveforms of normal and Lombard speech.
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Figure 2:Illustration of the compression function without (left)
and with signal normalization (right).

Since LSFs are highly correlated with each other, there are
known problems with training of them. In order to avoid this
problem, differential of the LSFs [19] were used both for vo-
cal tract and voice source spectrum LSF parameterization. The
differential LSF vectordn is defined as

dn =











l
1/2
n if n = 0

(ln − ln−1)
1/2 if 0 < n < N

(π − ln−1)
1/2 if n = N

(1)

whereln is the componentn of the original LSF vector (0 ≤

n ≤ N ). Vectordn thus containsN + 1 values of whichd0 is
the first LSF,dn (1 ≤ n ≤ N − 1) are differences between the
adjacent LSFs, anddN is the distance from the last LSF toπ.
In order to get the distributions of the distances more Gaussian,
the square root of the distances is taken. After the generation of
the differential LSFsd′n from HMMs, they are converted back
to LSFs:

l′n =
d′2N

∑k=N−1
k=0 d′2k

k=n
∑

k=0

d′2k (2)

where 0 ≤ n ≤ N − 1. In this formula, the integrated
differential-LSFs are equalized so that the distance from the last
LSF toπ equals to the original distance defined byd′2N .

3. Modifications for improved intelligibility
After the training of the voice with modal speech, an unsuper-
vised method was used to transform the voice to a Lombard
voice by modifying the synthesis parameters and tuning some



0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

 

 
Nat normal
Nat Lombard
Syn normal
Syn SNR−Hi
Syn SNR−Mid
Syn SNR−Lo
CS
SSN

Figure 3:Spectra of natural normal and Lombard speech, syn-
thetic normal and three Lombard-modified voices designed for
different SNRs, and competing speaker (CS) and speech-shaped
noise (SSN) maskers.

of the vocoder settings, thus requiring only a very small amount
of unlabeled Lombard speech material for adaptation (20 utter-
ances). The formant structure of speech was also enhanced in
order to improve intelligibility. Phone durations were also in-
creased by 10% to roughly match the corresponding unit length-
ening observed in Lombard speech. Finally, speech signal was
compressed to increase average loudness.

Neither noise type nor the maskers for individual utter-
ances, provided by the organizers, were exploited in the modifi-
cations, as such detailed knowledge was considered somewhat
artificial for the target domain of TTS.

3.1. Modification from normal voice to Lombard

A simple unsupervised voice conversion method was used to
transform the plain synthetic voice to Lombard voice. First, a
pulse library was built from 20 utterances of Lombard speech
from the target speaker, consisting of 5275 glottal flow pulses
along with the corresponding voice source (and also the vocal
tract) parameter, described in Table 1. Figure 1 demonstrates
the difference between the mean of the pulse libraries between
normal and Lombard speech. In comparison to modal pulse, the
Lombard pulse shows a shorter open phase and a more abrupt
glottal closure.

In synthesis, the generated voice source parameters of each
utterance were transformed to match the respective means and
variances of Lombard speech, captured by the pulse library.
This transformation was considered only for voiced speech. For
each time instant, glottal flow pulses (of Lombard speech) were
selected from the pulse library according to [13] (see Section
2.2), considering thetransformedvoice source features – F0,
energy, voice source spectrum, and HNR – in target cost calcu-
lation. Concatenation cost was considered normally. Each indi-
vidual glottal pulse was further modified in the spectral domain
to emphasize high frequencies, thus decreasing the spectral tilt
of the voice source even more.

The vocal tract spectrum was also transformed, but to a
lesser degree, as the vowels were subject to distortion due to
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Figure 4: Intelligibility of the proposed TTS voice (GlottLom-
bard), original speech (Plain), and the reference TTS system
(RefTTS) masked by competing speech (CS) and speech-shaped
noise (SSN) with three different SNRs. Data is represented as
means and standard errors over listeners.

varying phonetic content of individual utterances. However,
formant enhancement [22] was applied to a high degree to com-
pensate for statistical smoothing as well as mimicking the clar-
ity of Lombard speech.

The resulting speech signal was adaptively high-pass fil-
tered in order to reduce the gain below the current F0 of speech.
Finally, speech signals were compressed in order to increase av-
erage loudness using the following formula:

s′n =

{

−(−sn)
k + a if sn < −t

skn − a if sn > t
(3)

wheret = (1/k)1/(k−1) defines the starting point (0 ≤ t < 1)
of the compression,a = tk − t fits the compressed part of
signal with the uncompressed one, andk is the compression co-
efficient (0 ≤ k < 1). The smaller the value ofk, the stronger
the effect of compression. The idea of this compression is to in-
crease the small signal values linearly and reduce the amplitude
of the high peaks, which in effect will increase the overall gain
of speech as the maximum value of the signal is normalized to
1. Figure 2 shows the compression function (left panel) with
two different degrees of compression. The right panel shows
how the compression affects the signal after it is normalized by
its maximum amplitude.

Different amounts of glottal pulse spectral modification and
signal compression was applied in building the voices according
to the different SNR levels. Thus, three versions of the modified
voices were created.

4. Results
The intelligibility of different systems were evaluated in the
Hurricane Challenge listening test. In this paper, the results for
the proposed systems (denoted asGlottLombard), natural utter-
ances (denoted asPlain), and reference TTS system (denoted as
RefTTS) are presented. Two noise types, both with three SNRs
were used in the test as maskers: competing speech (CS) from a
female talker at utterance-wise SNRs of−7, −14, and−21 dB,
and speech-shaped noise (SSN) whose long-term average spec-
trum matched that of the CS, at SNRs of1, −4, and−9 dB.
The submitted sentences were normalized with respect to the



Table 2: Results of the subjective evaluation. Upper table shows the percent of correctly recognized words for each system in each
condition. Data is represented as means and standard errors. Bottom table shows the intelligibility gain in decibels for the proposed
system (GlottLombard) with respect to original speech (Plain) and the reference TTS system (RefTTS).

Masker Competing speaker (CS) Speech-shaped noise (SSN)

SNR =−7 dB SNR =−14 dB SNR =−21 dB SNR =1 dB SNR =−4 dB SNR =−9 dB

GlottLombard 59.4± 2.2 % 35.9± 1.5 % 17.1± 2.3 % 67.3± 2.0 % 52.0± 1.3 % 23.8± 2.2 %
Plain 85.1± 2.1 % 57.0± 2.4 % 24.8± 1.9 % 88.3± 2.1 % 63.0± 2.2 % 17.3± 2.1 %
RefTTS 59.7± 1.6 % 31.3± 1.9 % 11.7± 1.3 % 63.7± 1.9 % 32.8± 1.8 % 6.8± 1.2 %

Gain w.r.t. Plain −7.39 dB −4.67 dB −2.54 dB −3.83 dB −1.33 dB 1.18 dB
Gain w.r.t. RefTTS −0.06 dB 1.14 dB 2.42 dB 0.47 dB 2.34 dB 4.30 dB
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Figure 5: Improvement in gain (dB) for the proposed system
(GlottLombard) in comparison to original speech (Plain) and
reference TTS system (RefTTS) in competing speech (CS) and
speech-shaped noise (SSN) with three different SNRs.

root mean square (RMS) energy and mixed with the maskers
according to the SNRs. In the test, the listeners heard the sen-
tence and masker through headphones only once, after which
they typed what they heard. A total of 175 young adult listen-
ers who passed an audiological screening and had no reported
hearing disorders participated in the test.

The results of the intelligibility evaluation are shown in Ta-
ble 2 and illustrated in Figure 4. The proposed method is sig-
nificantly less intelligible than original speech, which is a rather
expected result as synthetic voices tend to be less intelligible
compared to natural speech [23]. However, the intelligibility
difference between original speech and the proposed TTS voice
becomes smaller as SNR is decreased, and in SSN condition
with the SNR of−9 dB, the proposed system is more intel-
ligible than original speech. Compared to the reference TTS
voice, the proposed TTS voice is more intelligible in all condi-
tions except for the high-SNR conditions of both noise types,
in which cases the standard errors of the intelligibility ratings
overlap each other.

The intelligibility gain in decibels for the proposed voice in
comparison to original speech and the reference TTS voice is
shown in Table 2 (bottom) and illustrated in Figure 5. In com-
parison to original speech, positive gain is achieved only with
SSN masker with SNR of−9 dB, but compared to the reference
TTS system, positive gains as high as 2–4 dB are achieved with
low-SNR conditions.

5. Discussion

Although our system performed significantly better than the
baseline TTS system, the results in this challenge were slightly
inferior to our previous experiences on Lombard speech synthe-
sis, where we have been able to achieve superior intelligibility
compared to natural modal voice [5, 6]. Having considerable
differences between setups, we may only speculate the reasons
of the degraded performance. First, the simple voice conversion
method has an obvious weakness of performing transformation
per-utterance basis, causing distortion of formants if the dis-
tribution of phonemes in an utterance is atypical. This could
be easily remedied by pre-calculating the statistics of the base
voice from larger number of synthesized utterances. Second,
noting the lower performance on competing female speaker
condition, the raising of F0 may have had detrimental effect on
the intelligibility because of increased overlap in the F0 range
and thus added difficulty in following the flow of the target
speech.

Finally, the uniform increase of duration by 10% had the ef-
fect of increasing the total RMS energy of each utterance. Thus,
as the speech files were mixed with noise with respect to the to-
tal RMS energy in order to achieve specific SNRs for the test,
the average level of the lengthened utterances were lower com-
pared to speech without duration increase. This may have had
a dramatic effect on the intelligibility of the proposed system,
although this type of level normalization does not correspond to
a real situation, where only the peak amplitude and maximum
average frame-wise RMS energy is of concern.

6. Conclusions

This paper described modification of a TTS system for improv-
ing the intelligibility of speech in various noise conditions. The
GlottHMM vocoder was used for training a voice with modal
speech data, after which the voice parameters were modified in
an unsupervised manner to mimic the properties of Lombard ef-
fect based on a small amount of Lombard speech from the same
speaker. The evaluation results of the Hurricane Challenge 2013
show that the modified voice is more intelligible than unmodi-
fied natural speech only if masked by low-SNR speech-shaped
noise, but equal or more intelligible compared to the reference
TTS systems in all conditions.
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