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Abstract
Creaky voice, also referred to as vocal fry, is a voice quality fre-
quently produced in many languages, in both read and conver-
sational speech. To enhance the naturalness of speech synthesis,
these latter should be able to generate speech in all its expres-
sive diversity, including creaky voice. The present study looks
to exploit our recent developments, including creaky voice de-
tection, prediction of creaky voice from context, and rendering
of the creaky excitation, into a fully functioning and automatic
HMM-based synthesis system. HMM-based synthetic creaky
voices are built and evaluated in subjective listening tests, which
show that the best synthetic creaky voices are rated more natu-
ral and more creaky compared to a conventional voice. A non-
creaky voice is also successfully transformed to use creak by
modifying the F0 contour and excitation of the predicted creaky
parts. The transformed voice is rated equal in terms of natural-
ness and clearly more creaky compared to the original voice.
Index Terms: speech synthesis, creaky voice, contextual fac-
tors, F0 estimation, excitation modeling

1. Introduction
Creaky voice, also called vocal fry or laryngealisation, is a voice
quality brought about by a distinctive non-modal phonation type
involving low-frequency vocal fold vibration. The temporal pe-
riodicity of creak is often highly irregular and secondary laryn-
geal excitations are also common. The perceptual consequence
of this can be described as “a rough quality with the sensation of
additional impulses” [1]. For a description of the physiological
and acoustic characteristics of creaky voice can be found e.g.
in [1]–[5]. Although creak is produced by speakers involun-
tarily, various systematic usages of creaky voice have been re-
ported. For instance, creaky voice has been observed as a phrase
boundary marker in American English [6]. Another study inves-
tigated the use of creaky voice as a turn-yielding mechanism in
Finnish [7]. The relevance of creaky voice for hesitations has
been examined [8] as well its usage in portraying social status
[9]. Creaky voice is also known to be important for communi-
cating attitude and affective states [10].

Some of our previous work on creaky voice involved devel-
oping methods for automatic detection of creak [11, 5]. Further
work by the present authors was concerned with developing an
excitation model of creaky production capable of providing a
natural rendering of the voice quality [12]. Also the predic-
tion of creaky voice from contextual factors was investigated in
[13], which enables automatic determination of the creaky us-
age from the input text. One obvious application of this line
of research is incorporating creaky voice in a statistical para-
metric speech synthesis system. There are several reasons why

this is desirable. Firstly, many speakers use creaky voice in the
read speech used for developing text-to-speech (TTS) systems.
For such speakers, providing the proper mechanisms for mod-
elling creaky voice will inevitably improve the naturalness of
the synthesis [14]. Furthermore, as creaky voice is frequently
adopted in lively story- telling and natural interactive conversa-
tion, incorporating creak will also contribute significantly to the
development of expressive speech synthesis.

In this paper, statistical parametric speech synthesis of
creaky voice is investigated. First, Sec. 2 describes speech
data used in the study and Sec. 3 describes methods required
for successful analysis of creaky voice: creaky voice detection
and fundamental frequency (F0) estimation. In Sec. 4, hidden
Markov model (HMM) based synthesis of creaky voice is ex-
perimented: synthetic creaky voices are built and evaluated in
subjective listening tests in terms of naturalness and creakiness.
Adding creaky voice to a non-creaky speaker is experimented
in Sec. 5, and finally Sec. 6 summarises the current findings.

2. Speech data
The speech data used in the present study consist of three
databases recorded for the purpose of developing TTS synthe-
sis. The first is 1131 sentences produced by an American En-
glish male (labelled BDL) recorded for the ARCTIC database
[15]. The second is 692 sentences read by a Finnish male (la-
belled MV) [16]. The first two speakers use creaky voice in
the recordings. The third corpus contains 1138 utterances spo-
ken by a Scottish English male (labelled AWB) who does not
generally exhibit creaky voice. This corpus is thus used in ex-
periments of adding a creaky voice for a non-creaky speaker.

Additionally, conversational speech data is used for assess-
ing the performance of F0 and voicing estimation algorithms
in creaky voice regions. This consists of conversational speech
data recorded from 7 speakers in a range of conditions, and cov-
ering a set of languages (English, Japanese and Swedish). A full
description of these conversational speech databases is given in
[5]. Note that an additional TTS database of a female Finnish
speaker was included to evaluate the F0 algorithms (see [14]).

All of the conversational data, as well as 100 sentences from
the TTS databases (which was used as test data), were hand-
labelled for creaky voice (the annotation procedure is outlined
in [5]). Note that it is not generally possible to obtain objective
reference annotation for creaky voice.

3. Analysis of creaky voice
During the production of creaky voice, the glottal behaviour is
dramatically modified. The physiological settings [17] bring
about acoustic characteristics which are quite distinct from
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modal voice. As a result, proper automatic analysis of creaky
voice then requires specific tools for i) the accurate detection of
creaky voice parts and ii) the accurate F0 estimation in difficult
creaky voice parts. In the following, these methods for creaky
voice analysis are described.

3.1. Creaky voice detection

In order to have proper treatment of the distinctive acoustic
characteristics of creaky voice in a speech synthesis system it is
essential to have annotation of creaky voice regions in a given
corpus. Hand-annotation of large corpora is, of course, ex-
tremely time-consuming and besides, in order to have a fully
automatic and reproducible synthesis development method, au-
tomatic detection of creaky voice is required. In this study we
utilise a recently developed detection algorithm [5] (which built
on initial work in [11]). The algorithm involves the use of two
features derived from the Linear Prediction (LP) residual which
have been tailor-designed to characterise aspects of the creaky
excitation. These features are used as inputs to a binary de-
cision tree classifier, which outputs a posterior probability of
the occurrence of creaky voice. This contour can be thresh-
olded to obtain a binary creaky decision. The detection method
was trained on a range of speech data including read speech
recorded for TTS development as well as a range of conversa-
tional speech databases recorded under different conditions.

3.2. F0 estimation

To develop a synthesis system with effective rendering of creaky
voice, one must use an F0 tracker capable of outputting mean-
ingful values in these regions. However, due to the very low
F0 and often highly irregular periodicity of creaky voice many
F0 trackers either output spurious values or incorrectly deter-
mine the region to be unvoiced. To decide on an appropriate F0
tracker for our synthesis approach, we first evaluated a range of
state-of-the-art F0 algorithms:

• GlottHMM [18]
• SWIPE [19]
• RAPT [20]
• SPTK 3.1 cepstrum based pitch function [21]
• STRAIGHT TEMPO [22, 23])

These methods are assessed in terms of the extent to which they
incorrectly determine creaky voice regions to be unvoiced. The
methods were mostly used with their default settings, except
that the frame length was set to 45 ms whenever possible to
assist the F0 detection in low-pitch creaky sections. A range
of speech data, previously hand-labelled for creaky voice (see
Section 2), including 3 databases of read speech for TTS syn-
thesis development as well as conversational speech data from
7 other speakers was used. For the TTS data (Figure 1, left
panel) the GlottHMM method performs best in terms of not in-
correctly determining creaky voice regions to be unvoiced, with
SPTK also performing well. In general for the conversational
data (Figure 1, right panel) performance is degraded somewhat.
This is to a large extent due to lower quality recording condi-
tions. Here SPTK performs best with GlottHMM the next best.
Considering these findings we opted to use the GlottHMM F0
and voicing decision algorithm for our synthesis approach.

4. Synthesis of creaky voice
Synthesis of voice with creak requires i) the prediction of creaky
parts from context and ii) the ability to render creaky excitation.
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Figure 1: Percentage of hand-labelled creaky voice regions in-
correctly determined as unvoiced using 5 F0 tracking algo-
rithms for TTS (left panel) and conversational (right panel)
speech data. Data is displayed as means and standard errors.

In our previous work, we have developed methods for creaky
voice prediction from context [13] and rendering of creaky ex-
citation [12]. However, these methods have not been utilised in
a full TTS voice before. In the following, HMM-based synthetic
voices with the ability to exhibit creak are created.

4.1. Prediction of creaky voice from context

To render creaky voice in appropriate parts in a sentence, creak
must be predicted from input text. Although it is possible to
have an external control over a creaky voice in speech synthe-
sis, in a pure TTS application, creaky parts must be predicted
from the only available source of information, the context of the
input text. The process of the prediction begins with first detect-
ing the existing creaky parts in the training corpus by a creaky
voice detection algorithm (see Section 3.1). In this study, the
algorithm in [5] is used, which provides a frame-wise probabil-
ity of creak. This parameter is used as a feature in the HMM-
training for determining if a segment is creaky or not [13]. More
specifically, the parameter indicating the probability of creak is
trained as an additional 1-dimensional feature along with other
speech features, such as F0 and spectrum.

The contextual features according to which the creaky prob-
ability parameter is trained, are defined by the list of phonetic
and linguistic information that is used for training a HMM-
based synthetic voice. For BDL voice, the standard list of 53
contextual factors in the HTS implementation [24, 25] is used.
For the Finnish speaker, MV, a total of 66 contextual factors are
used, described in [26]. According to the study in [13], only
a few of the contextual factors are useful in predicting creaky
voice, and the useful factors are closely related with creaky use
at the end of a sentence or a word group.

After the training, a statistical model (i.e. HMM system)
is created that links the creaky probability with the contextual
factors. In synthesis, the input text is fed into a front-end that
extracts the contextual information according to the list of con-
textual features. This information is then used to generate a
creaky probability trajectory from the trained statistical model.
Investigations on this procedure in [13] indicate that the accu-
racy of the prediction of creaky voice from context is compara-
ble to the accuracy of the creaky detection algorithm on which
the HMM system was trained.

4.2. Rendering of creaky voice

As described in Section 1, the creaky excitation is dramatically
different from the excitation of modal speech arising from cer-
tain distinctive physiological factors [17]. More precisely, the
creaky excitation signal not only exhibits discontinuities at the
glottal closure instants (as in modal speech [27]), but also dis-
plays secondary (and sometimes even tertiary) excitation peaks.



In [12], we have proposed an extension of the Deterministic plus
Stochastic Model (DSM) [28] which integrates a proper mod-
eling of these secondary excitation peaks. The resulting para-
metric vocoder was shown to provide a much better perceptual
rendering of the creaky voice quality [12]. In the following, this
vocoder will be used to enhance the creaky voice synthesis.

There are three crucial points to ensure correct perceptual
creaky rendering. First, voicing decision method should be ro-
bust enough to deal with the acoustic characteristics of creaky
voice. If this is not the case, the use of an unvoiced excitation
in creaky segments will dramatically affect the quality of the
produced voice. Secondly, the F0 estimation technique should
provide tangible F0 trajectories even in creaky voice. The third
criterion is a proper modeling of the creaky excitation which
importantly differs from the excitation in modal speech.

4.3. Voice building

Creaky voices were built using the standard HTS method
[24, 25] with the addition of 1-dimensional stream of creaky
probability [13]. First, F0 was estimated with two methods:
GlottHMM vocoder [18] and TEMPO [23]. SPTK 3.6 [29]
was used to extract the spectrum of speech by 30th order mel-
generalised cepstral analysis with α = 0.42 and γ = −1/3
[30]. Generalised mel-cepstrum was then converted to line
spectral frequencies (LSF) [31] for better parameter represen-
tation for HMM training. In synthesis, parameters were gener-
ated considering global variance [32] except for the spectrum.
Creaky parts were determined according to the generated creaky
voice probability. Excitation was generated using the DSM
vocoder [28] with the extension that creaky parts were rendered
with the creaky excitation waveform [12]. Finally, the excita-
tion was filtered with the mel-generalised log spectral approx-
imation (MGLSA) filter [33]. The following voices were built
both for MV and BDL speakers using the previous methods:

1. Conventional (STRAIGHT F0)
2. Proposed (GlottHMM F0)
3. Proposed (GlottHMM F0 and creaky excitation)

4.4. Evaluation

To evaluate the three synthesis systems we carried out a subjec-
tive online two-part listening test. For the stimuli used in the
listening test we randomly selected 20 sentences (synthesised
using the 3 systems, as well as the natural speech utterance)
from the 100 held-out test sentences of the American (BDL) and
the Finnish speaker (MV). Note we included natural utterances
as a check, but as participants rated these almost unanimously
as completely natural we will not consider these in the results.

The first part was a standard mean-opinion score (MOS)
style test, where participants rated the naturalness of synthe-
sised stimuli on a scale of 1 to 5. 29 participants (22 of whom
are engaged in speech research) carried out the first test. Par-
ticipants were presented with 48 stimuli (i.e. 2 speakers with
6 sentences by the 4 systems). Note that the 6 sentences were
randomly selected from the set of 20 for each participant, and
stimuli were presented in a randomised order each time.

The second part was a pairwise preference test, where par-
ticipants were presented with two synthesised stimuli and were
required to indicate their preference of the two in terms of
synthesising creaky voice effectively. Participants could also
choose “no preference”. Note that 3 of the 29 participants did
not complete the preference test part. As some participants may
not be familiar with the term creaky voice we included a range
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Figure 2: Results from (a) MOS and (b) preference test. Data
for (a) is displayed as means and 95% confidence intervals.

of natural utterances as references with which to familiarise
themselves with the voice quality. Participants were presented
with 30 pairs of stimuli, 5 sentences for the 2 speakers and the
3 possible pairwise comparisons (i.e. 1 vs 2, 2 vs 3 and 1 vs 3).
Note again that the 5 sentences were randomly selected from
the set of 20 for each participant and pairs of stimuli presented
were presented in a randomised order.

The results of the subjective evaluation are illustrated in
Figure 2a. For the MOS test, a one-way ANOVA indicates a sig-
nificant effect of system type on participant ratings [F(2,1041) =
12.52, p< 0.001]. Pairwise comparison using Tukey’s Honestly
Significant Difference (HSD) test reveals both system 2 and 3 to
have higher (p< 0.001) participant ratings than system 1. These
findings indicate a clear improvement in naturalness when using
the GlottHMM F0 tracker compared with STRAIGHT. How-
ever, participants did not notice any clear difference in overall
naturalness if the creaky excitation was included or not.

For the preference test (illustrated in Figure 2b) participants
clearly signalled a preference for system 2 compared to system
1 (60 % preference) and system 3 compared to system 1 (67
% preference). Around twice as many ratings favoured system
2 (42 % preference) to system 1 (22 % preference), however
a large proportion of the ratings (36 %) indicated no preference
for either. The findings here clearly show a lower preference for
the synthesis system using STRAIGHT F0 in terms synthesis-
ing creaky voice. They also indicate a preference for the synthe-
sis system using the creaky excitation (i.e. system 3) compared
to the one without (i.e. system 2).

5. Adding creak for non-creaky speaker
The following four systems were assessed in terms of trans-
forming a non-creaky voice (AWB) to a creaky one:

1. Baseline AWB
2. AWB with BDL creaky excitation
3. AWB with BDL F0 and BDL creaky excitation
4. AWB with F0 transformation and BDL creaky excitation

For system 1, a normal baseline voice was trained according to
the description in Section 4.3, without creaky voice prediction
and rendering. For system 2, creaky voice regions are predicted
and a creaky excitation pulse from another speaker (i.e. BDL) is
used to render the excitation. This, however, may impose prob-
lems since the combination of the original F0 curve and artifi-
cially added creaky excitation may not sound natural. System 3
uses F0 stream substitution and creaky excitation from another
creaky speaker (BDL). Note that a similar approach of feature
stream substitution has previously been shown to be effective
for reconstruction of the timbre of individuals with degenera-



tive diseases using HMM-based synthesis with an average voice
model [34]. The F0 curve is, hence, in line with creak, but
with the cost that the prosody of the original speaker is affected
by the substitution of another speaker’s F0. Finally, system 4
tries to overcome this problem by transforming the original F0
curves so that they decline appropriately in the creaky regions.
This is achieved by applying a data-driven transformation to the
original F0 curve in the region preceding, around 500 ms (ap-
prox. 2 syllables), and including the creaky segment. This trans-
formation is learnt from the analysis of F0 trajectories from a
creaky speaker. More precisely, a set of F0 curves preceding a
creaky segments are collected, converted to a logarithmic scale,
normalised so that they start with a zero value, and then simply
averaged. The original F0 trajectory of the non-creaky speaker
is then transformed such that it matches the trends extracted
from the creaky speaker, in the 500ms region preceding the pre-
dicted creaky region.

5.1. Evaluation

To assess the effectiveness of the creaky transformation as well
as the overall naturalness of the synthetic utterances we car-
ried out a further online subjective evaluation of the 4 systems
described in previous section. 14 participants carried out the
listening test where they were presented with 28 synthesised
stimuli (i.e. 7 sentences for each of the 4 methods) and were
required to rate the stimuli on two scales. The stimuli we used
were again randomly selected 20 test sentences and the corre-
sponding synthetic signals produced using the 4 systems. Par-
ticipants were presented with 28 stimuli (the 4 system versions
of 7 test sentences randomly selected from the 20 for each par-
ticipant) in a randomised order. The first scale was a standard
MOS scale, with naturalness rated on a score of 1 to 5. The sec-
ond scale was also from 1 to 5, with 1 being “does not sound like
creaky voice” and 5 being “sounds exactly like creaky voice”.
Again reference samples of natural utterances containing creaky
voice were given at the beginning of the test to allow partici-
pants to familiarise themselves with the voice quality. Note that
in this test these references utterances were randomly selected
(for each participant) from a set of utterances taken from the
conversational data. This was done to avoid biasing participants
to one particular form of creaky voice.

The results for the subjective evaluation of creaky trans-
formation are presented in Figure 3. For the MOS, (panel a),
a one-way ANOVA (with participant rating as the dependent
variable) indicates significant effect of system type on the MOS
naturalness score [F(3,388) = 2.93, p < 0.05]. Pairwise compar-
ison using Tukey’s Honestly Significant Difference (HSD) test
reveals that system 3 was rated as lower (p < 0.05) than sys-
tem 1. However, there were no other significant pairwise differ-
ences. For the creaky scale, a one-way ANOVA again indicates
(but in this case a more pronounced) significant effect of system
type on participant ratings [F(3,388) = 33.43, p< 0.01]. Tukey’s
HSD post-hoc test this time reveals a significant difference (p<
0.001) between system 2, 3 and 4 compared with system 1, with
no other pairwise significant differences.

These findings demonstrate that systems 2–4 clearly
achieve incorporation of creaky voice into the utterance of a
non-creaky speaker. For system 3, which utilises F0 stream
substitution, the altered prosody of the speaker brings about
a degradation in naturalness, and is, hence, somewhat less ef-
fective. A further possibility for the degradation may be due
to the higher spectral coefficients from the non-creaky speaker
being unsuitable and, hence, the need for further feature sub-
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(b) transformation subjective evaluations. Data displayed as
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stitution of these coefficients (as is done in [34]). Interestingly,
the method with the highest mean creaky rating, which does
not degrade the naturalness, is a relatively straightforward post-
processing of the F0 contour (i.e. system 4).

6. Conclusion
The goal of this paper was two-fold. First, we investigated
methods for the HMM-based synthesis of creaky voice. Com-
pared to the synthesis of modal voice, this purpose requires the
development of specific and necessary modules: i) at analysis
time, a robust pitch tracker which copes with the inherent less
regular periodicity of creaky voice should be used, ii) at gen-
eration time, the segments where creaky voice should be used
have to be predicted from contextual factors, iii) at synthesis
time, a dedicated vocoder integrating the presence of secondary
peaks in the creaky excitation should be used to allow a proper
rendering of creaky voice. The inclusion of these modules into
a HMM-based speech synthesiser was shown to provide a sub-
stantial improvement over the standard approach. Our subjec-
tive evaluation revealed a significant improvement in terms of
naturalness, as well as a clear preference towards the proposed
system. These experiments also highlighted the need to use ap-
propriate creaky voice analysis tools.

The second goal of the paper was to investigate the possibil-
ity of applying voice transformation techniques so as to produce
creaky voice by a speaker who initially only used modal speech.
Three techniques were proposed for this purpose. Compared to
the standard HMM-based speech synthesiser for such a speaker,
these methods were shown to maintain the level naturalness (i.e.
they did not introduce any artifacts) while they clearly induced
a proper creaky rendering perceived by listeners. Interestingly,
the best method for this purpose did not involve any statistical
manipulation and could be used as a post-process in any (i.e.
not necessarily statistical) speech synthesis method. There is
of course the risk that different languages (in particular), but
also possibly different dialects may have different systematic
usage of creaky voice. Nevertheless, using a model of predict-
ing creaky voice from an American English speaker applied to
a Scottish English speaker was deemed to be effective.
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“Fixed point analysis of frequency to instantaneous frequency
mapping for accurate estimation of F0 and periodicity”, Proc. Eu-
rospeech, pp. 2781–2784, 1999.

[23] Kawahara, H., Masuda-Katsuse, I. and de Cheveigné, A., “Re-
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