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Detection of shouted speech in noise: Human and machine

Jouni Pohjalainen,a) Tuomo Raitio, Santeri Yrttiaho, and Paavo Alku
Department of Signal Processing and Acoustics, Aalto University, P.O. Box 13000, FI-00076 AALTO,
Espoo, Finland

(Received 17 April 2012; revised 24 October 2012; accepted 16 February 2013)

High vocal effort has characteristic acoustic effects on speech. This study focuses on the utilization

of this information by human listeners and a machine-based detection system in the task of detect-

ing shouted speech in the presence of noise. Both female and male speakers read Finnish sentences

using normal and shouted voice in controlled conditions, with the sound pressure level recorded.

The speech material was artificially corrupted by noise and supplemented with pure noise. The

human performance level was statistically evaluated by a listening test, where the subjects labeled

noisy samples according to whether shouting was heard or not. A Bayesian detection system

was constructed and statistically evaluated. Its performance was compared against that of human

listeners, substituting different spectrum analysis methods in the feature extraction stage. Using

features capable of taking into account the spectral fine structure (i.e., the fundamental frequency

and its harmonics), the machine reached the detection level of humans even in the noisiest

conditions. In the listening test, male listeners detected shouted speech significantly better than

female listeners, especially with speakers making a smaller vocal effort increase for shouting.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4794394]

PACS number(s): 43.71.Bp, 43.72.Dv [MAH] Pages: 2377–2389

I. INTRODUCTION

Shouting is used by speakers to produce a very loud

acoustical signal in order to increase the sound’s distance

of transmission or its signal-to-noise ratio (SNR).1,2 In a

noisy environment filled with non-vocal sounds and normal

speech, shouting is typically used to communicate some-

thing urgently. In addition, the use of high vocal effort in

such an environment can be indicative of an alarming situa-

tion. Therefore, machine-based detection of shouted speech

in adverse ambient noise conditions is a relevant research

topic in audio-based surveillance.3,4 Also, detection of high

vocal effort can be applied in speech and speaker recogni-

tion in order to tackle a possible mismatch between training

and testing conditions.5,6 For all these technological appli-

cations, the performance of human listeners in shout detec-

tion serves as a natural point of comparison.

Detection of shouting by humans and machine in adverse

noise conditions is compared in the present study. Since this

topic calls for background knowledge from different areas of

speech science and engineering, the introduction is divided

into four subsections discussing separately (A) the spectral

characteristics of shouting, (B) human perception of shouted

speech, (C) its machine detection, and, finally, (D) the aims

of the study.

A. Spectral characteristics of shouted speech

Several previous studies have observed that shouting

cannot be regarded as normal speech produced with a very

loud volume. Instead, many acoustical properties of the

voice are altered when the vocal effort is increased from nor-

mal to shouting. In addition to the obvious effect of an

increased sound pressure level (SPL) in shouts, also segmen-

tal durations and spectral features of speech differ between

normal and shouted speech.7 From the point of view of

machine-based shout detection, the spectral characteristics

are most important because, first, they can be easily imple-

mented using frame-based feature vectors in a manner

similar to that used in speech recognition8 and speaker rec-

ognition.6 Second, relying on spectral characteristics enables

building shout detection systems that are scale invariant, i.e.,

the detection system does not utilize the SPL information of

speech and is therefore independent of, for example, the

microphone-to-speaker distance. Therefore, the acoustical

properties of shouted speech are treated in the following

from the point of view of their spectral characteristics only.

Rostolland7 reported a large difference in the fundamen-

tal frequency (F0) between shouted and normal speech for

both male and female speakers. The increase in F0 was espe-

cially noticeable for talkers of low pitch. Moreover, F0 dif-

ferences among speakers in shouting were small compared

to normal speech. In a subsequent follow-up study, largely

increased values for the frequency of the first formant (F1)

were reported for shouted French vowels1 in comparison

to those produced with normal effort. Li�enard and Di

Benedetto9 analyzed vowel spectra within the vocal effort

range typically used in everyday conversations. They found

statistically significant increases in F0 and F1, but not in the

second (F2) or third (F3) formant, in experiments where the

distance between the speakers of the conversation was var-

ied. Li�enard and Di Benedetto9 also analyzed the formant

amplitudes, which showed a systematic increase for higher

formants in shouted speech, reflecting a decrease of spectral

tilt. Traunm€uller and Eriksson2 reported increased values in
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the frequency of both F0 and F1 when vocal effort was

raised over a wide range from whispering to shouting.

Spectral characteristics of Lombard speech were studied by

Junqua.10 His results also indicated that speech with high

vocal effort is characterized by an increased F0 (more pro-

nounced for male speakers), F1 (more pronounced for

female speakers), and spectral center of gravity.

Schulman11 found amplified articulatory movement pat-

terns in loud speech relative to normal speech, in particular a

generally lower jaw position. He explained these findings

perceptually by relating them to the importance of maintain-

ing the Bark distance between F1 and F0: since F0 increases

in loud speech and shouting, the frequency of F1 must also

shift up in order to maintain the correct phonetic identities.

The shape of the glottal pulse is also heavily influenced by

the vocal effort. Notably, the relative length of the glottal

closing phase, the so-called closing quotient, decreases when

speakers raise their vocal intensity.12–14 In the frequency

domain, this increased sharpening of the glottal pulse in

the time domain results in the emphasis of the level of the

higher frequencies, i.e., in a lower tilt of the speech spec-

trum. Ternstr€om, Bohman, and S€odersten15 found a satura-

tion point for the spectral tilt after which the 2–6 kHz band

energy did not rise any more relative to the 0.1–1 kHz band

energy. Simple spectral parameters such as the spectral

center of gravity and the spectral tilt have been found to be

effective features for the automatic discrimination between

normal and loud speech of male speakers.16

Figure 1 illustrates the differences between the averaged

spectra of normal and shouted speech from male and female

speakers.

B. Human perception

Human perception of normal and shouted speech in

noise was studied by Pickett.17 His results indicate that the

intelligibility of speech heard in white noise, with a constant

SNR close to 0 dB, decreases rapidly when the vocal effort

is raised towards shouting. At lower levels of the vocal

effort, increasing vocal intensity causes a smaller degrada-

tion in the intelligibility.

Brandt, Ruder, and Shipp found human listeners to be

capable of perceiving raised vocal effort separately from

loudness18 and suggested increased spectral bandwidth to be

an important acoustic cue for the perception of raised vocal

effort. Several other previous studies on loud or shouted

speech indicate that listeners acutely perceive raised vocal

effort and easily associate it with other features under study,

e.g., loudness19,20 and distance to speaker.2,21 Interestingly,

Allen20 found that the judgment of loudness depends on both

SPL cues and vocal effort cues in different proportions with

different listeners. In the light of the investigation conducted

by Glave and Rietveld,22 the large effect of vocal effort on

loudness appears not to be due to any speech-specific high-

level perceptual processing, but can instead be explained by

the short-term acoustic (spectral) characteristics discussed in

Sec. I A. In particular, the characteristics of the glottal source

have been found to greatly affect the loudness perception.23

Concerning the factors affecting the direct perception of

the vocal effort, both the glottal source characteristics and

F1 have been found to be important.24 There are, however,

no studies that have specifically addressed how accurately

humans detect shouted or high-effort speech amidst compet-

ing background noise or how accurately they can discrimi-

nate between a normal and a deliberately high vocal effort of

natural speech.

C. Machine detection

Automatic, machine-based detection of shouted speech

in a noisy environment is a challenging research question

in audio-based surveillance technology. The goal of this

technology is to automatically detect sound events associ-

ated with potentially alarming situations in a specific acous-

tic environment. Systems have been developed for detection

of, e.g., shouted speech in trains;25 non-neutral speech and

banging in elevators;26 and screams, gunshots, and explo-

sions in different urban and military environments.3,4 An

overview of audio event detection systems, their problem

domains, and the techniques employed is provided by

Ntalampiras et al.3

Machine-based audio detection systems typically consist

of two major parts: the front-end and the back-end. The for-

mer transforms the input audio signal into a sequence of fea-

ture vectors, a process that is often performed by expressing

the short-time magnitude spectrum of the input as mel fre-

quency cepstral coefficients (MFCCs), while other solutions

use other forms of cepstral coefficients or specialized fea-

tures.3 The back-end predominantly models the probability

distributions of the MFCC vectors using Gaussian mixture

models (GMMs) in a Bayesian classification framework.3,25,26

Support vector machines are one competing approach to

GMM-based classification.25

In machine detection studies, scream detection perform-

ance has been found to degrade steeply when the SNR is

close to 0 dB.3,4 In a realistic scenario, the environmental

noise conditions are subject to change. In any given station-

ary conditions, the SNR is related to the distance between
FIG. 1. Averaged spectra for normal (dashed line) and shouted (solid line)

speech of 11 male (top) and 11 female (bottom) speakers.
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the person shouting and the microphone, given that the SPL

in free field conditions is inversely proportional to the square

of the distance from the sound source.27 Thus, to increase

the usability and reliability of automatic detection, attention

needs to be paid to the noise robustness of the method. This

issue has been studied, e.g., by Pohjalainen et al.28,29 leading

to the development of a general-purpose, noise robust detec-

tion system for shouted speech. This system, which is further

developed in the present paper, is based on MFCC feature

extraction and GMM classification.

In addition to surveillance-oriented applications, increas-

ing use of automatic speech recognition and speaker recogni-

tion systems in adverse environments may benefit from

automatic detection of speech of high vocal effort.5,6,30

Speaking in a noisy environment induces the Lombard effect,

hence making the talker change his or her speaking style

from normal to loud or very loud.10 Changing the speaking

style causes, in turn, a mismatch between the acoustical prop-

erties of the current speech signal and those represented by

the previously trained statistical models, deteriorating the

system performance. If, however, the system was provided

with automatic detection of high-effort speech, the recognizer

could switch between acoustical models trained with speech

of different vocal effort levels and, consequently, the recogni-

tion performance would improve.5 Regarding the effect of

vocal effort variation on the performance of recognition

applications, work with similar objectives has recently been

conducted also with whispered speech.30,31

D. Aims of the study

In this study, an automatic machine-based shout detec-

tion system for acoustic environment monitoring is proposed,

based on a feature representation that modifies the widely

used MFCC vector by taking into account the most obvious

acoustical consequence in the production of high-effort

speech, the raising of the F0. The goal is to validate the

machine-based system in several realistic noise conditions

and to compare its performance to that obtained by human lis-

teners. In addition, the study aims to find out how human

detection of shouting in competing talking crowd noise differs

between male and female speakers, quiet and loud shouters,

and male and female listeners. Involving the Lombard effect,

whose nature to a degree depends on the type of the noise,32

is beyond the scope of this study. This choice was made

deliberately in order to focus on high vocal effort alone and

not on the effect that the background noise has on the produc-

tion of speech. Specifically, the conditions simulated in this

study are such that the ambient noise level at the talker’s loca-

tion is low or moderate and hence no Lombard effect is

induced. However, the (fixed) position of the microphone

may be at a long distance from the talker, giving rise to a low

SNR.

II. MATERIAL

Speech data were collected from 11 males and 11

females. The subjects, all native speakers of Finnish, read 24

sentences in Finnish using both normal vocal effort and

shouting. The speech signals were recorded with a condenser

microphone (AKG CK92 omnidirectional capsule with

SE300B power supply) in an anechoic chamber. The data

were sampled at 96 kHz using a resolution of 24 bits. At the

computer, the signals were downsampled to 16 kHz. Before

each recording session, a calibration signal (1 kHz sine tone

with SPL ¼ 92:3 dB) was recorded. The calibration signal

was later used to determine the SPL values of the recorded

speech signals.

The speakers first produced the sentences using their

normal vocal effort, after which the same sentences were

repeated by shouting. Twelve of the selected sentences are in

the imperative mood, consisting of one to four words. The

semantic contents of these sentences were designed to repre-

sent vocal messages that people might use in potentially

threatening situations such as “anna se kamera t€anne” (“give

me the camera”), “€alk€a€a liikkuko” (“don’t move”), and

“lopettakaa” (“stop it”). The other 12 sentences, each con-

sisting of three words, are in the indicative mood and have a

neutral, abstract information content. Because exactly the

same textual material is used for normal and shouted speech,

the shout detection cannot benefit from phonemic differen-

ces between the two speech classes. All the sentences are

listed in Table I.

The speakers were instructed to use a very large vocal

effort when shouting. A mere raised volume was not accepted

as shouting. After giving the instructions and checking the

position of the speaker relative to the microphone, the opera-

tors left the anechoic chamber, leaving the speaker alone in

the chamber. The speaker stood at the distance of 0:7 m from

the microphone. One operator monitored the recording from

outside of the chamber, listening to the recorded samples

using headphones and following the signal waveform in real

time on the computer screen. The waveform was used to

gauge the instantaneous SPL. If the waveform envelope level

in shouting did not reach the level of the calibration tone

(92:3 dB), or did not show enough amplification compared to

the same talker’s normal speech (according to informal visual

judgment corresponding to a level difference of at least 10

dB), the talker was asked to repeat the shouting section. In

addition, shouted speech was perceptually assessed by the

operator. If he assessed a sample not to represent shouting,

the talker was asked to repeat the shouting section until it

was acceptable.

TABLE I. List of the Finnish sentences used in collecting the speech

material.

Ottakaa tuo varas kiinni Saara sukii laamaa

Anna se kamera t€anne Liinu tilaa viinaa

Et mene viel€a minnek€a€an Paavi tavaa suuraa

Anna se takaisin Taata tivaa taalaa

Tule pois sielt€a Siiri kuvaa jaalaa

Ei yht€a€an l€ahemm€as Saana sahaa haapaa

Pysy siin€a Tuuli puhuu kiinaa

€Alk€a€a liikkuko Piika vahaa tuubaa

Ole hiljaa Taavi tekee siikaa

Lopettakaa Tuula tukee Kuubaa

Juoskaa Ruusu varoo laavaa

Ampukaa Haamu lukee saagaa
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The utterances were separated and concatenated by

automatic voice activity detection, which is similar to the

frame selection method to be described in Sec. III C. For the

purpose of machine detection, the material was stored in 44

files with two files per speaker such that each speaker’s nor-

mal and shouted speech material resided in separate files.

The length of the normal speech files varied between 30 and

39 s, while the length of the shouted speech files varied

between 33 and 50 s. For the listening test evaluation, the

individual utterances were kept separate.

The averaged SPL levels of speech produced with nor-

mal vocal effort and shouting were computed separately for

each talker. The overall SPL was determined using frame-

based energy calculation together with the recorded calibra-

tion tone with a known SPL level at the recording location.

Frames of 25 ms, taken every 10 ms, were used in this com-

putation. The obtained SPL values were averaged for the

most energetic 50% of the frames. This was done in order to

decrease the dependency of the results on the source text and

language, as the material is continuous speech instead of,

e.g., sustained vowels. Including all the material in the com-

putation of SPL would result in a more text-dependent value

which would be influenced by, e.g., the proportion of voiced

and unvoiced speech. The most energetic half of the signal

typically consists of vowels and is thus less text-dependent.

Averaged SPL values for normal speech and shouted

speech, as well as their differences in decibels, are listed for

all speakers in Table II. From this table, the following obser-

vations on the recorded speech material can be made. The

averaged shouting SPLs display rather large variation from

one speaker to another. They vary over a 17 dB range both

in the male and female speaker groups. The difference in

decibels between a speaker’s shouted speech and normal

speech ranges from 15 to 33 dB for the male speakers and

from 17 to 28 dB for the female speakers. Such SPL differ-

ences are in line with previous studies: for instance,

Rostolland7 reports C-weighted level differences between

shouted and normal speech of 28 and 20 dB for male and

female speakers, respectively.

In order to simulate shouting in noise, the speech mate-

rial was artificially corrupted by two noise types from the

NOISEX-92 database named babble and factory1.33 The

former comprises speech from multiple simultaneous talkers.

The latter is mechanical noise recorded in a factory, includ-

ing frequent transient impulsive sounds. The noise corrup-

tion was conducted to achieve the following SNR categories:

20, 10, 0, �10, and �20 dB.

III. AUTOMATIC SHOUT DETECTION METHOD

A. Overview

An automatic detection system is proposed, based on

recognizing the spectral distribution of the most energetic

parts of an evaluated audio signal segment. The system con-

sists of three processing stages, which are explained in detail

in the following sections: (1) feature extraction, (2) frame

selection, and (3) pattern classification. In particular, this

study focuses on the short-time spectrum analysis part of

the feature extraction stage. The role of spectral features in

capturing information related to the vocal tract excitation is

investigated in detail.

The feature extraction module converts a digital audio

signal into a sequence of feature vectors, each representing

the acoustic features of a short signal frame. The approach

chosen is to model each short-time magnitude spectrum as

mel frequency cepstral coefficients (MFCCs),8 the computa-

tion of which is illustrated in Fig. 2. The squared magnitude

spectrum can be obtained in different ways, as shown in

Fig. 3. FFT gives a non-parametric spectrum estimate using

the discrete Fourier transform, while the other branches in

Fig. 3 employ parametric spectrum envelope modeling, as

will be described in Sec. III B.

In the pattern classification module, the probability dis-

tributions of the MFCC vectors are modeled using Gaussian

mixture models (GMMs) in the context of Bayesian classifi-

cation.34 The input segment is classified as either shouted

speech or non-shouted. In general, the MFCC/GMM classifi-

cation approach is popular in diverse speech and audio rec-

ognition applications, such as speaker recognition,34 audio

event detection,3 and paralinguistic analysis of speech, e.g.,

the recognition of emotional state35 or vocal effort class.30

Between the feature extraction and pattern classification

stages, unsupervised energy-based frame selection is applied

in order to focus the GMM modeling and recognition only

on the most energetic frames, which presumably have the

largest SNR (assuming a speech target signal is present).

The classification rule is based on three separately trained

GMMs: one for shouted speech, one for normal speech, and

one for the expected type of ambient noise. A detection deci-

sion is made every second using an analysis block of two

TABLE II. Speaker-specific averaged SPL in decibels for normal and

shouted speech and their difference. Each of the SPL values has been

obtained by first integrating the signal energy in frames of 25 ms with a

10 ms sampling interval, relating the result to the reference signal to obtain

the frame SPL value, and then averaging the frame SPL values over the

most energetic 50% of the frames for the specific speaker and speaking

condition.

Speaker number

1 2 3 4 5 6 7 8 9 10 11

Male Speech 73 69 78 71 82 71 74 74 71 74 76

Shouting 106 99 107 96 106 93 94 93 90 91 90

Difference 33 30 28 25 24 22 20 18 18 16 15

Female Speech 72 76 70 67 77 76 71 73 78 70 67

Shouting 100 102 96 90 100 98 92 93 97 88 85

Difference 28 26 26 24 23 23 21 20 19 18 17

FIG. 2. Stages of obtaining MFCCs from the squared magnitude spectrum.

The chain consists of three parts: computation of frequency band energies

using filters with triangular passbands spaced evenly according to the mel

scale, taking a logarithm of the band energies, and discrete cosine transform

of the logarithmic energies.
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seconds. The analysis block length has been chosen based on

the considerations that it is long enough to typically cover

energetic voiced segments in continuous speech, yet short

enough so as not to distract the time resolution.

B. Acoustic feature extraction

The input to the system is sampled at 16 kHz and

pre-emphasized by a first-order highpass filter HpðzÞ
¼ 1� 0:97z�1. The signal is processed in Hamming-

windowed analysis frames of 25 ms with a 10-ms frame

shift. For each frame, an MFCC feature vector is computed,

as illustrated in Fig. 2, using the standard processing chain

of squared magnitude spectrum computation, a filterbank of

triangular filters spaced evenly on the mel frequency scale,

logarithm, and discrete cosine transformation.8 The MFCC

vector is a representation of the short-time magnitude spec-

trum that also takes into account the nonuniform frequency

resolution of human hearing. The MFCC analysis can thus

be considered to coarsely mimic the processing that occurs

on the basilar membrane in the inner ear.36

The magnitude spectrum which is represented by the

MFCC features is typically obtained using discrete Fourier

transform (DFT), implemented by a fast Fourier transform

(FFT) algorithm (path D in Fig. 3). However, DFT analysis is

not particularly resistant to additive noise. In earlier work

dealing with noise robustness for automatic speech recogni-

tion (ASR) and speaker recognition, improvement in noise

robustness has been achieved by replacing the FFT in the

MFCC computation chain by linear predictive spectrum anal-

ysis,37,38 such as conventional linear prediction (LP)39 (path

A in Fig. 3) and weighted linear prediction (WLP)40 (path B

in Fig. 3). LP minimizes the prediction error energyP
nðsn �

Pp
k¼1 aksn�kÞ2 of a short-time analysis frame con-

sisting of samples sn with respect to the coefficients ak, giving

the infinite impulse response (IIR) filter 1=ð1�
Pp

k¼1 akz�kÞ.
For the filter to depict the magnitude spectrum envelope (i.e.,

the formants), the prediction order p is typically chosen as

slightly more than the sampling frequency in kHz,41 for

example, p ¼ 20 would be a typical choice for a signal

sampled at 16 kHz. For WLP, the corresponding error energy

to be minimized is
P

nðsn �
Pp

k¼1 aksn�kÞ2Wn, where the

weighting function is chosen as the short-time energy

Wn ¼
Pp

i¼1 s2
n�i. This weighting emphasizes the accurate

modeling of the high-energy portions of the analysis frame

that can be assumed to have a good SNR.

Other perceptually motivated feature representations,

such as cepstral coefficients based on perceptual linear predic-

tion,42 perceptual MVDR (minimum variance distortionless

response),43 or perceptual MVDR-based cepstral coeffi-

cients43 have been used in ASR in recent years, and they have

shown improved recognition performance in noisy conditions.

There are, however, no previous studies indicating that these

methods can improve the detection of high vocal effort.

Therefore, in order not to expand the experimental sections of

this study too much, the perceptually motivated feature repre-

sentations mentioned above were not involved in the current

study. Instead, noise-robust feature extraction was addressed

by utilizing only the two most widely used MFCC representa-

tions (i.e., FFT- and LP-based MFCCs) as references.

The change from normal to shouted speech has a distinct

effect on the vocal tract excitation.2,7,13 This effect manifests

itself in the spectral fine structure of the produced acoustic

speech pressure waves. In particular, the increased fluctua-

tion speed of the vocal folds in the production of loud speech

results in a more sparse spectral fine structure, characterized

by an increased value of F0 and its harmonics. Therefore, an

automatic system for the detection of shouted speech would

most likely benefit from a feature representation capable of

taking into account the change that occurs in the spectral

fine structure of speech when vocal effort is altered from

normal to shouting. Although using the linear predictive

spectrum envelope in place of FFT in the MFCC computa-

tion chain may provide additional noise robustness, it does

not preserve the spectral fine structure normally present in

the FFT-based MFCC representation. To combine the bene-

fits of both the conventional linear predictive analysis and

the role of the spectral fine structure, an approach was

adopted in which the linear predictive spectrum envelope is

multiplied by the spectral fine structure obtained by cepstral

analysis28,29 (path C in Fig. 3). The present work uses a fur-

ther modification of this approach, based on the observation

that the cepstrally separated fine structure appears to be

more resistant to heavy noise corruption than the linear pre-

dictive formants. The procedure, described in the flow dia-

gram shown in Fig. 3, consists of the following steps:

(1) Use linear predictive analysis (either LP or WLP) to

obtain the magnitude spectrum envelope Hk.

(2) Transform the signal into the cepstral domain8 using the

processing chain: (1) DFT magnitude spectrum, (2) loga-

rithm, (3) inverse DFT; lifter this real cepstrum by sup-

pressing to zero the cepstral coefficients corresponding

to lags less than ðFs=500Þ þ 1, where Fs is the sampling

rate in Hz; and transform the result back into a magni-

tude spectrum. When only the high-time part of the ceps-

trum is preserved, the resulting magnitude spectrum

will mostly reflect the vocal tract excitation.41 Denote

the thus processed excitation spectrum by Gk. Periodic

FIG. 3. Alternative paths for computing the squared magnitude spectrum,

which is used as an input to the MFCC chain shown in Fig. 2.

J. Acoust. Soc. Am., Vol. 133, No. 4, April 2013 Pohjalainen et al.: Detection of shouted speech in noise 2381

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  129.215.224.19 On: Tue, 01 Apr 2014 10:04:25



excitation information up to 500 Hz is retained in the lif-

tered excitation spectrum.

(3) Compute the spectral flatness44 of the linear predictive

spectrum envelope Hk as the ratio of the geometric and

arithmetic mean of the spectrum,

l ¼
exp ð1=NqÞ

XNq

k¼1

logðHk þ �Þ
 !

�þ ð1=NqÞ
XNq

k¼1

Hk

;

where Nq denotes the DFT index corresponding the the

Nyquist frequency and � is a small constant added for

numerical stability.

The spectral flatness measure l assumes values

between 0 and 1, with low values for highly shaped spec-

tra and high values for flat spectra. The noisier the signal

becomes, the more the speech formants are suppressed

and the flatter the envelope spectrum will be.

(4) Compute the final squared magnitude spectrum

Sk ¼ ðHkGal
k Þ

2
, where a is a parameter determining how

much weight to assign to the spectral flatness weighted

excitation spectrum. In this work, the experimentally

determined value a ¼ 3 is used. The fine structure is thus

emphasized more when the signal becomes noisier in

order to rely on voiced speech harmonics instead of

formants in the noisiest cases.

If the spectrum envelope is modeled by an LP all-pole filter

and its inverse filter is applied to the spectrum model given

by step 4 above, the residual spectrum will be the cepstrally

separated excitation spectrum (with weighting). For this

reason, this spectrum analysis method is referred to in this

work as cepstral residual linear prediction (CRLP). Similarly,

when WLP is used to model the spectrum envelope, the

method is termed CRWLP. Figure 4 shows examples com-

puted from voiced speech illustrating these spectrum analysis

approaches and their relation to the conventional methods.

Figure 5 shows examples of spectra computed by the

different feature extraction methods of Fig. 3 in moderate to

heavily noisy conditions. The CRLP method is observed to

preserve the spectral fine structure better than the FFT-based

method when the amount of noise increases. In addition,

Fig. 5 demonstrates that the formant cues weaken and the

spectral tilt of speech decreases as the noise corruption

increases, and this phenomenon is particularly apparent in

the LP spectra. It is therefore hypothesized that even as the

SNR decreases to such levels that the spectral envelope cues

such as formants and spectral tilt vanish due to noise, a

detection system using CRLP or CRWLP can still rely on

cues present in the spectral fine structure in order to achieve

better noise resistance. Thus, the rate at which the perform-

ance approaches chance level would be slowed down.

In applications such as ASR and speaker recognition, the

feature representation is most often based on 12 MFCC coeffi-

cients, starting from index 1 and excluding the “zeroth” coeffi-

cient. These are possibly supplemented with the logarithmic

energy of the analysis frame to give a 13-element vector.

These coefficients are an auditory representation of the short-

time magnitude spectrum envelope. They are usually con-

catenated with their first and second order “delta” coefficients8

to depict the instantaneous time trajectory of each coefficient.

While the MFCC representation does not fully preserve

the spectral fine structure, which is partially smoothed out by

the mel filterbank, contributions due to the harmonics of F0

are still preserved in the higher-order MFCCs. Figure 6

shows the means and standard deviations of MFCCs for nor-

mal and shouted speech of the speaker population of this

study. The lowest panel shows the difference of the mean

vectors. There are noticeable differences in the distributions

of the MFCCs at least until MFCC index 20. These consider-

ations motivated the use of a longer-than-normal MFCC fea-

ture vector. Detection of shouted speech was evaluated by

varying the length of the FFT-based MFCC feature vector.

These experiments, conducted with MFCC lengths of 12, 18,

24, 30, and 36, were in accordance with previous stud-

ies,28,29 indicating that the best performance is obtained by

FIG. 4. Vowel [o] spoken normally (top) and with high vocal effort (bottom)

by a male speaker. LP and WLP spectrum envelopes and the cepstrally lif-

tered excitation spectrum (left) are used to construct alternative spectrum

estimates (right) besides the FFT spectrum. The notation next to the curves

corresponds to Fig. 3.

FIG. 5. Example spectra based on a shouted vowel frame by a male speaker.

The rows correspond, from top to bottom, to SNR levels 0, �10, and �20

dB with factory noise corruption. The columns correspond to different types

of spectra. The notation in parentheses corresponds to Fig. 3.
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30 MFCCs, as shown in Table III (30 MFCCs being margin-

ally better overall than 24 or 36 MFCCs). Table IV shows

the results for MFCC lengths 12 and 30 with delta and

double-delta coefficients. While the inclusion of delta coeffi-

cients boosted the noise robustness in comparison to 12 base

MFCCs, the best overall detection performance was obtained

with 30 MFCCs and no deltas, which was thus chosen as the

form of the feature vector in subsequent tests.

C. Frame selection

Both in the training and detection phase of the present

system, the feature vectors are analyzed in blocks of two sec-

onds. Frame selection is used in order to focus the modeling

and detection on the frames with the highest SNR values

within the analysis block. If the noise is assumed to be

relatively stationary, frame energy is a good indicator of the

SNR. Therefore, the modeling concentrates on the high-

energy frames within each block. This is done in both the

training phase and the detection phase. The analysis block is

shifted forward one second at a time; in the training phase,

the overlap between the frame selection decisions of two

successive block positions is handled by averaging.

The logarithmic energy is computed for each short-time

frame, i.e., every 10 ms. For an analysis block of two sec-

onds, this results in a sequence of 200 energy values

(denoted by En). The purpose of the frame selection method

is to classify this sequence into high and low values. In this

study, this is performed by an application of k-means cluster-

ing.8 The centers of two clusters are initialized with minðEnÞ
and maxðEnÞ. After convergence of the k-means iteration,

the cluster assignment is denoted as Xn ¼ 1 if En belongs to

the cluster whose center was initialized with maxðEnÞ and

Xn ¼ 0 otherwise. The frames for which Xn ¼ 1 are selected

for further processing.

The system was evaluated both with and without frame

selection. The k-means method was found to give better per-

formance than no frame selection.

D. Detection rule

The detection system uses GMMs to model broad sound

classes in binary classification according to the Bayes rule.45

Each GMM has eight components and a diagonal covariance

structure.34 The GMMs are trained using ten iterations of

EM (expectation-maximization) re-estimation for GMMs.34

Before training, the component weights of the GMMs are ini-

tialized by a uniform distribution, the variance parameters of

each component by 0:1 times the global variances of the fea-

tures, and the mean parameters of each component by the heu-

ristic selection approach proposed by Katsavounidis et al.46

Separate GMMs are trained for shouted speech, normal

speech, and the expected noise type. The training data for

shouted speech and normal speech is clean, i.e., not cor-

rupted by noise. In the detection phase, after the high-energy

frames inside a two-second analysis block (with a shift inter-

val of 1 s at a time) have been selected using the unsuper-

vised approach described in Sec. III C, the averaged

logarithmic likelihoods of their corresponding feature vec-

tors having been produced by each of the three GMMs are

computed and denoted as Lshout, Lspeech, and Lnoise. The detec-

tion rule for shouted speech is

L ¼ Lshout �maxðLspeech; LnoiseÞ > T; (1)

where T is the decision threshold.

In an earlier study, this detection rule was found to per-

form better than a direct two-way decision between shouting

and non-shouting.29 The decision threshold for the statistic

given by Eq. (1) can be chosen in various ways, affecting the

balance between missed detections and false detections.

FIG. 6. Mean values (solid line) and standard deviation intervals (dotted

line) of MFCCs averaged over normal and shouted speech from 11 male and

11 female speakers.

TABLE III. Equal error rates (%) for different numbers of MFCCs.

Signal-to-noise ratio (dB)

Type of

noise

Number of

MFCCs 20 10 0 �10 �20 �30

Factory 12 2.9 3.2 4.2 13.6 27.7 46.5

18 2.8 2.7 3.5 12.7 20.7 44.7

24 2.5 2.3 2.8 10.3 20.2 41.7

30 2.7 2.4 2.9 10.1 17.8 45.7

36 3.0 3.1 2.5 10.2 20.0 42.2

Babble 12 2.8 3.2 3.9 9.3 21.8 47.8

18 3.2 2.9 4.1 8.5 19.8 48.1

24 2.3 2.0 1.5 5.3 19.2 45.1

30 2.7 2.2 2.4 5.6 16.7 43.0

36 3.3 2.9 2.2 5.0 18.4 45.3

TABLE IV. Equal error rates (%) for 12 and 30 MFCCs concatenated with

D and DD coefficients.

Signal-to-noise ratio (dB)

Type of noise Number of MFCCs 20 10 0 �10 �20 �30

Factory 12 5.0 4.2 4.2 9.5 22.2 45.8

30 3.4 3.4 4.4 13.7 25.1 43.2

Babble 12 5.2 4.8 4.2 6.7 20.2 44.5

30 2.9 3.0 3.0 10.9 24.8 47.9
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IV. LISTENING TEST SETUP

The human performance in the detection of shouted

speech was evaluated by a subjective listening test. Subjects

were presented with samples through headphones and the

task of the subject was to decide whether the sample repre-

sented shouting or not. The evaluation material, consisting

of speech, shouting, and pure noise samples, was used to

measure the human performance, but only with the babble

noise condition in order to keep the listening test reasonable

in size. Babble noise was chosen in order to focus especially

on the discrimination between different types of speech:

multitalker background, normal speech, and shouted speech.

SNRs of 0, �10, �20, and �30 dB were evaluated.

In the test, subjects were seated in a quiet room with a

graphical user interface in front, and samples were presented

in random order through high-quality headphones

(Sennheiser HD580). The subject could listen to each sample

as many times as he or she desired before the decision. In

order to prevent the loudness differences between samples of

normal vocal effort and shouting from affecting the detection,

the levels of the listening test samples were normalized

according to ITU-T P.56.47 Before the actual test, the subjects

performed a practice session which consisted of ten samples

not included in the test samples. During the practice session,

the subject could adjust the volume of the headphones to a

comfortable level, and during the test the volume was kept at

the constant level chosen during the practice session.

The listening test material involved all the 24 sentences

produced with normal vocal effort and shouting by all the 22

speakers. Each sentence was presented at four different

SNRs. Thus, the total number of test sentences was 22 � 24

� 2 � 4¼ 4224. In addition, a quarter of that number (1056)

of pure babble noise samples were added to the test set. As a

result, the total number of listening test samples was 5280.

Eight male and eight female Finnish listeners with no

reported hearing problems took part in the listening test. The

listeners were students or post-graduate university students.

Since using all the data for every subject was impractical, in

order to cover all the test material the samples were divided

evenly among the listeners. Thus, each subject evaluated 330

test cases consisting of 264 speech/shout cases and 66 pure

babble noise cases. The duration of the test per listener was

approximately 30 min.

V. RESULTS

A. Overview

The sensitivity of the automatic detector and human lis-

teners to detect shouting in speech samples (from 22 speak-

ers) was investigated in conditions of variable SNR, noise

type, and spectral estimation method. In addition, the speak-

ers were categorized based on gender and on the level differ-

ence between spoken and shouted utterances, calculated as

the SPL increase from normal speech to shouting (shown in

Table II). The speakers were categorized into two classes of

high shouters (NH ¼ 11) and low shouters (NL ¼ 11), where

the decibel increase between shouting and normal speech

was >22:5 dB and �22:5 dB, respectively.

The means of detection performance statistics across

different conditions were compared with repeated measures

analysis of variance (ANOVA). In the following, all statisti-

cally significant ANOVA effects pertaining to the spectral

estimation methods are shown. The degrees of freedom

(and, thus, p values) of the ANOVA effects were corrected

with lower bound epsilon when appropriate. Pairwise post
hoc comparisons between mean values were performed with

Newman–Keuls tests.

B. Evaluation procedure for the machine system

The automatic detection experiments were carried out

as leave-one-out cross validation. One speaker in turn was

selected as the test speaker while the other 21 speakers’ ma-

terial was used to train the models. The test material for each

speaker consisted of his or her speech and shout material,

both corrupted by noise with a given segmental SNR, as well

as a segment of noise equal in length to the speaker’s normal

speech material. Thus, the “non-shouting” part of the evalua-

tion data had equal amounts of noisy normal speech and

pure noise. The noise model of the detector was trained

using two minutes of the noise material, while the remaining

portion of the noise recording was used for testing.

C. Machine detection

The performance of machine detection was analyzed in

different noise conditions and using different spectral esti-

mation methods. The detection threshold for the likelihood

given by Eq. (1) was adjusted in such a way that two empiri-

cal probabilities, the miss rate pmiss (the frequency of failing

to detect a shouted speech sample) and the false alarm rate

pfa (the frequency of reporting shouted speech when it is not

actually present), become equal. The corresponding error

rate is known as equal error rate (EER) and is a widely used

measure of performance in detection tasks.3,6,38 Tables V

and VI show the pooled-data EER results for factory noise

and babble noise, respectively.

For each noise condition and spectral estimation

method, the EER threshold was adjusted using pooled data

and this threshold was used to obtain speaker-specific error

rates of the form 0:5� pmiss þ 0:5� pfa. Because of the

method of threshold determination, these error rates will also

be termed EERs, even though they do not consist of strictly

equivalent miss and false alarm rates. The speaker-specific

EER values were analyzed using ANOVA. The factors of

the ANOVA consisted of SNR (�30, �20, �10, 0, 10, and

20 dB), noise type (factory noise, babble noise), and spectral

TABLE V. Equal error rates (%) for MFCC features using different spec-

trum analysis methods in factory noise.

Signal-to-noise ratio (dB)

Spectral estimation method 20 10 0 �10 �20 �30

FFT 2.7 2.4 2.9 10.1 17.8 45.7

LP 2.1 2.8 4.8 10.5 19.2 45.5

CRLP 2.9 3.8 4.5 5.2 14.3 44.5

CRWLP 2.9 3.3 3.7 5.6 14.3 44.8
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estimation method (FFT, LP, CRLP, and CRWLP). The

ANOVA also contained two categorical predictors, speaker

gender and shouting level (low and high).

The EER of the automatic detector depended on the

SNR ½Fð1; 18Þ ¼ 394:02; p < 0:001�, noise type ½Fð1; 18Þ
¼ 295:1; p < 0:01�, and on the spectral estimation method

½Fð1; 18Þ ¼ 7:02; p < 0:05�. The sensitivity of a given spec-

tral estimation method to shouting also depended on the

SNR ½Fð1; 18Þ ¼ 6:51; p < 0:05�, on the speaker gender

½Fð1; 18Þ ¼ 7:18; p < 0:05�, and on the combination of SNR

and noise-type ½Fð1; 18Þ ¼ 4:69; p < 0:05�.
The effects of the spectral estimation method, SNR, and

speaker gender on EER are shown in Figs. 7 and 8. The EER

increased with decreasing SNR (p-values < 0:001) although

the increases in EER for successive SNR values >0 dB were

small (p values ¼ not significant). Lower EER for shouting

was observed in babble noise (12.1%) than in factory noise

(13.1%). The differences in EER produced by distinct spec-

tral estimation methods are compared separately for each

SNR. For the three highest (�0 dB) SNRs, the EER of differ-

ent methods was roughly similar (p not significant). In condi-

tions of SNR ¼ �10 dB and SNR ¼ �20 dB, the CRLP and

CRWLP methods had smaller an EER than the other methods

(p values < 0:05). In addition, LP had a larger EER than FFT

when the SNR was �20 dB and a larger EER than CRLP and

CRWLP when the SNR was �30 dB. However, as illustrated

in Figs. 7 and 8, the above results depend somewhat on the

noise type and speaker gender.

The EER criterion corresponds to just one possible oper-

ating point of the detector. In order to illustrate the overall

performance of the system using different spectrum analysis

methods, Figs. 9 and 10 show the detection error tradeoff

(DET) curves, a widely used visualization for the overall

performance of a detection system,48 for factory and babble

noise, respectively, with SNRs of �20 and 10 dB.

D. Human vs machine

The behavioral data from human listeners was acquired

from conditions of babble noise and four SNRs (�30, �20,

�10, and 0 dB). Table VII shows the pooled miss rates and

the false alarm rates for human listeners in the listening test.

In comparison to the miss rates, the rate of false alarms made

by humans is seen to stay remarkably low. Interestingly,

male listeners appear to miss much fewer detections than the

female listeners.

The “man vs machine” analyses extend the sensitivity

analyses of automatic detectors by adding human male and

female listeners as new “methods.” In these analyses, the

automatic detector was set to a detection threshold which

FIG. 7. Mean EER values in factory noise for the sensitivity of the auto-

matic detector to shouting for factors spectral estimation method, SNR, and

speaker gender. Error bars indicate standard errors of the mean.

FIG. 8. Mean EER values in babble noise for the sensitivity of the automatic

detector to shouting for factors spectral estimation method, SNR, and

speaker gender. Error bars indicate standard errors of the mean.

FIG. 9. (Color online) DET curves of the machine detection system for fac-

tory noise at SNR levels (a) �20 dB and (b) 10 dB.

TABLE VI. Equal error rates (%) for MFCC features using different spec-

trum analysis methods in babble noise.

Signal-to-noise ratio (dB)

Spectral estimation method 20 10 0 �10 �20 �30

FFT 2.7 2.2 2.4 5.6 16.7 43.0

LP 2.2 2.9 2.8 7.0 23.1 45.7

CRLP 2.8 2.3 2.8 5.8 13.6 40.2

CRWLP 2.9 2.7 3.4 5.8 13.9 40.8
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yielded a pooled-data false alarm rate matching the total

false alarm rate of the human listeners in the hardest SNR

scenario �30 dB, i.e., 2:1% according to Table VII. This

method of setting the detection threshold for Eq. (1), hence-

forth referred to as the limited false alarm (LFA) criterion,

was used to obtain the speaker-specific error rates.

As a sensitivity index, the d0 statistic is used.49 The d0 is

calculated as d0 ¼ Z½phit� � Z½pfa�, where Z is the inverse

function of the standardized Gaussian cumulative distribu-

tion function and the hit rate phit ¼ 1� pmiss. The Z function

can be evaluated for p values ð0; 1Þ. If phit or pfa was 0 or 1,

a small number (10�6) was added to or subtracted from the p
value, respectively, to bring it in the ð0; 1Þ range.

The calculation of d0 is based on transforming hits and

false alarms into a sensitivity index and on the assumption of

a particular underlying statistical model. The statistical

model under which a similar d0 can be obtained for a given

detector operating with different criteria (e.g., EER or LFA)

is that of normal distributions with equal variance of both

hits and false alarms.49 In cases of violations of the obtained

data regarding the model assumptions, different d0 may be

obtained at different operating points of the detector.

Therefore, the d0 in the case of EER and LFA data were

compared in the case of babble noise data which is used in

the man vs machine comparisons. A statistically significant

main effect of the criterion was found ½Fð1; 18Þ ¼ 7:90;
p < 0:05� and the d0 was somewhat higher in the case of

the LFA criterion (d0 ¼ 5:63) than in the case of the EER

(d0 ¼ 5:50) criterion. However, no statistically significant

interaction effects of the criterion were found. That is, the

contrasts in sensitivity between different methods appear to

remain constant across different detection criteria.

The key results using the LFA criterion for the auto-

matic detector are shown in Fig. 11. The FFT method was

used as the primary reference for the performance of the

human listeners. For SNR ¼ 0 dB, both male and female lis-

teners had lower sensitivity than the FFT (p values <0:01).

For SNR ¼ �10 dB, the sensitivity of male listeners was

similar to that of the FFT, whereas female listeners had

reduced sensitivity (p < 0:001). For SNR ¼ �20 dB, both

male and female listeners detected shouting better than the

FFT method (p < 0:001). Finally, in the case of the lowest

SNR (�30 dB), no consistent difference in sensitivity

between the FFT and human listeners was observed.

In addition, the sensitivity to shouting of the proposed

CR-based methods (CRLP and CRWLP) were contrasted to

that of male and female human listeners. For SNR ¼ 0 dB,

both male and female listeners had lower sensitivity than

CRLP and CRWLP (p values < 0:01). For SNR ¼ �10 dB,

the sensitivity of male listeners was similar to that of the

CR-based methods, whereas female listeners had reduced

sensitivity (p< 0:001). For SNRs of �20 and �30 dB, no

differences between CR-based methods and human listeners

were found (p values not significant).

TABLE VII. Main results of the subjective listening test for shouted speech

detection in babble noise by human listeners. The total, male listener and

female listener false alarm rates were obtained by averaging the respective

normal speech false alarm rates with the respective pure noise false alarm

rates.

Signal-to-noise ratio (dB)

0 �10 �20 �30 Pure noise

Miss % 9.1 9.9 16.1 65.7

(total)

Miss % 8.7 8.0 19.7 85.2

(male shouting)

Miss % 9.5 11.7 12.5 46.2

(female shouting)

Miss % 2.4 3.4 11.3 65.9

(male listeners)

Miss % 15.1 16.2 20.6 65.5

(female listeners)

False alarm % 1.4 1.5 1.9 2.1 1.8

(total)

False alarm % 1.0 1.1 2.1 2.5

(noisy speech only)

False alarm % 1.2 0.9 1.1 2.0 1.1

(male listeners)

False alarm % 1.6 2.0 2.8 2.2 2.5

(female listeners)

FIG. 11. Mean d0 values for the sensitivity of the automatic detector and

human listeners to shouting for factors analysis method (comprising differ-

ent spectrum analysis methods as well as male and female listeners) and

SNR. Error bars indicate standard errors of the mean.

FIG. 10. (Color online) DET curves of the machine detection system for

babble noise at SNR levels (a) �20 dB and (b) 10 dB.
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E. Human data: Listener-wise analysis

The third part of the analyses was conducted using

listener-specific d0 scores. The factors of the ANOVA con-

sisted of SNR (�30, �20, �10, and 0 dB), listener gender,

and shouting level of the speaker. The effects of these varia-

bles are shown in Figs. 12 and 13.

The d0 decreased with decreasing SNR ½Fð1; 18Þ
¼ 123:50; p < 0:001� and was lowest for the �30 dB condi-

tion relative to the other SNRs (p values < 0:001). While the

sensitivity to shouting was somewhat reduced in the �20 dB

condition (p < 0:07) relative to the conditions with higher

SNRs, no statistically significant differences were found

between conditions with SNR � �20 dB. The sensitivity to

shouting was also higher in male (d0 ¼ 5:00) than in female

(d0 ¼ 3:66) listeners ½Fð1; 18Þ ¼ 86:736:61; p < 0:001�. The

greater sensitivity of male than that of female listeners was

especially prominent in the condition of speech from low

shouters ½Fð1; 18Þ ¼ 18:50; p < 0:001�, as shown in Fig. 13.

VI. DISCUSSION

Detection of shouted speech by human and machine in

varying ambient noise conditions was studied. The main

results are the following.

Detection by machine was based on Bayesian classifica-

tion using auditorily motivated front-end processing. The

performance of machine detection started to degrade in a

statistically significant manner at segmental SNR of around

�10 dB with both factory and babble noise. At a SNR of

�30 dB, the detection performance approached chance level

scores. The alternative spectrum analysis methods CRLP

and CRWLP, which emphasize the spectral fine structure,

improved upon the baseline FFT at SNR levels of �10 and

�20 dB with both types of noise, confirming the authors’ hy-

pothesis. At the same time, LP analysis, which only depicts

the spectrum envelope, showed the worst performance in

noisy conditions. It thus appears that the role of the vocal

tract excitation, manifested in the spectral fine structure, is

important in the detection of shouting in noisy conditions.

Babble noise was used in the comparison between human

and machine. The machine detector was tuned to an operating

point where it exhibits a low rate of false alarms, correspond-

ing to the human listeners. At the highest SNR condition

included in the listening test (0 dB), the machine detector out-

performed both male and female listeners. When noise was

further increased, the performance of the listeners exceeded

that of the baseline automatic system using FFT spectrum

analysis. Both male and female listeners performed better

than the FFT-based system at SNR ¼ �20 dB. However,

when FFT was substituted with either CRLP or CRWLP

spectrum analysis, the machine achieved similar performance

to male and female listeners also in the noisiest cases.

In the listening test evaluation, somewhat surprisingly, a

clear sensitivity difference between male and female listen-

ers was found in favor of the male listeners. This difference

was especially prominent at the higher SNR levels, where

arguably speech is not masked by noise to a degree sufficient

to hide its vocal effort level. The sensitivity scores of the

male and female listeners approached each other as the SNR

was decreased. The difference in sensitivity appears to be

primarily due to females missing the detection of more

shouted samples than males at higher SNR levels. Moreover,

the difference between the male and female listeners was

found to be especially large in the case of low shouters, who

do not raise their voice very much when shouting. The

results thus suggest that male listeners are more sensitive

than female listeners to even moderately raised vocal effort

levels in people’s speech, at least in the sense of labeling it

as shouting when questioned. However, one must keep in

mind that the idea of what kind of speech is considered

shouting depends on many factors, including the norms of

the society and the backgrounds of the individual listeners.

The speakers and the listeners of this study were two groups

of Finnish university students. The speakers were instructed

to speak by shouting, while the listeners were asked whether

they heard shouted speech. Thus, no disparity is believed to

exist between the definitions used to produce the material

and those used to analyze its perception. However, further

studies are needed to determine whether the difference

between sexes in the detection is innate or whether it

depends on the culture and background of the listeners.

FIG. 12. Sensitivity of female and male listeners to shouting. Mean d0 for

factors SNR and listener gender are shown. Error bars indicate standard

errors of the mean.

FIG. 13. Sensitivity (d0) of female and male listeners to shouting. Mean d0

for factors SNR, shouting class (of the speaker) and listener gender are

shown. Error bars indicate standard errors of mean. M¼male listeners,

F¼ female listeners, L¼ low shouters, H¼ high shouters.
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Even in equivalent SPL and SNR conditions, listeners

detected high shouters easier than low shouters. The only

case for which there was no difference was male listeners

and a high enough SNR (0 dB), suggesting that in low-noise

conditions males are equally capable of discriminating both

high and low shouters apart from normal speech. However,

increasing noise degraded this discrimination capability

more for low shouters than for high shouters. Insofar as

shouting detection sensitivity can be paralleled with the

perception of speech loudness, the observation that higher

vocal effort is generally easier to detect would appear to be

supported by the connection between vocal effort and the

loudness perception.19,22 The effect of vocal effort on the

detection performance was larger with female than male

listeners. This, in turn, would corroborate and extend the ear-

lier finding that different listeners place different propor-

tional weights on vocal effort cues in the perception of the

loudness of speech.20 Recalling the importance of glottal

excitation observed in machine detection and the fact that

the glottal excitation appears to play an important role in the

loudness effect of high vocal effort,23 a hypothesis can be

formulated: for listeners, a larger increase in the vocal effort

may be easier to detect than a smaller one primarily due to

the acoustical effect that the glottal excitation source has on

the loudness characteristics of speech.

VII. CONCLUSIONS

This study analyzed the task of detecting deliberately

high vocal effort, conceptualized as shouting, on a back-

ground of (machinery or multitalker) noise. Speech material

was recorded, using the same textual content for normal and

shouted speech, and artificially corrupted by noise with vary-

ing SNR. In addition, pure noise was used as test material.

In a subjective listening test conducted using multitalker

noise, male listeners detected shouted speech better than

female listeners. This difference was primarily due to male

listeners missing the detection of much fewer shouted speech

samples than females, while the rate of false detections was

low for both male and female listeners. Shouting by speakers

using a high SPL difference over their normal speech level

was found to be more easily detected by the listeners, even

though the SPL was equalized for all the listening test sam-

ples. The difference according to the shouting level was

especially prominent with female listeners.

A machine system for the detection of shouted speech in

ambient noise conditions was described and evaluated. The

system consists of MFCC feature extraction, unsupervised

frame selection based on a logarithmic frame energy, and

Bayesian classification using GMMs. In the spectrum analy-

sis for the MFCC computation, the best overall detection

performance was obtained by the new CRLP and CRWLP

methods. These methods use an all-pole spectrum envelope

and emphasize the spectral fine structure in proportion to the

estimated noisiness of the signal. The performance advant-

age of these methods over the baseline FFT method was stat-

istically significant in the noisiest cases in which the system

performance was not yet close to chance level. In noisy

cases, FFT, in turn, was significantly better than LP which

does not display the spectral fine structure. Because the spec-

tral fine structure is closely connected with the vocal tract

excitation and the F0 of voiced speech, the good perform-

ance obtained using CRLP or CRWLP in conjunction with

the MFCC analysis highlights the usefulness of F0 cues in

recognizing the vocal effort level within the range from nor-

mal to high vocal effort.

In the comparison between human and machine with

moderate to high levels of multitalker noise, the basic machine

system using the FFT spectrum analysis outperformed humans

at moderate SNR levels but was outperformed by humans

when the noise corruption was severe. Substitution of one of

the proposed CRLP and CRWLP spectrum analysis methods,

placing more weight on the vocal tract excitation cues, caused

the machine to tie with humans in the noisiest cases while

continuing to achieve better performance at the higher SNR

levels.
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