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Automatic Detection of High Vocal Effort in Telephone Speech
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Abstract
A system is proposed for the automatic detection of high vo-
cal effort in speech. The system is evaluated using both PCM-
coded speech and AMR-coded telephone speech. In addition,
the effect of far-end noise in the telephone conditions is studied
using both matched-condition training and cases with additive
noise mismatch. The proposed system is based on Bayesian
classification of mel-frequency cepstral feature vectors.Con-
cerning the MFCC feature extraction process, the substitution
of a spectrum analysis method emphasizing the fine structure
improves the results in the noisy cases.
Index Terms: vocal effort detection, speech analysis

1. Introduction
High vocal effort is used in speech production in order to
increase the sound’s distance of transmission or signal-to-
background-noise ratio [1] [2] [3]. Possible triggering mech-
anisms for high vocal effort include the Lombard reflex (while
speaking in a noisy environment) [2], changes in emotional ex-
pression of speech (for example from sadness or neutral to anger
or excitement) and the need to communicate urgently or over a
distance [3].

Raising the vocal effort causes certain systematic acoustical
effects on speech. In particular, it increases both the fundamen-
tal frequency (F0) and the first formant (F1) [1] [2] [3] [4] ofthe
produced speech signal. In addition, spectral energy of speech
tends to shift to higher frequencies when vocal effort is raised.
This is manifested, for example, as an increase in the spectral
center of gravity or as a decrease in the spectral tilt [2] [4].

Frequency-domain effects caused by changing the vocal ef-
fort have implications for data-driven speech technology appli-
cations relying on short-time spectral features such as melfre-
quency cepstral coefficients (MFCCs). In particular, the perfor-
mance of, e.g., automatic speech recognition (ASR) and speaker
recognition systems will be affected by vocal effort mismatch
between the training and recognition phase [5] [6] [7]. In order
to avoid the performance degradation caused by this mismatch,
a detection system is needed to aid the recognizer in choosing
acoustic models that are most appropriate for the changed con-
ditions [7].

Earlier studies have examined the identification of vocal ef-
fort in clean speech data with a high signal-to-noise ratio (SNR)
by using MFCC features [5] [7] as well as simple spectral fea-
tures such as the center of gravity [8]. There are, however, no
previous studies on automatic detection of vocal effort from
telephone speech (even though there are some earlier studies
on the detection of emotions in telephone speech, e.g. [9]).A
preliminary study on automatic detection of vocal effort from
realistic telephone speech (i.e. speech that is bandlimited, en-
coded and corrupted with background noise) is thus called for.
When operating in tandem with ASR, a vocal effort detection

system could, besides improving the recognition performance,
also alert a human call center attendant for increased vocalef-
fort of the caller which could possibly indicate frustration. This
application can be related to automatic audio-based surveillance
in a noisy environment, in which shouts and screams are impor-
tant target classes, e.g. [10] [11].

In the present study, robust detection of vocal effort from
continuous speech is addressed by taking into account the ef-
fects of transmission channel (with focus on telephone speech),
sampling rate and background noise. Different spectrum esti-
mation methods are compared in order to take into account the
spectral characteristics of normal and high-effort speech.

2. Detection system
2.1. Feature extraction

The input signal is first pre-emphasized withHp(z) =
1 − 0.97z−1 and then arranged into overlapping Hamming-
windowed frames of 25 ms with a shift interval of 10 ms. An
MFCC feature vector of 12 coefficients (excluding the zeroth
one) is computed from each frame using the standard process-
ing chain of 1) squared magnitude spectrum computation, 2)
mel frequency filterbank, 3) logarithm and 4) discrete cosine
transform [12]. The mel filterbank employed consists of 40 tri-
angular filters spaced evenly on the mel scale. Inclusion of the
delta coefficients has been investigated, but has not been found
to improve detection performance.

The magnitude spectrum to be represented by the MFCC
feature vector is typically obtained using discrete Fourier trans-
form (DFT), implemented by fast Fourier transform (FFT) al-
gorithms. However, DFT analysis is not particularly resis-
tant to additive noise. Previous studies (e.g. [13], [14])
have shown improved performance in speaker verification and
ASR in noisy environments when the FFT spectrum estima-
tion was replaced in the MFCC computation chain by lin-
ear prediction (LP) and its noise-robust variants. Moreover,
the LP-based spectrum estimation outperformed the conven-
tional FFT-based feature extraction in detection of shoutsin a
generic noisy environment [11]. LP minimizes the prediction
error energy

∑
n
(sn −

∑p

k=1
aksn−k)

2 of a short-time anal-
ysis frame consisting of speech samplessn with respect to the
coefficientsak, giving the infinite impulse response (IIR) fil-
ter1/(1 −

∑p

k=1
akz

−k) [15]. In order to model the envelope
of the magnitude spectrum, the prediction orderp is typically
chosen to be the sampling frequency in kHz added by a small
integer [16]. For example,p = 20 is a typical choice for a
signal sampled at 16 kHz. However, in the present evaluation
p = 20 will also be used for 8 kHz material giving a some-
what more detailed model. Despite this, LP models the spectral
envelope, but not the fine structure, which is closely related to
F0. Because vocal effort affects F0, F0 cues can be helpful in
the detection of high vocal effort in various contexts. Thus, in



surveillance-oriented shout detection it has been found useful to
multiply the LP envelope with a cepstrally separated fine struc-
ture, or excitation spectrum [11]. Specifically, the procedure
can be described as follows:

1. Use LP analysis to obtain the magnitude spectrum enve-
lopeHk.

2. Transform the signal into the cepstral domain [12] (using
the processing chain 1) DFT magnitude spectrum 2) log-
arithm 3) inverse DFT), lifter this real cepstrum by sup-
pressing to zero the cepstral coefficients corresponding
to lags less than(Fs/500)+1, whereFs is the sampling
rate in Hz, and transform the result back into a mag-
nitude spectrum. When only the high-time part of the
cepstrum is preserved, the resulting magnitude spectrum
will mostly reflect the vocal tract excitation [16]. Denote
the thusly processed excitation spectrum byGk. Peri-
odic excitation information up to 500 Hz (a frequency
which the F0 of adults normally does not exceed in nor-
mal speech) is retained in the liftered excitation spec-
trum.

3. Compute the final squared magnitude spectrum bySk =
(HkGk)

2.

If the inverse filter of a LP model were to be applied to the
spectrum given by step 3 above, the residual spectrum thereby
obtained would be the cepstrally separated excitation spectrum.
Because of this, the described spectrum analysis method is
termed linear prediction with cepstral residual (LP-CR). Fig-
ure 1 illustrates the FFT, LP, excitation and LP-CR spectra for
a vowel frame. It can be observed that while FFT is unable to
show a clear formant structure due to background noise, LP-
CR indicates emphasized formant peaks. A hypothetical reason
for this behavior is that the LP analysis, which tends to place
the formants at spectral energy maxima [16], will give a spec-
trum envelope model where the formants already correspond to
prominent harmonics. Thus, those harmonics get further ampli-
fied in the final multiplication step of LP-CR.

0 Hz 8 kHz

10 dB

(a)

0 Hz 8 kHz

10 dB

(b)

0 Hz 8 kHz

10 dB

(c)

0 Hz 8 kHz

10 dB

(d)

Figure 1:Spectra computed from a noisy /a/ vowel frame spo-
ken by a male speaker: a) magnitude spectrum given by FFT; b)
magnitude spectrum envelope given by LP; c) excitation spec-
trum given by cepstral source-filter separation; d) LP-CR spec-
trum given by combining b) and c).

In the present study, three spectrum analysis methods are
compared: FFT, LP and LP-CR.

2.2. Frame selection

In both the training and classification phase, the feature vec-
tors are analyzed in blocks of two seconds. Frame selection is
used in order to focus the modeling and detection on the frames
with the highest energy within the analysis block. By model-
ing and recognizing the locally most energetic frames within a
short analysis window, the system focuses especially on thefor-
mant cues of high vocal effort [4]. The analysis block is shifted
forward one second at a time. In the training phase, a frame is
included in the training material if it is selected by the frame se-
lection method in two successive, overlapping block positions.

Logarithmic energy is computed for each short-time frame,
i.e. every 10 ms. For an analysis block of two seconds, this re-
sults in a sequence of 200 values, denoted byEn. Frame selec-
tion classifiesEn into high and low values. In the present study,
this is performed by an application of k-means clustering [12].
The mean values of two clusters are initialized withmin(En)
andmax(En). After k-means iteration has converged, denote
the obtained cluster assignment asXn = 1, if En belongs to
the cluster whose mean value was initialized withmax(En),
andXn = 0 otherwise. The frames for whichXn = 1 will be
selected for further processing.

2.3. Detection rule

The detection system models normal and high-effort speech
with their own Gaussian mixture models (GMMs) for the pur-
pose of binary classification according to the Bayes rule [17].
Each GMM has 8 components and a diagonal covariance struc-
ture [18]. They are trained using 10 iterations of expectation-
maximization (EM) re-estimation for GMMs [18]. Before train-
ing, the component weights are initialized by uniform distribu-
tions, the variance parameters of each component by0.1 times
the global variances of the features, and the mean vectors of
each component by the selection approach proposed by Kat-
savounidis et al. [19].

In the detection phase, after the high-energy frames inside
a two-second analysis block (with a shift interval of one sec-
ond) have been selected using the previously described unsu-
pervised approach, the averaged log likelihoods of their corre-
sponding feature vectors having been produced by each GMM
are computed and denoted asLhigh andLnormal. The logarithmic
likelihood ratio decision statistic used in making the detection
decision is

L = Lhigh − Lnormal (1)

3. Experimental evaluation
3.1. Original speech material

Speech data was collected from 11 male and 11 female speak-
ers, all native speakers of Finnish. They read 24 sentences in
Finnish, consisting of one to four words, first by using normal
vocal effort and then by shouting. The speech signals were
recorded with a condenser microphone in an anechoic cham-
ber, where the speakers stood0.7 m away from the microphone.
The speakers were required to use a vocal effort increase high
enough compared to their normal speech so that the voice could
be accepted as shouting. To make sure that the speakers accom-
plished the task, operators monitored the recording in realtime



from the outside and requested the speaker to repeat the shout-
ing part if necessary. This was done using visual examination
of the sound level, requiring it to reach at least 90 dB SPL level,
and by listening with headphones.

The data was originally sampled at 96 kHz using a reso-
lution of 24 bits and downsampled for the present evaluation
to 16 kHz. Silences and pauses were removed by automatic
voice activity detection. The total length of one speaker’snor-
mal speech material varied between 30 and 39 seconds, while
the total length of one speaker’s shouted speech material varied
between 33 and 50 seconds. The speakers’ SPL averaged over
the most energetic 50% of 25-ms frames varied between 67 dB
and 82 dB in normal speech and between 85 dB and 107 dB in
shouted speech.

3.2. Preparation of the evaluation material

In order to examine the effect of both noise and channel on the
detection performance, six different conditions, shown inTable
1, were examined.

PCM16 and PCM8 correspond to unprocessed pulse-code
modulated (PCM) speech with sampling rate 16 kHz and 8 kHz,
respectively.

For the four telephony conditions T1 to T4, additive noise
from the NOISEX-92 database was first added to the signal in
order to simulate additive ambient noise at the location of amo-
bile station. Three noise types were used:volvo (inside a mov-
ing car),factory1(mechanical factory noise including frequent
transient impulsive sounds) andbabble(many people talking si-
multaneously). The noise corruption was performed at 16 kHz
sampling rate with a controlled segmental signal-to-noiseratio
(SNR), i.e. the average over25 ms frames.

Noise-corrupted speech signals sampled at 16 kHz were
high-pass filtered with the mobile station input (MSIN) filter
that approximates the input characteristics of a mobile terminal
[20] and decimated to the sampling rate of 8 kHz. The speech
level was normalized to 26 dB below overload point. Finally,
the signals were processed with the adaptive multi-rate (AMR)
codec [21], which is commonly used for speech coding in the
GSM cellular system, at a bit rate of 12.2 kbps.

Table 1:The different analysis conditions and their SNRs.

Additive Simulated
noise Sampling transmission

condition (SNR) rate channel

PCM16 none 16 kHz none
PCM8 none 8 kHz none

T1 car interior (30 dB) 8 kHz telephone
T2 car interior (0 dB) 8 kHz telephone
T3 factory (0 dB) 8 kHz telephone
T4 speech babble (0 dB) 8 kHz telephone

3.3. Evaluation methods

The experiments were performed as leave-one-out cross vali-
dation speakerwise, i.e., one speaker in turn was chosen as the
test speaker and the other 21 speakers’ material was used for
training the models.

As a measure of performance of the detection task, the
equal error rate (EER) was used. The EER is the value of both
the miss rate and the false alarm rate using a decision thresh-
old for the statistic given by Eq. 1 that makes these error rates

equal to each other. In addition, detection-error-tradeoff (DET)
curves were examined.

Statistical analysis between different analysis methods was
performed using a statistical significance test appropriate for de-
tection systems [22]. As all the detections use the same analy-
sis block division and original speech material, the “dependent-
case” version of this test was employed.

3.4. Results

Table 2 shows the results for matched-condition training, i.e.,
for each test condition (Table 1) the detection system was
trained using material belonging to the same condition. Thedif-
ferences were statistically significant at the 95 % level between
FFT and LP for the conditions PCM16, PCM8, T1, T3 and T4;
between FFT and LP-CR for the conditions PCM8, T1 and T4;
between LP and LP-CR for the conditions PCM16, PCM8, T1,
T2, T3 and T4. Narrowing the bandwidth appears to degrade
the results. Interestingly, however, the interaction of the tele-
phone channel and background noise does not necessarily have
a negative effect in comparison to clean PCM-coded data.

Table 2: EER scores (%) for PCM and telephone speech with
matched-condition training and different spectrum estimation
approaches used in MFCC feature extraction.

Spectrum Test condition
estimation (Table 1)

method PCM16 PCM8 T1 T2 T3 T4

FFT 3.3 5.1 4.0 3.2 4.4 5.5
LP 2.0 3.5 2.9 3.0 5.1 4.7

LP-CR 3.2 4.2 3.5 3.5 4.0 4.2

Table 3 shows the results for additive noise mismatch, i.e.
varying background noise at the caller’s location, while the de-
tection system has been trained using material with the high-
SNR car interior condition T1. The pairwise differences among
the methods were all statistically significant except between LP
and LP-CR in condition T2. The results show a performance
advantage for LP-CR over FFT and LP.

Table 3: EER scores (%) with the detector trained using T1
material and evaluated in mismatched telephone conditions.

Spectrum Test condition
estimation (Table 1)

method T2 T3 T4

FFT 3.9 4.8 5.1
LP 3.2 5.9 5.9

LP-CR 3.5 4.0 4.4

Figures 2 and 3 show the DET curves corresponding to the
three spectrum analysis methods in the case of factory noise
corruption (T3) and matched-condition and mismatched train-
ing, respectively. It can be noticed that LP-CR yields the best
detection performance over a wide range of operating points.

4. Conclusions
A system for the detection of high vocal effort was described
and evaluated in various matched conditions regarding trans-
mission channel, additive noise corruption and speech band-
width. In addition, mismatched background noise conditions
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Figure 2:Detection error tradeoff (DET) curves corresponding
to different spectrum estimation methods for MFCC with train-
ing and evaluation in condition T3.
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Figure 3:Detection error tradeoff (DET) curves corresponding
to different spectrum estimation methods for MFCC with train-
ing in condition T1 and evaluation in condition T3.

occurring in combination with the telephone transmission chan-
nel were studied. In each case, the baseline system using con-
ventional (FFT-based) MFCC features, unsupervised energy-
based frame selection and Bayesian classification using GMMs
provided reasonable performance. In most cases, FFT was out-
performed by LP-CR as the spectrum estimation method in
MFCC analysis. This behavior can be explained by the fact that
LP-CR emphasizes the role of the spectral fine structure (i.e., F0
and its harmonics) which is known to be an important acoustic
cue for speech with high vocal effort. Future research direc-
tions include the application of the proposed system as an aid
to ASR systems in conditions where high vocal effort can be
encountered. The performance of the LP-CR/MFCC features,
which have shown good performance in paralinguistic tasks re-
lated to vocal effort, as a generic feature representation for ASR
and other speech applications is another question of interest.
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2010), Kittilä, Finland, September 2010.

[8] Harwardt, C., “Comparing the Impact of Raised Vocal Effort
on Various Spectral Parameters”, in Proc. Interspeech, Florence,
Italy, August 2011.

[9] Erden, M. and Arslan, L. M., “Automatic Detection of Anger in
Human-Human Call Center Dialogs”, in Proc. Interspeech, Flo-
rence, Italy, August 2011.

[10] Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, F. and
Sarti, A., “Scream and Gunshot Detection and Localization for
Audio-Surveillance Systems”, Proc. IEEE Int. Conf. Advanced
Video and Signal based Surveillance, London, UK, September
2007.

[11] Pohjalainen, J., Alku, P. and Kinnunen, T., “Shout Detection in
Noise”, in Proc. ICASSP, Prague, Czech Republic, May 2011.

[12] Huang, X., Acero, A. and Hon, H.-W., “Spoken Language Pro-
cessing”, Prentice Hall PTR, 2001.

[13] Saeidi, R., Pohjalainen, J., Kinnunen, T. and Alku, P.,“Tempo-
rally Weighted Linear Prediction Features for Tackling Additive
Noise in Speaker Verification”, IEEE Signal Processing Letters,
17(6), 2010.

[14] Keronen, S., Pohjalainen, J., Alku, P. and Kurimo, M., “Noise
robust feature extraction based on extended weighted linear pre-
diction in LVCSR”, in Proc. Interspeech, Florence, Italy, August
2011.

[15] Makhoul, J., “Linear prediction: a tutorial review”, Proceedings
of the IEEE, 63(4):561–580, 1975.

[16] Rabiner, L. R. and Schafer, R. W., “Digital Processing of Speech
Signals”, Prentice-Hall, 1978.

[17] Theodoridis, S. and Koutroumbas, K., “Pattern Recognition”, 2nd
ed., Academic Press, 2003.

[18] Reynolds, D. A. and Rose, R. C., “Robust Text-Independent
Speaker Identification Using Gaussian Mixture Speaker Models”,
IEEE Trans. Speech and Audio Proc., 3(1):72–83, 1995.

[19] Katsavounidis, I., Kuo, C.-C. J. and Zhang, Z., “A New Initial-
ization Technique for Generalized Lloyd Iteration”, IEEE Signal
Processing Letters, 1(10):144–146, 1994.

[20] ITU-T G.191, Software tools for speech and audio codingstan-
dardization, Int. Telecommun. Union, Mar. 2010.

[21] 3GPP TS 26.090, Adaptive multi-rate (AMR) speech codec,
transcoding functions, 3rd Generation Partnership Project, Sept.
2011, version 10.1.0.
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