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a b s t r a c t

The central 5-hydroxytryptamine (5-HT; serotonin) system is well established as an important regulator
of appetite and continues to remain a focus of obesity research. While much emphasis has focussed on the
5-HT2C receptor (5-HT2CR) in 5-HT’s anorectic effect, pharmacological manipulation of the 5-HT6 receptor
(5-HT6R) also reduces appetite and body weight and may be amenable to obesity treatment. However,
the neurological circuits that underlie 5-HT6R-induced hypophagia remain to be identified. Using c-fos
immunoreactivity (FOS-IR) as a marker of neuronal activation, here we mapped the neuroanatomical
targets activated by an anorectic dose of the 5-HT6R antagonist SB-399885 throughout the brain. Further-
more, we quantified SB-399855 activated cells within brain appetitive nuclei, the hypothalamus, dorsal
raphe nucleus (DRN) and nucleus of the solitary tract (NTS). Our results reveal that 5-HT6R antagonist-
induced hypophagia is associated with significantly increased neuronal activation in two nuclei with
an established role in the central control of appetite, the paraventricular nucleus of the hypothalamus
(PVH) and the NTS. In contrast, no changes in FOS-IR were observed between treatment groups within
other hypothalamic nuclei or DRN. The data presented here provide a first insight into the neural cir-
cuitry underlying 5-HT6R antagonist-induced appetite suppression and highlight the PVH and NTS in the
coordination of 5-HT6R hypophagia.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

The physiological regulation of body weight is defined by the
homeostatic balance between energy consumption (as calories)
and energy expenditure (as basal metabolism, thermogenesis and
physical activity). A prolonged surfeit of nutritional energy results
in the accumulation of calorific excess as fat, and can ultimately
lead to obesity [1,2]. The control of ingestive behaviour is mediated
by the central integration of numerous peripherally derived appe-
titive cues, and the subsequent modulation of neuronal circuits
that define the appropriate physiological/behavioural output [2].
In this regard, the central 5-hydroxytryptamine (5-HT, serotonin)
system has a well-established function as an anorectic neurotrans-
mitter and is an important neurological determinant of appetite
and body weight [3]. Specifically, an increase in 5-HT bioavail-
ability or targeted receptor activation leads to a suppression of
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food consumption and weight loss [3,4]. Moreover, pharmacologi-
cal compounds augmenting wholesale 5-HT bioavailability remain
amongst the most effective obesity treatments [3,5]. However,
off-target effects arising from this generic elevation in 5-HT concen-
tration have prompted more targeted investigation of the specific
receptors through which this anorectic action is achieved [3].
Like the Gq-coupled 5-HT2C (5-HT2CR) and Gi-coupled 5-HT1B (5-
HT1BR) receptors, recent studies demonstrate that pharmacological
manipulation of Gs-coupled 5-HT6 receptor (5-HT6R) signalling
also suppresses feeding and body weight in rodents, in a manner
consistent with the advancement of satiety [6–10]. Unlike the 5-
HT2CR and 5-HT1BR, it is the antagonism rather than the activation
of the 5-HT6R that is associated with its anorectic function. Con-
sistent with this pharmacological evidence, RNAi mediated central
knockdown of 5-HT6 expression engenders hypophagia and weight
loss, in addition to enhancing Morris water maze performance
[8]. Genetic inactivation of 5-HT6R signalling, whilst not directly
impacting upon basal energy balance, results in resistance to the
obesogenic effects of a high-fat diet [11]. Thus, both genetic and
pharmacological evidence support a role for the 5-HT6R in energy
balance regulation.

http://dx.doi.org/10.1016/j.bbr.2014.02.018
0166-4328/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1. SB-399885 dose-dependently reduced food intake. 0.9% saline (white bar) or
SB-399885 at doses of 1 (light grey bar) or 2 (black bar) mg/kg, i.p. was administered
at the onset of the dark cycle and food intake measured over the next 2 h in rats.
Data are presented as mean ± S.E.M. Statistics, one way ANOVA, F2,18 = 9.35, p = 0.016.
**p < 0.01 compared to saline treatment.

The 5-HT6R is exclusively expressed within the brain [12,13].
These receptors are expressed in multiple regions, but of particular
interest, are localised in nuclei of relevance to energy balance regu-
lation such as the arcuate nucleus (ARC), the ventromedial nucleus
(VMN) and paraventricular nucleus (PVH) of the hypothalamus and
the nucleus of the solitary tract (NTS) [12]. Yet the neurological
circuits that underlie 5-HT6R antagonist-induced anorexia remain
to be identified. Here we report the neuroanatomical regions
activated by anorectic concentrations of the 5-HT6R antagonist SB-
399885.

The appetite-suppressing effect of SB-399885 was investi-
gated in the rat in a paradigm of acute feeding behaviour
at concentrations that do not influence exploratory behaviour,
depression/anxiety or wakefulness [14,15]. Rats were selected for
use because site directed mutagenesis studies indicate that the
binding pocket where 5-HT6R antagonists bind in human and rat
is similar [13]. These and other studies suggest that the rat is a
good surrogate species to predict the pharmacology of 5-HT6R
ligands in humans [9,13]. All procedures were carried out in accor-
dance with the UK Home Office regulations (Science Procedures
Act, 1986). Male 250–300 g Sprague Dawley rats (Charles River)
were singly housed (56 cm × 38 cm × 17 cm cage) in a temperature
(21.5–22.5 ◦C) and light (12 h on: 12 h off) controlled environ-
ment with ad libitum access to regular laboratory chow (EUrodent
Diet 22% (protein), PMI Nutrition International) and water, unless
otherwise stated. Rats were acclimatised to single housing and reg-
ularly handled for one week prior to experimentation. SB-399885
hydrochloride (Tocris) was dissolved in sterile saline. On study
days, ad libitum fed rats were administered saline, 1 mg/kg SB-
399885 or 2 mg/kg SB-399885 i.p. 45 min prior to the onset of the
dark cycle and food was removed from the cages (n = 7–8). At the
onset of the dark cycle, rats were provided with a known weight of
standard chow and food consumption monitored over the follow-
ing 2 h. A statistically significant dose-dependent suppression of
food consumption over the course of the study was observed with
1 mg/kg SB-399885 eliciting a 37% and 2 mg/kg SB-399885 yielding
a 78% reduction in food intake compared to saline administration
(Fig. 1; One way ANOVA, F2,18 = 9.35, p = 0.016). These data confirm
previous observations of 5-HT6 antagonist hypophagia [8,10] and
support a role for the 5-HT6R receptor as a pharmacological target
for appetite suppression.

We next sought to identify the neuroanatomical targets that
contribute to the anorectic action of SB-399885 as means of elu-
cidating the neurocircuitry underlying the function of such drugs.
To reduce endogenous satiety signalling, male Sprague Dawley rats
were fasted overnight (16 h) before being administered with saline

or 2 mg/kg SB-399885 (i.p.) at the onset of the light cycle when
rats are typically less active. Furthermore, food was not provided
during this time to prevent nonspecific feeding-associated neu-
ronal activation. Two hours later, rats were deeply anaesthetised
(pentobarbitone 50 mg/kg, i.p.) and transcardially perfused with
phosphate buffered saline, pH 7.4 (PBS) followed by 10% neu-
tral buffered formalin (Sigma). A second group of male Sprague
Dawley rats were ad libitum fed, administered with saline or
2 mg/kg SB-399885 (i.p.) at the onset of the dark cycle and 2 h
later were deeply anaesthetised (pentobarbitone 50 mg/kg, i.p.)
and transcardially perfused with PBS followed by 10% neutral
buffered formalin. Brains were extracted, immersion-fixed in the
same fixative for a further 4 h and cryoprotected overnight in
20% sucrose at 4 ◦C. Brains were cut in coronal section at 25 �m
using a freezing microtome and collected as free-floating sec-
tions in 6 equal series. One full series of tissue per animal was
processed for immunohistochemical detection of the immedi-
ate early gene c-fos (a molecular marker of neuronal activation)
as previously described [16]. Briefly, tissue was washed in PBS
and endogenous peroxidases quenched by a 30 min wash in 0.3%
H2O2. After rinsing in PBS, sections were blocked for 60 min in 1%
bovine serum albumin (BSA) in PBS/0.1% Triton-X 100 and then
incubated overnight at RT in blocking solution containing anti-
rabbit cFOS antibody (1/8000; Calbiochem). Sections were then
washed and incubated in blocking solution containing biotiny-
lated donkey anti-rabbit IgG secondary antibody (1/1000; Vector
Laboratories) for 60 min at room temperature. Following this,
sections were incubated in an avidin-peroxidase complex (ABC,
Vector Elite kit; 1:250, Vector Laboratories) for 1 h in PBS. The
immunoperoxidase was developed using a 3,3-diaminobenzidine
tetrahydrochloride kit, as per manufacturer’s instructions (Vec-
tor Laboratories). After washing, tissue was mounted onto slides,
dehydrated in an ascending series of ethanol washes, cover-
slipped and imaged under brightfield microscopy on a Zeiss
Axioskop.

c-fos immunoreactivity (FOS-IR) in saline versus SB-399885
treated rats was surveyed and mapped across the brain to
identify sites through which 5-HT6R may mediate its appe-
titive effects. Since consistent SB-399885-related changes in
FOS-IR were obtained in rats treated at the onset of the light
and dark cycle, only data related to rats treated at the onset
of the light cycle are presented. Of particular interest was a
significant increase in FOS-IR noted in brain regions associated
with appetite such as the hypothalamus and brainstem (Fig. 2).
We next quantitatively assessed FOS-IR in feeding-related brain
nuclei, the PVH, ARC, VMN, dorsomedial hypothalamus (DMH),
dorsal raphe nucleus (DRN) and nucleus of the solitary tract
(NTS) at three neuroanatomical levels as defined by the Pax-
inos and Watson rat brain atlas [17]. Specifically, we counted
FOS-IR neurons at the following bregma levels: PVN, −1.72 mm,
−1.80 mm, −1.92 mm; ARC, −2.40 mm, −2.92 mm, −3.84 mm;
DMH, −3.00 mm, −3.12 mm, −3.36 mm; VMN, −2.28 mm,
−2.64 mm, −3.00 mm; DRN −6.96 mm, −8.04 mm, −8.40 mm;
NTS −12.60 mm, −13.80 mm, −14.04 mm.

A hypophagic dose of SB-399885 significantly increased FOS-IR
in the PVH, in particular at −1.72 (t10 = 3.77, p = 0.01) and −1.80
(t test, t10 = 7.06, p < 0.0001) from bregma in rats treated at the
onset of the light cycle (Fig. 3). Likewise, rats treated with 2 mg
SB-399885 at the onset of the dark cycle also showed a significant
increase in PVH FOS-IR at −1.80 mm (t4 = 3.06, p = 0.02) compared
to saline. The PVH is well established as a critical regulator of
anorectic behaviour. Specifically, PVH lesion studies, PVH mor-
phological genetic disruption via Sim1 and injection of anorectic
factors into the PVH all support a primary role of this nucleus in
energy balance [18,19]. Furthermore, restoration of melanocortin4
receptors (MC4Rs) in the PVH of MC4R null mice is sufficient to
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Fig. 2. A series of photomicrographs comparing whole-brain FOS-IR in response to saline (blue dots on left, n = 3) versus 2 mg/kg SB-399885 (red dots on right, n = 3), i.p.
Brain sections are arranged rostral to caudal (A–J). One blue or red dot indicates five FOS-IR cells. Scale bar = 1 mm. Abbreviations: AcbSh, shell portion of the accumbens
nucleus; AHA, anterior hypothalamic area, anterior part; AHC, anterior hypothalamic area, central part; AI, agranular insular coretx; AMG, amgydala; AP, area postrema;
BMA, basomedial amygdaloid nucleus; BSTLV, bed nucleus of the stria terminalis lateral division ventral part; Cg1, cingulate cortex area 1; Cg2, cingulate cortex area 2;
CnF, cuneiform nucleus; DLPAG, dorsolateral periaqueductal grey; IMD, intermediodorsal thalamic nucleus; LA, lateroanterior hypothalamic nucleus; LC, locus coeruleus;
LPLC, lateral posterior thalamic nucleus; LPM, lateral posterior thalamic nucleus; LPO, lateral preoptic area; LRt, lateral reticular nucleus; LVPO, lateroventral periolivary
nucleus; MePD, medial amygdaloid nucleus, posterodorsal part; MePV, medial amygdaloid nucleus; MnPO, median preoptic nucleus; MPA, medial preoptic area; MPO,
medial preoptic nucleus; PVA, paraventricular thalamic nucleus, anterior part; PVG, periventricular grey; PF, parafascicular thalamic nucleus; PH, posterior hypothalamic
area; Pir, piriform cortex; PVA, paraventricular thalamic nucleus, anterior; PVG, periventricular grey; PVP, paraventricular thalamic nucleus, posterior; Re, reuniens thalamic
nucleus; RSG, retrosplenial granular cortex; SC, superior colliculus; SCN, suprachiasmatic nucleus; SHy, septohypothalamic nucleus 27; SuM, supramammillary nucleus;
VLPAG, ventrolateral periaqueductal grey; ZI, zona incerta.
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Fig. 3. SB-399885 significantly increased FOS-IR in the PVH and NTS compared to saline. Counts of FOS-IR (n) in the PVH, ARC, DMH, VMN, DRN, and NTS following treatment
with saline (white bar) or 2 mg/kg SB-399885, and accompanying representative photomicrographs. SB-399885 significantly increased FOS-IR in the PVH at −1.72 mm
(t10 = 3.77, p = 0.01) and −1.80 mm (t test, t10 = 7.06, p < 0.0001) from bregma, and at the level of the area postrema in the NTS at −13.80 mm (t10 = 5.45, p = 0.001) and
−14.04 mm (t test, t10 = 3.1, p = 0.01). Scale bar = 50 �m. Data are presented as mean ± S.E.M., *p < 0.05; **p < 0.01; ***p < 0.001 compared to saline treatment. Abbreviations:
PVH, paraventricular nucleus of the hypothalamus; ARC, arcuate nucleus of the hypothalamus; DMH, dorsomedial nucleus of the hypothalamus; VMN, ventromedial nucleus
of the hypothalamus; DRN, dorsal raphe nucleus; NTS, nucleus of the solitary tract; cc, central canal; Aq, aqueduct and AP, area postrema.
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reinstate d-fenfluramine anorexia, demonstrating the importance
of the PVH in 5-HT hypophagia [20].

In contrast to the PVH, SB-399885 produced no observable
changes in FOS-IR within the canonical satiety centre of the
hypothalamus, the ARC (Fig. 3; [1]), where 5-HT6R are expressed
[12]. The ARC-PVH circuit is a key component of 5-HT, 5-HT2CR
and 5-HT1BR agonist hypophagia [6,7,20,21]. Specifically, 5-HT via
5-HT2CRs activates anorectic ARC pro-opiomelanocortin (POMC)
neurons projecting to the PVH and via 5-HT1BRs inhibits hunger
promoting ARC agouti-related peptide (AgRP)/GABA neurons. A
lack of increased FOS-IR in the ARC following 5-HT6R antagonist
administration does not preclude action within this nucleus. Like
5-HT1BR agonists, 5-HT6R antagonists may prevent the activity
of hunger stimulating ARC AgRP/GABA neurons projecting to the
PVH. This is consistent with the notion that 5-HT6R antagonists
reduce food intake by influencing GABAergic neurotransmission,
as 5-HT6Rs are expressed on GABA neurons in other brain regions
[9] and pre-treatment with 5-HT6R antagonist Ro 04-6790 attenu-
ates GABAA receptor agonist muscimol-induced hyperphagia [22].
In this context, our observation that 5-HT6R antagonist administra-
tion increases PVH neuronal activation may be via blockade of 5-HT
action on inhibitory ARC AgRP/GABA neurons, promoting the dis-
inhibition of downstream anorectic PVH neurons. This is a possible
mechanism through which 5-HT6R-antagonist hypophagia may be
achieved.

SB-399885 did not significantly influence FOS-IR in other
hypothalamic energy balance associated regions, the VMN or DMH
(Fig. 3). Nor did it influence FOS-IR in the DRN, a key site where
5-HT is synthesised that projects to the hypothalamus (including
the PVH) and NTS (Fig. 3). In contrast, SB-399885 did substan-
tially increase FOS-IR in the brainstem NTS compared to vehicle
treatment in rats treated at the onset of the light and dark cycle.
Specifically, 2 mg/kg SB-399885 increased neuronal activation by
3-fold in the NTS at −13.80 mm from bregma (t10 = 5.45, p = 0.001),
and to a lesser extent, the caudal portion at −14.04 mm (t10 = 3.10,
p = 0.01) in rats treated at the onset of the light cycle (Fig. 3).
Likewise, compared to saline, SB-399885 increased FOS-IR 2-fold
at −13.80 mm from bregma (data not significant) and 3-fold at
−14.04 mm (t4 = 2.493, p = 0.03) in rats treated at the onset of the
dark cycle. The NTS represents an integrative node through which
vagal, hormonal and chemical inputs converge to modulate feeding
behaviour, with the preponderance of appetitive neurons located
at the level of the area postrema (AP). These include energy status
signals such as 5-HT, leptin, ghrelin, POMC, cholescytokinin (CCK)
and glucagon-like peptide (GLP-1) that are expressed and/or act-
ing within the NTS [23]. Antagonism of 5-HT6R signalling therefore
may act to suppress inhibitory input onto satiety-related NTS neu-
rons, thus promoting their activity and anorectic influence. Equally,
PVH processing has been reported to influence appetitive signalling
in the NTS [24] suggesting that SB-399885-mediated activation of
PVH neurons may also influence the activity of satiety-related neu-
rons in the NTS and vice versa through a PVH-NTS reciprocal circuit.

Pharmacological compounds modulating endogenous 5-HT
bioavailability such as d-fenfluramine and sibutramine were used
for the treatment of human obesity, but were withdrawn from clini-
cal use due to off-target effects. A key component of the therapeutic
effect of these compounds is mediated via activation of 5-HT2CRs.
Capitalising on this therapeutic mechanism, Arena’s 5-HT2CR ago-
nist lorcaserin (Belviq) was launched in the USA in the summer of
2013 for obesity treatment. However, 5-HT6R antagonists have also
been demonstrated to reduce food intake and body weight gain in
comparable proportions to 5-HT2CR agonists in preclinical studies
[9,10,22,25] and represent a further opportunity for obesity treat-
ment drug development. However, the physiological mechanism
through which 5-HT6R antagonists reduce food intake, achieved
via advanced satiety, reduced hunger, induction of nausea, reduced

hedonic properties, or induction of behaviours that interfere with
feeding (e.g. sedation) remains to be determined. These findings
will impact the utility of 5-HT6R antagonists for obesity treatment.

Here we demonstrate that 5-HT6R antagonist hypophagia
shares the activation of two common brain regions with 5-HT2CR
agonists, the PVH and NTS [16,20], brain regions which are criti-
cal for the homeostatic regulation of appetite. These data suggest
a potential mechanistic convergence of 5-HT2CRs and 5-HT6Rs in
critical energy balance nodes, the PVH and NTS.

In conclusion, we report that the selective 5-HT6R antagonist,
SB-399885, produces a dose-dependent decrease in food intake in
rats which is associated with a significant increase in neuron activ-
ity in the PVH and NTS. The findings presented here provide insight
into the neural circuitry engaged by 5-HT6R pharmacological block-
ade and highlight the PVH and NTS as potential mediators of the
coordination of 5-HT6R antagonist-induced appetite suppression.
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