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Abstract
Emerging datacenter applications operate on vast datasets
that are kept in DRAM to minimize latency. The large num-
ber of servers needed to accommodate this massive mem-
ory footprint requires frequent server-to-server communica-
tion in applications such as key-value stores and graph-based
applications that rely on large irregular data structures. The
fine-grained nature of the accesses is a poor match to com-
modity networking technologies, including RDMA, which
incur delays of 10-1000x over local DRAM operations.

We introduce Scale-Out NUMA (soNUMA) – an ar-
chitecture, programming model, and communication pro-
tocol for low-latency, distributed in-memory processing.
soNUMA layers an RDMA-inspired programming model
directly on top of a NUMA memory fabric via a state-
less messaging protocol. To facilitate interactions between
the application, OS, and the fabric, soNUMA relies on the
remote memory controller – a new architecturally-exposed
hardware block integrated into the node’s local coherence
hierarchy. Our results based on cycle-accurate full-system
simulation show that soNUMA performs remote reads at la-
tencies that are within 4x of local DRAM, can fully utilize
the available memory bandwidth, and can issue up to 10M
remote memory operations per second per core.

Categories and Subject Descriptors C.1.4 [Computer Sys-
tem Organization]: Parallel Architectures—Distributed Ar-
chitectures; C.5.5 [Computer System Organization]: Com-
puter System Implementation—Servers

Keywords RDMA, NUMA, System-on-Chips

1. Introduction
Datacenter applications are rapidly evolving from simple
data-serving tasks to sophisticated analytics operating over

[Copyright notice will appear here once ’preprint’ option is removed.]

enormous datasets in response to real-time queries. To mini-
mize the response latency, datacenter operators keep the data
in memory. As dataset sizes push into the petabyte range, the
number of servers required to house them in memory can
easily reach into hundreds or even thousands.

Because of the distributed memory, applications that tra-
verse large data structures (e.g., graph algorithms) or fre-
quently access disparate pieces of data (e.g., key-value
stores) must do so over the datacenter network. As today’s
datacenters are built with commodity networking technology
running on top of commodity servers and operating systems,
node-to-node communication delays can exceed 100µs [50].
In contrast, accesses to local memory incur delays of around
60ns – a factor of 1000 less. The irony is rich: moving the
data from disk to main memory yields a 100,000x reduc-
tion in latency (10ms vs. 100ns), but distributing the memory
eliminates 1000x of the benefit.

The reasons for the high communication latency are
well known and include deep network stacks, complex
network interface cards (NIC), and slow chip-to-NIC in-
terfaces [21, 50]. RDMA reduces end-to-end latency by
enabling memory-to-memory data transfers over Infini-
Band [26] and Converged Ethernet [25] fabrics. By expos-
ing remote memory at user-level and offloading network pro-
cessing to the adapter, RDMA enables remote memory read
latencies as low as 1.19µs [14]; however, that still represents
a >10x latency increase over local DRAM.

We introduce Scale-Out NUMA (soNUMA), an archi-
tecture, programming model, and communication protocol
for distributed, in-memory applications that reduces remote
memory access latency to within a small factor (∼4x) of lo-
cal memory. soNUMA leverages two simple ideas to min-
imize latency. The first is to use a stateless request/reply
protocol running over a NUMA memory fabric to drasti-
cally reduce or eliminate the network stack, complex NIC,
and switch gear delays. The second is to integrate the proto-
col controller into the node’s local coherence hierarchy, thus
avoiding state replication and data movement across the slow
PCI Express (PCIe) interface.

soNUMA exposes the abstraction of a partitioned global
virtual address space, which is useful for big-data applica-
tions with irregular data structures such as graphs. The pro-
gramming model is inspired by RDMA [37], with applica-
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tion threads making explicit remote memory read and write
requests with copy semantics. The model is supported by
an architecturally-exposed hardware block, called the remote
memory controller (RMC), that safely exposes the global ad-
dress space to applications. The RMC is integrated into each
node’s coherence hierarchy, providing for a frictionless, low-
latency interface between the processor, memory, and the in-
terconnect fabric.

Our primary contributions are:

• the RMC – a simple, hardwired, on-chip architectural
block that services remote memory requests through lo-
cally cache-coherent interactions and interfaces directly
with an on-die network interface. Each operation han-
dled by the RMC is converted into a set of stateless re-
quest/reply exchanges between two nodes;

• a minimal programming model with architectural sup-
port, provided by the RMC, for one-sided memory op-
erations that access a partitioned global address space.
The model is exposed through lightweight libraries,
which also implement communication and synchroniza-
tion primitives in software;

• a preliminary evaluation of soNUMA using cycle-
accurate full-system simulation demonstrating that the
approach can achieve latencies within a small factor of
local DRAM and saturate the available bandwidth;

• an soNUMA emulation platform built using a hypervisor
that runs applications at normal wall-clock speeds and
features remote latencies within 5x of what a hardware-
assisted RMC should provide.

The rest of the paper is organized as follows: we motivate
soNUMA (§2). We then describe the essential elements of
the soNUMA architecture (§3), followed by a description of
the design and implementation of the RMC (§4), the soft-
ware support (§5), and the proposed communication proto-
col (§6). We evaluate our design (§7) and discuss additional
aspects of the work (§8). Finally, we place soNUMA in the
context of prior work (§9) and conclude (§10).

2. Why Scale-Out NUMA?
In this section, we discuss key trends in datacenter applica-
tions and servers, and identify specific pain points that affect
the latency of such deployments.

2.1 Datacenter Trends
Applications. Today’s massive web-scale applications,
such as search or analytics, require thousands of comput-
ers and petabytes of storage [60]. Increasingly, the trend
has been toward deeper analysis and understanding of data
in response to real-time queries. To minimize the latency,
datacenter operators have shifted hot datasets from disk to
DRAM, necessitating terabytes, if not petabytes, of DRAM
distributed across a large number of servers.

The distributed nature of the data leads to frequent server-
to-server interactions within the context of a given compu-
tation, e.g., Amazon reported that the rendering of a sin-
gle page typically requires access to over 150 services [17].
These interactions introduce significant latency overheads
that constrain the practical extent of sharding and the com-
plexity of deployed algorithms. For instance, latency consid-
erations force Facebook to restrict the number of sequential
data accesses to fewer than 150 per rendered web page [50].

Recent work examining sources of network latency over-
head in datacenters found that a typical deployment based
on commodity technologies may incur over 100µs in round-
trip latency between a pair of servers [50]. According to
the study, principal sources of latency overhead include
the operating system stack, NIC, and intermediate network
switches. While 100µs may seem insignificant, we observe
that many applications, including graph-based applications
and those that rely on key-value stores, perform minimal
computation per data item loaded. For example, read op-
erations dominate key-value store traffic, and simply return
the object in memory. With 1000x difference in data access
latency between local DRAM (100ns) and remote memory
(100µs), distributing the dataset, although necessary, incurs
a dramatic performance overhead.

Server architectures. Today’s datacenters employ com-
modity technologies due to their favorable cost-performance
characteristics. The end result is a scale-out architecture
characterized by a large number of commodity servers con-
nected via commodity networking equipment. Two architec-
tural trends are emerging in scale-out designs.

First, System-on-Chips (SoC) provide high chip-level in-
tegration and are a major trend in servers. Current server
SoCs combine many processing cores, memory interfaces,
and I/O to reduce cost and improve overall efficiency by
eliminating extra system components, e.g., Calxeda’s ECX-
1000 SoC [9] combines four ARM Cortex-A9 cores, mem-
ory controller, SATA interface, and a fabric switch [8] into a
compact die with a 5W typical power draw.

Second, system integrators are starting to offer glueless
fabrics that can seamlessly interconnect hundreds of server
nodes into fat-tree or torus topologies [18]. For instance,
Calxeda’s on-chip fabric router encapsulates Ethernet frames
while energy-efficient processors run the standard TCP/IP
and UDP/IP protocols as if they had a standard Ethernet
NIC [16]. The tight integration of NIC, routers and fabric
leads to a reduction in the number of components in the
system (thus lowering cost) and improves energy efficiency
by minimizing the number of chip crossings. However, such
glueless fabrics alone do not substantially reduce latency
because of the high cost of protocol processing at the end
points.

Remote DMA. RDMA enables memory-to-memory data
transfers across the network without processor involvement
on the destination side. By exposing remote memory and re-
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Figure 1: Netpipe benchmark on a Calxeda microserver.

liable connections directly to user-level applications, RDMA
eliminates all kernel overheads. Furthermore, one-sided re-
mote memory operations are handled entirely by the adapter
without interrupting the destination core. RDMA is sup-
ported on lossless fabrics such as InfiniBand [26] and Con-
verged Ethernet [25] that scale to thousands of nodes and can
offer remote memory read latency as low as 1.19µs [14].

Although historically associated with the high-
performance computing market, RDMA is now making
inroads into web-scale data centers, such as Microsoft
Bing [54]. Latency-sensitive key-value stores such as
RAMCloud [43] and Pilaf [38] are using RDMA fabrics to
achieve object access latencies of as low as 5µs.

2.2 Obstacles to Low-Latency Distributed Memory
As datasets grow, the trend is toward more sophisticated
algorithms at ever-tightening latency bounds. While SoCs,
glueless fabrics, and RDMA technologies help lower net-
work latencies, the network delay per byte loaded remains
high. Here, we discuss principal reasons behind the difficulty
of further reducing the latency for in-memory applications.

Node scalability is power-limited. As voltage scaling
grinds to a halt, future improvements in compute density at
the chip level will be limited. Power limitations will extend
beyond the processor and impact the amount of DRAM that
can be integrated in a given unit of volume (which governs
the limits of power delivery and heat dissipation). Together,
power constraints at the processor and DRAM levels will
limit the server industry’s ability to improve the performance
and memory capacity of scale-up configurations, thus accel-
erating the trend toward distributed memory systems.

Deep network stacks are costly. Distributed systems rely
on networks to communicate. Unfortunately, today’s deep
network stacks require a significant amount of processing
per network packet which factors considerably into end-to-
end latency. Figure 1 shows the network performance be-
tween two directly-connected Calxeda EnergyCore ECX-
1000 SoCs, measured using the standard netpipe bench-
mark [55]. The fabric and the integrated NICs provide
10Gbps worth of bandwidth.

Despite the immediate proximity of the nodes and the
lack of intermediate switches, we observe high latency (in
excess of 40µs) for small packet sizes and poor bandwidth
scalability (under 2 Gbps) with large packets. These bot-
tlenecks exist due to the high processing requirements of
TCP/IP and are aggravated by the limited performance of-
fered by ARM cores.

Large-scale shared memory is prohibitive. One way to
bypass complex network stacks is through direct access to
shared physical memory. Unfortunately, large-scale sharing
of physical memory is challenging for two reasons. First is
the sheer cost and complexity of scaling up hardware co-
herence protocols. Chief bottlenecks here include state over-
head, high bandwidth requirements, and verification com-
plexity. The second is the fault-containment challenge of a
single operating system instance managing a massive phys-
ical address space, whereby the failure of any one node can
take down the entire system by corrupting shared state [11].
Sharing caches even within the same socket can be expen-
sive. Indeed, recent work shows that partitioning a single
many-core socket into multiple coherence domains improves
the execution efficiency of scale-out workloads that do not
have shared datasets [33].

PCIe/DMA latencies limit performance. I/O bypass ar-
chitectures have successfully removed most sources of la-
tency except the PCIe bus. Studies have shown that it
takes 400-500ns to communicate short bursts over the PCIe
bus [21], making such transfers 7-8x more expensive, in
terms of latency, than local DRAM accesses. Furthermore,
PCIe does not allow for the cache-coherent sharing of con-
trol structures between the system and the I/O device, lead-
ing to the need of replicating system state such as page ta-
bles into the device and system memory. In the latter case,
the device memory serves as a cache, resulting in additional
DMA transactions to access the state. SoC integration alone
does not eliminate these overheads, since IP blocks often
use DMA internally to communicate with the main proces-
sor [5].

Distance matters. Both latency and cost of high-speed
communication within a datacenter are severely impacted
by distance. Latency is insignificant and bandwidth is cheap
within a rack, enabling low-dimensional topologies (e.g.,
3-D torus) with wide links and small signal propagation de-
lays (e.g., 20ns for a printed circuit board trace spanning a
44U rack). Beyond a few meters, however, expensive optical
transceivers must be used, and non-negotiable propagation
delays (limited by the speed of light) quickly exceed DRAM
access time. The combination of cost and delay puts a natu-
ral limit to the size of tightly interconnected systems.

3. Scale-Out NUMA
This work introduces soNUMA, an architecture and pro-
gramming model for low-latency distributed memory.
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soNUMA addresses each of the obstacles to low-latency de-
scribed in §2.2. soNUMA is designed for a scale-out model
with physically distributed processing and memory: (i) it re-
places deep network stacks with a lean memory fabric; (ii)
eschews system-wide coherence in favor of a global parti-
tioned virtual address space accessible via RMDA-like re-
mote memory operations with copy semantics; (iii) replaces
transfers over the slow PCIe bus with cheap cache-to-cache
transfers; and (iv) is optimized for rack-scale deployments,
where distance is minuscule. In effect, our design goal is to
borrow the desirable qualities of ccNUMA and RDMA with-
out their respective drawbacks.

Fig. 2 identifies the essential components of soNUMA.
At a high level, soNUMA combines a lean memory fab-
ric with an RDMA-like programming model in a rack-scale
system. Applications access remote portions of the global
virtual address space through remote memory operations. A
new architecturally-exposed block, the remote memory con-
troller (RMC), converts these operations into network trans-
actions and directly performs the memory accesses. Appli-
cations directly communicate with the RMC, bypassing the
operating system, which gets involved only in setting up the
necessary in-memory control data structures.

Unlike traditional implementations of RDMA, which op-
erate over the PCI bus, the RMC benefits from a tight in-
tegration into the processor’s cache coherence hierarchy. In
particular, the processor and the RMC share all data struc-
tures via the cache hierarchy. The implementation of the
RMC is further simplified by limiting the architectural sup-
port to one-sided remote memory read, write, and atomic op-
erations, and by unrolling multi-line requests at the source
RMC. As a result, the protocol can be implemented in a
stateless manner by the destination node.

The RMC converts application commands into remote re-
quests that are sent to the network interface (NI). The NI
is connected to an on-chip low-radix router with reliable,
point-to-point links to other soNUMA nodes. The notion of
fast low-radix routers borrows from supercomputer intercon-
nects; for instance, the mesh fabric of the Alpha 21364 con-
nected 128 nodes in a 2D torus using an on-chip router with
a pin-to-pin delay of just 11ns [39].

soNUMA’s memory fabric bears semblance (at the link
and network layer, but not at the protocol layer) to the QPI
and HTX solutions that interconnect sockets together into
multiple NUMA domains. In such fabrics, parallel trans-
fers over traces minimize pin-to-pin delays, short messages
(header + a payload of a single cache line) minimize buffer-
ing requirements, topology-based routing eliminates costly
CAM or TCAM lookups, and virtual lanes ensure deadlock
freedom. Although Fig. 2 illustrates a 2D-torus, the design
is not restricted to any particular topology.

4. Remote Memory Controller
The foundational component of soNUMA is the RMC, an
architectural block that services remote memory accesses
originating at the local node, as well as incoming requests
from remote nodes. The RMC integrates into the proces-
sor’s coherence hierarchy via a private L1 cache and com-
municates with the application threads via memory-mapped
queues. We first describe the software interface (§4.1), pro-
vide a functional overview of the RMC (§4.2), and describe
its microarchitecture (§4.3).

4.1 Hardware/Software Interface
soNUMA provides application nodes with the abstraction of
globally addressable, virtual address spaces that can be ac-
cessed via explicit memory operations. The RMC exposes
this abstraction to applications, allowing them to safely and
directly copy data to/from global memory into a local buffer
using remote write, read, and atomic operations, without ker-
nel intervention. The interface offers atomicity guarantees at
the cache-line granularity, and no ordering guarantees within
or across requests.

soNUMA’s hardware/software interface is centered
around four main abstractions directly exposed by the RMC:
(i) the context identifier (ctx id), which is used by all nodes
participating in the same application to create a global ad-
dress space; (ii) the context segment, a range of the node’s
address space which is globally accessible by others; (iii)
the queue pair (QP), used by applications to schedule remote
memory operations and get notified of their completion; and
(iv) local buffers, which can be used as the source or desti-
nation of remote operations.

The QP model consists of a work queue (WQ), a bounded
buffer written exclusively by the application, and a comple-
tion queue (CQ), a bounded buffer of the same size written
exclusively by the RMC. The CQ entry contains the index of
the completed WQ request. Both are stored in main memory
and coherently cached by the cores and the RMC alike. In
each operation, the remote address is specified by the com-
bination of <node id, ctx id, offset>. Other param-
eters include the length and the local buffer address.

4.2 RMC Overview
The RMC consists of three hardwired pipelines that inter-
act with the queues exposed by the hardware/software in-

4



NI

Send

Receive

Req

Reply

Reply

Req

RMC Router

L1

MMU
MAQ

TLB

RGP

CT_base

ITT_base

CT$

RRPP

RCP

(a) RMC’s internals: all memory requests of the three pipelines access
the cache via the MMU. The CT base register, the ITT base register,
and the CT$ offer fast access to the basic control structures.

Poll 

WQ

Fetch 

request

Init

ITT 

Entry
Inject

packet

Unroll requestNo new WQ 

entries

Request�Generation�Pipeline�(RGP)

Request�Completion�Pipeline�(RCP)

Decode 

packet

Perform 

R/W Vaddr

transl.
Comp.

VA

Remote�Request�Processing�

Pipeline�(RRPP)

packet

Inject
packet

T L

L

Gen 

packet
L

New 

entry

if RREAD

to NI

Gen 

packet to NI

from NI

Decode 

packet
Perform 

Write

Vaddr

transl.
Comp.

VA

packet
Write 

CQ
Update 

ITT
Request 

filled 

L
from NI

L

Vaddr

transl.
T

if RWRITE

T

Perform 

Read

L

(b) Functionality of the RMC pipelines. States with an ‘L’ next to them indicate
local processing in combinational logic; ‘T’ indicates a TLB access; the rest of the
states access memory via the MMU.

Figure 3: RMC internal architecture and functional overview of the three pipelines.

terface and with the NI. These pipelines are responsible for
request generation, remote request processing, and request
completion, respectively. They are controlled by a configu-
ration data structure, the Context Table (CT), and leverage
an internal structure, the Inflight Transaction Table (ITT).

The CT is maintained in memory and is initialized by sys-
tem software (see §5.1). The CT keeps track of all registered
context segments, queue pairs, and page table root addresses.
Each CT entry, indexed by its ctx id, specifies the address
space and a list of registered QPs (WQ, CQ) for that context.
Multi-threaded processes can register multiple QPs for the
same address space and ctx id. Meanwhile, the ITT is used
exclusively by the RMC and keeps track of the progress of
each WQ request.

Fig. 3a shows the high-level internal organization of the
RMC and its NI. The three pipelines are connected to distinct
queues of the NI block, which is itself connected to a low-
radix router block with support for two virtual lanes. While
each of the three pipelines implements its own datapath and
control logic, all three share some common data structures
and hardware components. For example, they arbitrate for
access to the common L1 cache via the MMU.

Fig. 3b highlights the main states and transitions for the
three independent pipelines. Each pipeline can have multi-
ple transactions in flight. Most transitions require an MMU
access, which may be retired in any order. Therefore, trans-
actions will be reordered as they flow through a pipeline.

Request Generation Pipeline (RGP). The RMC initiates
remote memory access transactions in response to an appli-
cation’s remote memory requests (reads, writes, atomics). To
detect such requests, the RMC polls on each registered WQ.
Upon a new WQ request, the RMC generates one or more
network packets using the information in the WQ entry. For

remote writes and atomic operations, the RMC accesses the
local node’s memory to read the required data, which it then
encapsulates into the generated packet(s). For each request,
the RMC generates a transfer identifier (tid) that allows the
source RMC to associate replies with requests.

Remote transactions in soNUMA operate at cache line
granularity. Coarser granularities, in cache-line-sized multi-
ples, can be specified by the application via the length field
in the WQ request. The RMC unrolls multi-line requests in
hardware, generating a sequence of line-sized read or write
transactions. To perform unrolling, the RMC uses the ITT,
which tracks the number of completed cache-line transac-
tions for each WQ request and is indexed by the request’s
tid.

Remote Request Processing Pipeline (RRPP). This
pipeline handles incoming requests originating from remote
RMCs. The soNUMA protocol is stateless, which means that
the RRPP can process remote requests using only the values
in the header and the local configuration state. Specifically,
the RRPP uses the ctx id to access the CT, computes the
virtual address, translates it to the corresponding physical
address, and then performs a read, write, or atomic opera-
tion as specified in the request. The RRPP always completes
by generating a reply message, which is sent to the source.
Virtual addresses that fall outside of the range of the speci-
fied security context are signaled through an error message,
which is propagated to the offending thread in a special reply
packet and delivered to the application via the CQ.

Request Completion Pipeline (RCP). This pipeline han-
dles incoming message replies. The RMC extracts the tid

and uses it to identify the originating WQ entry. For reads
and atomics, the RMC then stores the payload into the ap-
plication’s memory at the virtual address specified in the re-
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quest’s WQ entry. For multi-line requests, the RMC com-
putes the target virtual address based on the buffer base ad-
dress specified in the WQ entry and the offset specified in
the reply message.

The ITT keeps track of the number of completed cache-
line requests. Once the last reply is processed, the RMC sig-
nals the request’s completion by writing the index of the
completed WQ entry into the corresponding CQ and moving
the CQ head pointer. Requests can therefore complete out of
order and, when they do, are processed out of order by the
application. Remote write acknowledgments are processed
similarly to read completions, although remote writes natu-
rally do not require an update of the application’s memory at
the source node.

4.3 Microarchitectural Support
The RMC implements the logic described above using a set
of completely decoupled pipelines, affording concurrency in
the handling of different functions at low area and design
cost. The RMC features two separate interfaces: a coher-
ent memory interface to a private L1 cache and a network
interface to the on-die router providing system-level con-
nectivity. The memory interface block (MMU) contains a
TLB for fast access to recent address translations, required
for all accesses to application data. TLB entries are tagged
with address space identifiers corresponding to the applica-
tion context. TLB misses are serviced by a hardware page
walker. The RMC provides two interfaces to the L1 cache –
a conventional word-wide interface as well as a cache-line-
wide interface. The former is used to interact with the appli-
cation and to perform atomic memory operations. The lat-
ter enables efficient atomic reads and writes of entire cache
lines, which is the granularity of remote memory accesses in
soNUMA.

The RMC’s integration into the node’s coherence hierar-
chy is a critical feature of soNUMA that eliminates wasteful
data copying of control structures, and of page tables in par-
ticular. It also reduces the latency of the application/RMC
interface by eliminating the need to set up DMA transfers of
ring buffer fragments. To further ensure high throughput and
low latency at high load, the RMC allows multiple concur-
rent memory accesses in flight via a Memory Access Queue
(MAQ). The MAQ handles all memory read and write oper-
ations, including accesses to application data, WQ and CQ
interactions, page table walks, as well as ITT and CT ac-
cesses. The number of outstanding operations is limited by
the number of miss status handling registers at the RMC’s L1
cache. The MAQ supports out-of-order completion of mem-
ory accesses and provides store-to-load forwarding.

Each pipeline has its own arbiter that serializes the mem-
ory access requests from the pipeline’s several stages and
forwards the requests to the MAQ. The latter keeps track of
each request’s originating arbiter, and responds to that once
the memory access is completed. Upon such a response, the
arbiter feeds the data to the corresponding pipeline stage.

Finally, the RMC dedicates two registers for the CT and
ITT base addresses, as well as a small lookaside structure,
the CT cache (CT$) that caches recently accessed CT entries
to reduce pressure on the MAQ. The CT$ includes the con-
text segment base addresses and bounds, PT roots, and the
queue addresses, including the queues’ head and tail indices.
The base address registers and the CT$ are read-only-shared
by the various RMC pipeline stages.

5. Software Support
We now describe the system and application software sup-
port required to expose the RMC to applications and enable
the soNUMA programming model. §5.1 describes the op-
erating system device driver. §5.2 describes the lower-level
wrappers that efficiently expose the hardware/software in-
terface to applications. Finally, §5.3 describes higher-level
routines that implement unsolicited communication and syn-
chronization without additional architectural support.

5.1 Device Driver
The role of the operating system on an soNUMA node is to
establish the global virtual address spaces. This includes the
management of the context namespace, virtual memory, QP
registration, etc. The RMC device driver manages the RMC
itself, responds to application requests, and interacts with
the virtual memory subsystem to allocate and pin pages in
physical memory. The RMC device driver is also responsible
for allocating the CT and ITT on behalf of the RMC.

Unlike a traditional RDMA NIC, the RMC has direct ac-
cess to the page tables managed by the operating system,
leveraging the ability to share cache-coherent data struc-
tures. As a result, the RMC and the application both operate
using virtual addresses of the application’s process once the
data structures have been initialized.

The RMC device driver implements a simple security
model in which access control is granted on a per ctx id ba-
sis. To join a global address space <ctx id>, a process first
opens the device /dev/rmc contexts/<ctx id>, which
requires the user to have appropriate permissions. All sub-
sequent interactions with the operating system are done by
issuing ioctl calls via the previously-opened file descrip-
tor. In effect, soNUMA relies on the built-in operating sys-
tem mechanism for access control when opening the context,
and further assumes that all operating system instances of an
soNUMA fabric are under a single administrative domain.

Finally, the RMC notifies the driver of failures within the
soNUMA fabric, including the loss of links and nodes. Such
transitions typically require a reset of the RMC’s state, and
may require a restart of the applications.

5.2 Access Library
The QPs are accessed via a lightweight API, a set of
C/C++ inline functions that issue remote memory com-
mands and synchronize by polling the completion queue.
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We expose a synchronous (blocking) and an asynchronous
(non-blocking) set of functions for both reads and writes.
The asynchronous API is comparable in terms of function-
ality to the Split-C programming model [15].

Fig. 4 illustrates the use of the asynchronous API for
the implementation of the classic PageRank graph algo-
rithm [45]. rmc wait for slot processes CQ events (call-
ing pagerank async for all completed slots) until the head
of the WQ is free. It then returns the freed slot where the
next entry will be scheduled. rmc read async (similar to
Split-C’s get) requests a copy of a remote vertex into a lo-
cal buffer. Finally, rmc drain cq waits until all outstanding
remote operations have completed while performing the re-
maining callbacks.

This programming model is efficient as: (i) the callback
(pagerank async) does not require a dedicated execution
context, but instead is called directly within the main thread;
(ii) when the callback is an inline function, it is passed as an
argument to another inline function (rmc wait for slot),
thereby enabling compilers to generate optimized code with-
out any function calls in the inner loop; (iii) when the algo-
rithm has no read dependencies (as is the case here), asyn-
chronous remote memory accesses can be fully pipelined to
hide their latency.

To summarize, soNUMA’s programming model com-
bines true shared memory (by the threads running within
a cache-coherent node) with explicit remote memory op-
erations (when accessing data across nodes). In the Page-
Rank example, the is local flag determines the appropri-
ate course of action to separate intra-node accesses (where
the memory hierarchy ensures cache coherence) from inter-
node accesses (which are explicit).

Finally, the RMC access library exposes atomic opera-
tions such as compare-and-swap and fetch-and-add as inline
functions. These operations are executed atomically within
the local cache coherence hierarchy of the destination node.

5.3 Messaging and Synchronization Library
By providing architectural support for only read, write and
atomic operations, soNUMA reduces hardware cost and
complexity. The minimal set of architecturally-supported
operations is not a limitation, however, as many standard
communication and synchronization primitives can be built
in software on top of these three basic primitives. In con-
trast, RDMA provides hardware support (in adapters) for un-
solicited send and receive messages on top of reliable con-
nections, thus introducing significant complexity (e.g., per-
connection state) into the design [47].

Unsolicited communication. To communicate using send

and receive operations, two application instances must first
each allocate a bounded buffer from their own portion of the
global virtual address space. The sender always writes to the
peer’s buffer using rmc write operations, and the content
is read locally from cached memory by the receiver. Each

float *async dest addr[MAX WQ SIZE];

Vertex lbuf[MAX WQ SIZE];

inline void pagerank async (int slot, void *arg) {
*async dest addr[slot] += 0.85 *

lbuf[slot].rank[superstep%2] / lbuf[slot].out_degree;

}

void pagerank superstep(QP *qp) {
int evenodd = (superstep+1) % 2;

for(int v=first vertex; v<=last vertex; v++) {
vertices[v].rank[evenodd] = 0.15 / total num vertices;

for(int e=vertices[v].start; e<vertices[v].end; e++) {
if(edges[e].is local) {

// shared memory model

Vertex *v2 = (Vertex *)edges[e].v;

vertices[v].rank[evenodd] += 0.85 *

v2->rank[superstep%2] / v2->out_degree;

} else {
// flow control

int slot = rmc wait for slot (qp, pagerank async );

// setup callback arguments

async dest addr[slot] = &vertices[v].rank[evenodd];

// issue split operation

rmc read async (qp, slot,

edges[e].nid, //remote node ID

edges[e].offset, //offset

&lbuf[slot], //local buffer

sizeof(Vertex)); //len

}
}

}
rmc drain cq (qp, pagerank async );

superstep++;

}

Figure 4: Computing a PageRank superstep in soNUMA
through a combination of remote memory accesses (via the
asynchronous API) and local shared memory.

buffer is an array of cache-line sized structures that contain
header information (such as the length, memory location,
and flow-control acknowledgements), as well as an optional
payload. Flow-control is implemented via a credit scheme
that piggybacks existing communication.

For small messages, the sender creates packets of prede-
fined size, each carrying a portion of the message content as
part of the payload. It then pushes the packets into the peer’s
buffer. To receive a message, the receiver polls on the local
buffer. In the common case, the send operation requires a
single rmc write, and it returns without requiring any im-
plicit synchronization between the peers. A similar messag-
ing approach based on remote writes outperforms the default
send/receive primitives of InfiniBand [32].

For large messages stored within a registered global ad-
dress space, the sender only provides the base address and
size to the receiver’s bounded buffer. The receiver then
pulls the content using a single rmc read and acknowl-
edges the completion by writing a zero-length message into
the sender’s bounded buffer. This approach delivers a direct
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memory-to-memory communication solution, but requires
synchronization between the peers.

At compile time, the user can define the boundary be-
tween the two mechanisms by setting a minimal message-
size threshold: push has lower latency since small messages
complete through a single rmc write operation and also al-
lows for decoupled operations. The pull mechanism leads to
higher bandwidth since it eliminates the intermediate packe-
tization and copy step.

Barrier synchronization. We have also implemented a
simple barrier primitive such that nodes sharing a ctx id

can synchronize. Each participating node broadcasts the ar-
rival at a barrier by issuing a write to an agreed upon offset
on each of its peers. The nodes then poll locally until all of
them reach the barrier.

6. Communication Protocol
soNUMA’s communication protocol naturally follows the
design choices of the three RMC pipelines at the protocol
layer. At the link and routing layers, our design borrows from
existing memory fabric architectures (e.g., QPI or HTX) to
minimize pin-to-pin delays.

Link layer. The memory fabric delivers messages reliably
over high-speed point-to-point links with credit-based flow
control. The message MTU is large enough to support a
fixed-size header and an optional cache-line-sized payload.
Each point-to-point physical link has two virtual lanes to
support deadlock-free request/reply protocols.

Routing layer. The routing-layer header contains the des-
tination and source address of the nodes in the fabric
(<dst nid, src nid>). dst nid is used for routing, and
src nid to generate the reply packet.

The router’s forwarding logic directly maps destination
addresses to outgoing router ports, eliminating expensive
CAM or TCAM lookups found in networking fabrics. While
the actual choice of topology depends on system specifics,
low-dimensional k-ary n-cubes (e.g., 3D torii) seem well-
matched to rack-scale deployments [18].

Protocol layer. The RMC protocol is a simple request-
reply protocol, with exactly one reply message generated
for each request. The WQ entry specifies the dst nid, the
command (e.g., read, write, or atomic), the offset, the
length and the local buffer address. The RMC copies the
dst nid into the routing header, determines the ctx id

associated with the WQ, and generates the tid. The tid

serves as an index into the ITT and allows the source RMC
to map each reply message to a WQ and the corresponding
WQ entry. The tid is opaque to the destination node, but is
transferred from the request to the associated reply packet.

Fig. 5 illustrates the actions taken by the RMCs for a re-
mote read of a single cache line. The RGP in the requesting
side’s RMC first assigns a tid for the WQ entry and the
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Figure 5: Communication protocol for a remote read.

ctx id corresponding to that WQ. The RMC specifies the
destination node via a dst nid field. The request packet is
then injected into the fabric and the packet is delivered to the
target node’s RMC. The receiving RMC’s RRPP decodes the
packet, computes the local virtual address using the ctx id

and the offset found in it and translates that virtual ad-
dress to a physical address. This stateless handling does not
require any software interaction on the destination node. As
soon as the request is completed in the remote node’s mem-
ory hierarchy, its RMC creates a reply packet and sends it
back to the requesting node. Once the reply arrives to the
original requester, the RMC’s RCP completes the transaction
by writing the payload into the corresponding local buffer
and by notifying the application via a CQ entry (not shown
in Fig. 5).

7. Evaluation
7.1 Methodology
To evaluate soNUMA, we designed and implemented two
platforms: (i) development platform – a software prototype
of soNUMA based on virtual machines used to debug the
protocol stack, formalize the API, and develop large-scale
applications; and (ii) cycle-accurate model – a full-system
simulation platform modeling the proposed RMC.

Development platform. Our software soNUMA prototype
is based on the Xen hypervisor [3] and a conventional cc-
NUMA server, on top of which we map (pin) multiple virtual
machines to distinct NUMA domains. This includes both
virtual CPUs and memory page frames. The server we use
for the prototype is a modern AMD Opteron server with
4 CPU sockets (12 cores each, three-level cache hierarchy,
16MB LLC) and 256GB of RAM. The memory subsystem
provides us with 8 NUMA domains (2 per socket).

Fig. 6 shows our setup. Each individual VM represents an
independent soNUMA node, running an instance of the full
software stack. The stack includes all user-space libraries,
applications, the OS kernel, as well as the complete RMC
device driver inside it. The driver is a Linux kernel mod-
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Figure 6: soNUMA development platform. Each node is im-
plemented by a different VM. RMCemu runs on dedicated vir-
tual CPUs and communicates with peers via shared memory.

ule that responds to user library commands through ioctl,
enabling WQ/CQ registration, buffer management, and se-
curity context registration.

In this platform, we have implemented an RMC em-
ulation module (RMCemu), which runs in kernel space.
RMCemu implements the RMC logic and the soNUMA wire
protocol (for a total of 3100LOC). The module exposes the
hardware/software interface described in §4.1 to the RMC
device driver and applications. RMCemu runs as a pair of
kernel threads pinned to dedicated virtual CPUs, one run-
ning RGP and RCP, the other RRPP of Fig. 3b. All of the
user-level data structures and buffers get memory-mapped
by the device driver into the kernel virtual address space at
registration time, and thus become visible to the RMCemu
threads.

We emulate a full crossbar and run the protocol described
in §6. Each pair of nodes exchanges protocol request/reply
messages via a set of queues, mapped via the hypervisor
into the guest physical address spaces of the VMs (there
are two queue pairs per VM pair, emulating virtual lanes).
To model the distributed nature of an soNUMA system, we
pin each emulated node to a distinct NUMA domain such
that every message traverses one of the server’s chip-to-chip
links. However, for the 16-node configuration, we collocate
two VMs per NUMA domain.

Core ARM Cortex-A15-like; 64-bit, 2GHz, OoO,
3-wide dispatch/retirement, 60-entry ROB

L1 Caches split I/D, 32KB 2-way, 64-byte blocks,
2 ports, 32 MSHRs, 3-cycle latency (tag+data)

L2 Cache 4MB, 2 banks, 16-way, 6-cycle latency
Memory cycle-accurate model using DRAMSim2 [49].

4GB, 8KB pages, single DDR3-1600 channel.
DRAM latency: 60ns; bandwidth: 12GBps

RMC 3 independent pipelines (RGP, RCP, RRPP).
32-entry MAQ, 32-entry TLB

Fabric Inter-node delay: 50ns

Table 1: System parameters for simulation on Flexus.

Cycle-accurate model. To assess the performance impli-
cations of the RMC, we use the Flexus full-system simula-
tor [59]. Flexus extends the Virtutech Simics functional sim-
ulator with timing models of cores, caches, on-chip protocol
controllers, and interconnect. Flexus models the SPARC v9
ISA and is able to run unmodified operating systems and ap-
plications. In its detailed OoO timing mode with the RMCs
implemented, Flexus simulates “only” 5000 instructions per
second, a slowdown of about six orders of magnitude com-
pared to real hardware.

We model simple nodes, each featuring a 64-bit ARM
Cortex-A15-like core and an RMC. The system parameters
are summarized in Table 1. We extend Flexus by adding a
detailed timing model of the RMC based on the microarchi-
tectural description in §4. The RMC and its private L1 cache
are fully integrated into the node’s coherence domain. Like
the cores, the RMC supports 32 memory accesses in flight.
Fig. 3b illustrates how the logic is modeled as a set of fi-
nite state machines that operate as pipelines and eliminate
the need for any software processing within the RMC. We
model a full crossbar with reliable links between RMCs and
a flat latency of 50ns, which is conservative when compared
to modern NUMA interconnects, such as QPI and HTX.

7.2 Microbenchmark: Remote Reads
We first measure the performance of remote read opera-
tions between two nodes for both the development platform
and the Flexus-based simulated hardware platform. The mi-
crobenchmark issues a sequence of read requests of varying
size to a preallocated buffer in remote memory. The buffer
size exceeds the LLC capacity in both setups. We measure (i)
remote read latency with synchronous operations, whereby
the issuing core spins after each read request until the reply
is received, and (ii) throughput using asynchronous reads,
where the issuing core generates a number of non-blocking
read requests before processing the replies (similar to Fig. 4).

Fig. 7 plots the latency and bandwidth of remote read
operations. Because of space limitations, we only show the
latency graph on the emulation side. We run the micro-
benchmark in both single-sided (only one node reads) and
double-sided (both nodes read from each other) mode.

Fig. 7a shows the remote read latency on the simulated
hardware as a function of the request size. For small re-
quest sizes, the latency is around 300ns, of which 80ns are
attributed to accessing the memory (cache hierarchy and
DRAM combined) at the remote node and 100ns to round-
trip socket-to-socket link latency. The end-to-end latency is
within a factor of 4 of the local DRAM access latency. In
the double-sided mode, we find that the average latency in-
creases for larger message sizes as compared to the single-
sided case. The reason for the drop is cache contention, as
each node now has to both service remote read requests and
write back the reply data.

Fig. 7b plots the bandwidth between two simulated
soNUMA nodes using asynchronous remote reads. For 64B
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requests, we can issue 10M operations per second. For page-
sized requests (8KB), we manage to reach 9.6GBps, which is
the practical maximum for a DDR3-1600 memory channel.
Thanks to the decoupled pipelines of the RMC, the double-
sided test delivers twice the single-sided bandwidth.

Fig. 7c shows the latency results on the development
platform. The baseline latency is 1.5µs, which is 5x the
latency on the simulated hardware. However, we notice that
the latency increases substantially with larger request sizes.
On the development platform, the RMC emulation module
becomes the performance bottleneck as it unrolls large WQ
requests into cache-line-sized requests.

7.3 Microbenchmark: Send/Receive
We build a Netpipe [55] microbenchmark to evaluate the
performance of the soNUMA unsolicited communication
primitives, implemented entirely in software (§5.3). The mi-
crobenchmark consists of the following two components: (i)
a ping-pong loop that uses the smallest message size to de-
termine the end-to-end one-way latency and (ii) a streaming
experiment where one node is sending and the other receiv-
ing data to determine bandwidth.

We study the half-duplex latency (Fig. 8a) and band-
width (Fig. 8b) on our simulation platform. The two meth-
ods (pull, push) expose a performance tradeoff: push is
optimized for small messages, but has significant proces-
sor and packetization overheads. pull is optimized for large
transfers, but requires additional control traffic at the begin-
ning of each transfer. We experimentally determine the op-
timal boundary between the two mechanisms by setting the

threshold to 0 and∞ in two separate runs. The black curve
shows the performance of our unsolicited primitives with the
threshold set to the appropriate value and both mechanisms
enabled at the same time. The minimal half-duplex latency is
340ns and the bandwidth exceeds 10Gbps with messages as
small as 4KB. For the largest request size evaluated (8KB),
the bandwidth achieved is 12.8 Gbps, a 1.6x increase over
Quad Data Rate InfiniBand for the same request size [24].
To illustrate the importance of having a combination of push
and pull mechanisms in the user library, we additionally
plot in grey their individual performance.

We apply the same methodology on the development
platform. The minimal half-duplex latency (see Fig. 8c) is
1.4µs, which is only 4x worse than the simulated hardware.
However, the threshold is set to a larger value of 1KB for
optimal performance, and the bandwidth is 1/10th of the
simulated hardware. Again, we omit the bandwidth graph
for the emulation platform due to space limitations. The
relatively low bandwidth and a different threshold are due
to the overheads of running the fine-grain communication
protocol entirely in software (§7.2).

7.4 Comparison with InfiniBand/RDMA
To put our key results in perspective, Table 2 compares
the performance of our simulated soNUMA system with
an industry-leading commercial solution that combines the
Mellanox ConnectX-3 [36] RDMA host channel adapter
connected to host Xeon E5-2670 2.60Ghz via a PCIe-Gen3
bus. In the Mellanox system [14], the servers are connected
back-to-back via a 56Gbps InfiniBand link. We consider four
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Transport soNUMA RDMA/IB
Dev. Plat. Sim’d HW [14]

Max BW (Gbps) 1.8 77 50
Read RTT (µs) 1.5 0.3 1.19

Fetch-and-add (µs) 1.5 0.3 1.15
IOPS (Mops/s) 1.97 10.9 35 @ 4 cores

Table 2: A comparison of soNUMA and InfiniBand.

metrics – read bandwidth, read latency, atomic operation
latency, and IOPS.

As Table 2 shows, compared to the state-of-the-art
RDMA solution, soNUMA reduces the latency to remote
memory by a factor of four, in large part by eliminating
the PCIe bus overheads. soNUMA is also able to operate
at peak memory bandwidth. In contrast, the PCIe-Gen3 bus
limits RDMA bandwidth to 50 Gbps, even with 56Gbps In-
finiBand. In terms of IOPS, the comparison is complicated
by the difference in configuration parameters: the RDMA so-
lution uses four QPs and four cores, whereas the soNUMA
configuration uses one of each. Per core, both solutions sup-
port approximately 10M remote memory operations.

We also evaluate the performance of atomic operations
using fetch-and-add, as measured by the application. For
each of the three platforms, the latency of fetch-and-add is
approximately the same as that of the remote read operations
on that platform. Also, soNUMA provides more desirable
semantics than RDMA. In the case of RDMA, fetch-and-add
is implemented by the host channel adapter, which requires
the adapter to handle all accesses, even from the local node.
In contrast, soNUMA’s implementation within the node’s
local cache coherence provides global atomicity guarantees
for any combination of local and remote accesses.

7.5 Application Study
Large-scale graph processing engines, key-value stores, and
on-line graph query processing are the obvious candidate
applications for soNUMA. All of them perform very little
work per data item (if any) and operate on large datasets, and
hence typically require large scale-out configurations to keep
all the data memory resident. Most importantly, they exhibit
poor locality as they frequently access non-local data.

For our application study, we picked graph processing
and the canonical PageRank algorithm [45], and compared
three parallel implementations of it. All three are based on
the widely used Bulk Synchronous Processing model [57],
in which every node computes its own portion of the dataset
(range of vertices) and then synchronizes with other partic-
ipants, before proceeding with the next iteration (so-called
superstep). Our three implementations are:

(i) SHM(pthreads): The baseline is a standard pthreads
implementation that assumes cache-coherent memory rather
than soNUMA. For the simulated hardware, we model an
eight-core multiprocessor with 4MB of LLC per core. We
provision the LLC so that the aggregate cache size equals
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the development platform (right).

that of the eight machines in the soNUMA setting. Thus,
no benefits can be attributed to larger cache capacity in the
soNUMA comparison. For the development platform, we
simply run the application on our ccNUMA server described
in §7.1, but without a hypervisor running underneath the host
OS. In this implementation, the application stores two rank
values for each vertex: the one computed in the previous
superstep and the one currently being computed. Barrier
synchronization marks the end of each superstep.

(ii) soNUMA(bulk): This implementation leverages ag-
gregation mechanisms and exchanges ranks between nodes
at the end of each superstep, after the barrier. Such an ap-
proach is supported by Pregel [35] as it amortizes high inter-
node latencies and makes use of wide high-capacity links.
In this implementation we exploit spatial locality within the
global address space by using multi-line requests at the RMC
level. At the end of each superstep, every node uses multiple
rmc read async operations (one per peer) to pull the re-
mote vertex information from each of its peers into the local
memory. This allows a concurrent shuffle phase limited only
by the bisection bandwidth of the system.

(iii) soNUMA(fine-grain): This variant leverages the
fine-grain memory sharing capabilities of soNUMA, as
shown in Fig. 4. Each node issues one rmc read async

operation for each non-local vertex. This implementa-
tion resembles the shared-memory programming model of
SHM(pthreads), but has consequences: the number of re-
mote memory operations scales with the number of edges
that span two partitions rather than with the number of ver-
tices per partition.

We evaluate the three implementations of PageRank on a
subset of the Twitter graph [29] using a naive algorithm that
randomly partitions the vertices into sets of equal cardinality.
We run 30 supersteps for up to 16 soNUMA nodes on the
development platform. On the simulator, we run a single
superstep on up to eight nodes because of the high execution
time of the cycle-accurate model.

Fig. 9 (left) shows the speedup over the single-threaded
baseline of the three implementations on the simulated hard-
ware. Both SHM(pthreads) and soNUMA(bulk) have near
identical speedup. In both cases, the speedup trend is de-
termined primarily by the imbalance resulting from the

11



graph partitioning scheme, and not the hardware. However,
soNUMA(fine-grain) has noticeably greater overheads,
primarily because of the limited per-core remote read rate
(due to the software API’s overhead on each request) and
the fact that each reference to a non-local vertex results in
a remote read operation. Indeed, each core can only issue
up to 10 million remote operations per second. As shown in
Fig. 7b, the bandwidth corresponding to 64B requests is a
small fraction of the maximum bandwidth of the system.

Fig. 9 (right) shows the corresponding speedup on the
software development platform. We identify the same gen-
eral trends as on the simulated hardware, with the caveat that
the higher latency and lower bandwidth of the development
platform limit performance.

8. Discussion
We now discuss the lessons learned so far in developing
our soNUMA prototype, known open issues, possible killer
applications, and deployment and packaging options.
Lessons learned. During our work, we appreciated the
value of having a software development platform capable of
running at native speeds. By leveraging hardware virtualiza-
tion and dedicating processing cores to emulate RMCs, we
were able to run an (emulated) soNUMA fabric at wall-clock
execution time, and use that platform to develop and validate
the protocol, the kernel driver, all user-space libraries, and
applications.
Open issues. Our design provides the ability to support
many variants of remote memory operations that can be han-
dled in a stateless manner by the peer RMC. This includes
read, write, and atomic operations. A complete architecture
will probably require extensions such as the ability to is-
sue remote interrupts as part of an RMC command, so that
nodes can communicate without polling. This will have a
number of implications for system software, e.g., to effi-
ciently convert interrupts into application messages, or to
use the mechanisms to build system-level abstractions such
as global buffer caches.
Killer applications. Our primary motivation behind
soNUMA is the conflicting trend of (i) large dataset ap-
plications that require tight and unpredictable sharing of
resources; and (ii) manycore designs, which are optimized
for throughput rather than resource aggregation. Our
soNUMA proposal aims to reconcile these two trends. In
our evaluation, we chose a simple graph application because
it allows for multiple implementation variants that expose
different aspects of the programming model, even though
the regular, batch-oriented nature of that application is also
a good fit for coarse-grain, scale-out models. Implementing
these variants using the RMC API turned out to be almost
as easy as using the conventional shared-memory program-
ming abstractions. Many applications such as on-line graph
processing algorithms, in-memory transaction processing
systems, and key-value stores demand low latency [50] and

can take advantage of one-sided read operations [38]. These
applications are designed to assume that both client and
server have access to a low-latency fabric [38, 43], making
them killer applications for soNUMA. Beyond these, we
also see deployment opportunities in upper application
tiers of the datacenter. For example, Oracle Exalogic today
provides a flexible, low-latency platform delivered on a
rack-scale InfiniBand cluster [44]. Such deployments are
natural candidates for tighter integration using SoC and
soNUMA.
System packaging options. The evaluation of the impact
of system scale and fabric topologies is outside of the scope
of this paper since we focused on the end-behavior of the
RMC. To be successful, soNUMA systems will have to be
sufficiently large to capture very large datasets within a sin-
gle cluster, and yet sufficiently small to avoid introducing
new classes of problems, such as the need for fault contain-
ment [11]. Industry solutions today provide rack-insert solu-
tions that are ideally suited for soNUMA, e.g., HP’s Moon-
shot with 45 cartridges or Calxeda-based Viridis systems
with 48 nodes in a 2U chassis. Beyond that, rack-level so-
lutions seem like viable near-term options; a 44U rack of
Viridis chassis can thus provide over 1000 nodes within a
two-meter diameter, affording both low wire delay and mas-
sive memory capacity.
Research directions. This work has demonstrated the ben-
efits on simple microbenchmarks and one application. We
plan to evaluate the impact of soNUMA on latency-sensitive
applications such as in-memory transaction processing sys-
tems and on-line query processing. We also see research
questions around system-level resource sharing, e.g., to cre-
ate a single-system image or a global filesystem buffer
cache, or to rethink resource management in hypervisor clus-
ters. Multikernels, such as Barrelfish [4], could be an ideal
candidate for soNUMA.

We plan to investigate the micro-architectural aspects of
the RMC. This includes further latency-reducing optimiza-
tions in the RMC and the processor, a reassessment of the
RMC’s design for SoC’s with high core counts, and investi-
gation of the flow-control, congestion and occupancy issues
in larger fabrics.

Our study focused on data sharing within a single
soNUMA fabric. For very large datasets, datacenter de-
ployments would likely interconnect multiple rack-scale
soNUMA systems using conventional networking technolo-
gies. This opens up new systems-level research questions in
the areas of resource management (e.g., to maximize local-
ity) and networking (e.g., how to use the soNUMA fabric to
run network protocols).

9. Related Work
Many of the concepts found in remote memory architectures
today and our soNUMA proposal originate from research
done in the ’80s and ’90s. In this section we look at the
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relationship between soNUMA and several related concepts.
We group prior work into six broad categories.

Partitioned global address space. PGAS relies on com-
piler and language support to provide the abstraction of a
shared address space on top of non-coherent, distributed
memory [13]. Languages such as Unified Parallel C [13,
61] and Titanium [61] require the programmer to reason
about data partitioning and be aware of data structure non-
uniformity. However, the compiler frees the programmer
from the burden of ensuring the coherence of the global ad-
dress space by automatically converting accesses to remote
portions into one-sided remote memory operations that cor-
respond to soNUMA’s own primitives. PGAS also provides
explicit asynchronous remote data operations [7], which also
easily map onto soNUMA’s asynchronous library primitives.
The efficiency of soNUMA remote primitives would allow
PGAS implementations to operate faster.

Software distributed shared memory. Software distributed
shared memory (DSM) provides global coherence not
present in the memory hierarchies of PGAS and soNUMA.
Pure software DSM systems such as IVY [31], Munin [10]
and Threadmarks [2] expose a global coherent virtual ad-
dress space and rely on OS mechanisms to “fault in” pages
from remote memory on access and propagate changes back,
typically using relaxed memory models. Similarly, software
DSM can be implemented within a hypervisor to create a
cache-coherent global guest-physical address space [12], or
entirely in user-space via binary translation [51]. Like soft-
ware DSM, soNUMA operates at the virtual memory level.
Unlike software DSM, soNUMA and PGAS target fine-
grained accesses whereas software DSM typically operates
at the page level. Shasta [51] and Blizzard [52] offer fine-
grain DSM through code instrumentation and hardware as-
sistance, respectively, but in both cases with non-negligible
software overheads.

Cache-coherent memory. ccNUMA designs such as
Alewife [1], Dash [30], FLASH [28], Fugu [34], Ty-
phoon [48], Sun Wildfire [42], and today’s Intel QPI and
AMD HTX architectures create a compute fabric of process-
ing elements, each with its own local memory, and provide
cache-coherent physical memory sharing across the nodes.
FLASH and Sun’s Wildfire also provide advanced migra-
tion and replication techniques to reduce the synchronization
overheads [19].

soNUMA shares the non-uniform aspect of memory with
these designs and leverages the lower levels of the ccNUMA
protocols, but does not attempt to ensure cache coherence.
As a result, soNUMA uses a stateless protocol, whereas cc-
NUMA requires some global state such as directories to en-
sure coherence, which limits its scalability. The ccNUMA
designs provide a global physical address space, allowing
conventional single-image operating systems to run on top.
The single-image view, however, makes the system less re-

silient to faults [11]. In contrast, soNUMA exposes the ab-
straction of global virtual address spaces on top of multiple
OS instances, one per coherence domain.

User-level messaging. User-level messaging eliminates
the overheads of kernel transitions by exposing commu-
nication directly to applications. Hybrid ccNUMA designs
such as FLASH [23], Alewife [1], Fugu [34], and Ty-
phoon [20] provide architectural support for user-level mes-
saging in conjunction with cache-coherent memory. In con-
trast, soNUMA’s minimal design allows for an efficient im-
plementation of message passing entirely in software using
one-sided remote memory operations.

SHRIMP [6] uses a specialized NIC to provide user-
level messaging by allowing processes to directly write
the memory of other processes through hardware support.
Cashmere [56] leverages DEC’s Memory Channel [22], a
remote-write network, to implement a software DSM. Un-
like SHRIMP and Cashmere, soNUMA also allows for di-
rect reads from remote memory.

Fast Messages [46] target low latency and high bandwidth
for short user-level messages. U-Net [58] removes the en-
tire OS/Kernel off the critical path of messaging. These sys-
tems all focus on the efficient implementation of a message
send. In soNUMA, the RMC provides architectural support
for both one-sided read and write operations; messaging is
implemented on top of these basic abstractions.

Remote memory access. Unlike remote write networks,
such as SHRIMP and DEC Memory Channel, Remote Mem-
ory Access provides for both remote reads and remote
writes. Such hardware support for one-sided operations, sim-
ilar to soNUMA’s, was commercialized in supercomputers
such as Cray T3D [27] and T3E [53]. Remote memory ac-
cess can also be implemented efficiently for graph process-
ing on commodity hardware by leveraging aggressive mul-
tithreading to compensate for the high access latency [41].
soNUMA also hides latency but uses asynchronous read op-
erations instead of multithreading.

Today, user-level messaging and RDMA is available in
commodity clusters with RDMA host channel adapters such
as Mellanox ConnectX-3 [36] that connect into InfiniBand
or Converged Ethernet switched fabrics [25]. To reduce com-
plexity and enable SoC integration, soNUMA only provides
a minimal subset of RDMA operations; in particular, it does
not support reliable connections, as they require keeping per-
connection state in the adapter.

NI integration. One advantage of soNUMA over prior
proposals on fast messaging and remote one-sided primi-
tives is the tight integration of the NI into the coherence do-
main. The advantage of such an approach was previously
demonstrated in Coherent Network Interfaces (CNI) [40],
which leverage the coherence mechanism to achieve low-
latency communication of the NI with the processors, using
cacheable work queues. More recent work showcases the
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advantage of integration, but in the context of kernel-level
TCP/IP optimizations, such as a zero-copy receive [5]. Our
RMC is fully integrated into the local cache coherence hi-
erarchy and does not depend on local DMA operations. The
simple design of the RMC suggests that integration into the
local cache-coherence domain is practical. Our evaluation
shows that such integration can lead to substantial benefits
by keeping the control data structures, such as the QPs and
page tables, in caches. soNUMA also provides global atom-
icity by implementing atomic operations within a node’s
cache hierarchy.

10. Conclusion
Scale-Out NUMA (soNUMA) is an architecture, program-
ming model, and communication protocol for low-latency
big-data processing. soNUMA eliminates kernel, network
stack, and I/O bus overheads by exposing a new hardware
block –the remote memory controller– within the cache co-
herent hierarchy of the processor. The remote memory con-
troller is directly accessible by applications and connects
directly into a NUMA fabric. Our results based on cycle-
accurate full-system simulation show that soNUMA can
achieve remote read latencies that are within 4x of local
DRAM access, stream at full memory bandwidth, and issue
up to 10M remote memory operations per second per core.
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