

Edinburgh Research Explorer

Meet the Walkers

Citation for published version:
Kocberber, O, Grot, B, Picorel, J, Falsafi, B, Lim, K & Ranganathan, P 2013, Meet the Walkers: Accelerating
Index Traversals for In-memory Databases. in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO-46, ACM, New York, NY, USA, pp. 468-479. DOI:
10.1145/2540708.2540748

Digital Object Identifier (DOI):
10.1145/2540708.2540748

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2540708.2540748
https://www.research.ed.ac.uk/portal/en/publications/meet-the-walkers(cd6c7252-c3b0-4f24-9a3b-1a035f3543e1).html

Meet the Walkers
Accelerating Index Traversals for In-Memory Databases

Onur Kocberber1 Boris Grot2 Javier Picorel1
Babak Falsafi1 Kevin Lim3 Parthasarathy Ranganathan4

1EcoCloud, EPFL 2University of Edinburgh 3HP Labs 4Google, Inc.

ABSTRACT
The explosive growth in digital data and its growing
role in real-time decision support motivate the design of
high-performance database management systems (DBMSs).
Meanwhile, slowdown in supply voltage scaling has stymied
improvements in core performance and ushered an era of
power-limited chips. These developments motivate the de-
sign of DBMS accelerators that (a) maximize utility by ac-
celerating the dominant operations, and (b) provide flexibil-
ity in the choice of DBMS, data layout, and data types.

We study data analytics workloads on contemporary in-
memory databases and find hash index lookups to be the
largest single contributor to the overall execution time. The
critical path in hash index lookups consists of ALU-intensive
key hashing followed by pointer chasing through a node list.
Based on these observations, we introduce Widx, an on-chip
accelerator for database hash index lookups, which achieves
both high performance and flexibility by (1) decoupling key
hashing from the list traversal, and (2) processing multiple
keys in parallel on a set of programmable walker units. Widx
reduces design cost and complexity through its tight integra-
tion with a conventional core, thus eliminating the need for
a dedicated TLB and cache. An evaluation of Widx on a set
of modern data analytics workloads (TPC-H, TPC-DS) us-
ing full-system simulation shows an average speedup of 3.1x
over an aggressive OoO core on bulk hash table operations,
while reducing the OoO core energy by 83%.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]:
Heterogeneous (hybrid) systems

General Terms
Design, Experimentation, Performance

Keywords
Energy efficiency, hardware accelerators, database indexing

2This work was done while the author was at EPFL.
4This work was done while the author was at HP Labs.

.

1. INTRODUCTION
The information revolution of the last decades is being

fueled by the explosive growth in digital data. Enterprise
server systems reportedly operated on over 9 zettabytes (1
zettabyte = 1021 bytes) of data in 2008 [29], with data vol-
umes doubling every 12 to 18 months. As businesses such as
Amazon and Wal-Mart use the data to drive business pro-
cessing and decision support logic via databases with sev-
eral petabytes of data, IDC estimates that more than 40%
of global server revenue ($22 billion out of $57 billion) goes
to supporting database workloads [10].

The rapid growth in data volumes necessitates a corre-
sponding increase in compute resources to extract and serve
the information from the raw data. Meanwhile, technol-
ogy trends show a major slowdown in supply voltage scal-
ing, which has historically been the primary mechanism for
lowering the energy per transistor switching event. Con-
strained by energy at the chip level, architects have found it
difficult to leverage the growing on-chip transistor budgets
to improve the performance of conventional processor ar-
chitectures. As a result, an increasing number of proposals
are calling for specialized on-chip hardware to increase per-
formance and energy efficiency in the face of dark silicon [9,
15]. Two critical challenges in the design of such dark silicon
accelerators are: (1) identifying the codes that would bene-
fit the most from acceleration by delivering significant value
for a large number of users (i.e., maximizing utility), and (2)
moving just the right functionality into hardware to provide
significant performance and/or energy efficiency gain with-
out limiting applicability (i.e., avoiding over-specialization).

This work proposes Widx, an on-chip accelerator for
database hash index lookups. Hash indexes are fundamen-
tal to modern database management systems (DBMSs) and
are widely used to convert linear-time search operations into
near-constant-time ones. In practice; however, the sequen-
tial nature of an individual hash index lookup, composed
of key hashing followed by pointer chasing through a list of
nodes, results in significant time constants even in highly
tuned in-memory DBMSs. Consequently, a recent study of
data analytics on a state-of-the-art commercial DBMS found
that 41% of the total execution time for a set of TPC-H
queries goes to hash index lookups used in hash-join opera-
tions [16].

By accelerating hash index lookups, a functionality that
is essential in modern DBMSs, Widx ensures high utility.
Widx maximizes applicability by supporting a variety of
schemas (i.e., data layouts) through limited programmabil-
ity. Finally, Widx improves performance and offers high
energy efficiency through simple parallel hardware.

uhiroeh
Typewritten Text
Kocberber, O., Grot, B., Picorel, J., Falsafi, B., Lim, K., & Ranganathan, P. (2013). Meet the Walkers: Accelerating Index Traversals for In-memory Databases. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture. (pp. 468-479). (MICRO-46). New York, NY, USA: ACM. 10.1145/2540708.2540748

Our contributions are as follows:

• We study modern in-memory databases and show that
hash index (i.e., hash table) accesses are the most signif-
icant single source of runtime overhead, constituting 14-
94% of total query execution time. Nearly all of indexing
time is spent on two basic operations: (1) hashing keys
to compute indices into the hash table (30% on average,
68% max), and (2) walking the in-memory hash table’s
node lists (70% on average, 97% max).

• Node list traversals are fundamentally a sequential
pointer-chasing functionality characterized by long-
latency memory operations and minimal computational
effort. However, as indexing involves scanning a large
number of keys, there is abundant inter-key parallelism to
be exploited by walking multiple node lists concurrently.
Using a simple analytical model, we show that in practi-
cal settings, inter-key parallelism is constrained by either
L1 MSHRs or off-chip bandwidth (depending on the hash
index size), limiting the number of concurrent node list
traversals to around four per core.

• Finding the right node lists to walk requires hashing the
input keys first. Key hashing exhibits high L1 locality as
multiple keys fit in a single cache line. However, the use of
complex hash functions requires many ALU cycles, which
delay the start of the memory-intensive node list traversal.
We find that decoupling key hashing from list traversal
takes the hashing operation off the critical path, which
reduces the time per list traversal by 29% on average.
Moreover, by exploiting high L1-D locality in the hashing
code, a single key generator can feed multiple concurrent
node list walks.

• We introduce Widx, a programmable widget for acceler-
ating hash index accesses. Widx features multiple walkers
for traversing the node lists and a single dispatcher that
maintains a list of hashed keys for the walkers. Both the
walkers and a dispatcher share a common building block
consisting of a custom 2-stage RISC core with a simple
ISA. The limited programmability afforded by the simple
core allows Widx to support a virtually limitless variety
of schemas and hashing functions. Widx minimizes cost
and complexity through its tight coupling with a conven-
tional core, which eliminates the need for dedicated ad-
dress translation and caching hardware.

Using full-system simulation and a suite of modern data
analytics workloads, we show that Widx improves perfor-
mance of indexing operations by an average of 3.1x over
an OoO core, yielding a speedup of 50% at the application
level. By synthesizing Widx in 40nm technology, we demon-
strate that these performance gains come at negligible area
costs (0.23mm2), while delivering significant savings in en-
ergy (83% reduction) over an OoO core.

The rest of this paper is organized as follows. Section
2 motivates our focus on database indexing as a candidate
for acceleration. Section 3 presents an analytical model for
finding practical limits to acceleration in indexing opera-
tions. Section 4 describes the Widx architecture. Sections
5 and 6 present the evaluation methodology and results, re-
spectively. Sections 7 and 8 discuss additional issues and
prior work. Section 9 concludes the paper.

SQL : SELECT A.name FROM A,B WHERE A.age = B.age

!"#$%&'&()*&+,-./&&

!"
#"

$"
%"

$&"
!'"
(#"
#)"

!"#$$$%&'$

* "+,-./"

!"#$%&0&(122*&+,-./&

!"
#"

$"
%"
&"
'"
("
0"

!&"
%0"
#)"
##"
'$"
$#"
!'"
%#"

)" %!"

!"#$$$%&'$

()*(
+,-./

0

1 "23456
"

3".4&!"#$%&,5&!"#$%&'&

7 !'"

#)"

(#"

$&"8"

%"

9
 ":
6;
,.
<"

$

#

!

%

Figure 1: Table join via hash index.

2. MOTIVATION

2.1 DBMS Basics
DBMSs play a critical role in providing structured seman-

tics to access large amounts of stored data. Based on the
relational model, data is organized in tables, where each
table contains some number of records. Queries, written
in a specialized query language (e.g., SQL) are submitted
against the data and are converted to physical operators by
the DBMS. The most fundamental physical operators are
scan, join and sort. The scan operator reads through a
table to select records that satisfy the selection condition.
The join operator iterates over a pair of tables to produce a
single table with the matching records that satisfy the join
condition. The sort operator outputs a table sorted based
on a set of attributes of the input table. As the tables grow,
the lookup time for a single record increases linearly as the
operator scans the entire table to find the required record.

In order to accelerate accesses to the data, database man-
agement systems commonly employ an auxiliary index data
structure with sub-linear access times. This auxiliary index
can be built either by the database administrator or gener-
ated on the fly as a query plan optimization. One of the
most common index data structures is hash table, preferred
for its constant lookup time. Locating an item in a hash
table first requires probing the table with a hashed key, fol-
lowed by chasing node pointers looking for the node with
the matching key value. To ensure low and predictable la-
tency, DBMSs use a large number of buckets and rely on
robust hashing functions to distribute the keys uniformly
and reduce the number of nodes per bucket.

2.2 Database Indexing Example
Figure 1 shows a query resulting in a join of two tables,

A and B, each containing several million rows in a column-
store database. The tables must be joined to determine the
tuples that match A.age = B.age. To find the matches by
avoiding a sequential scan of all the tuples in Table A for
each tuple in Table B, an index is created on the smaller
table (i.e., Table A). This index places all the tuples of
Table A into a hash table, hashed on A.age (Step 1). The
index executor is initialized with the location of the hash
table, the key field being used for the probes, and the type
of comparison (i.e., is equal) being performed. The index
executor then performs the query by using the tuples from
Table B to probe the hash table to find the matching tuples
in Table A (Step 2). The necessary fields from the matching
tuples are then written to a separate output table (Step 3).

0

25

50

75

100

2 3 5 7 8 9 11 13 14 15 17 18 19 20 21 22 5 37 40 43 46 52 64 81 82

TPC-H TPC-DS

%
 o

f
E

x
e

c
u

ti
o

n
 T

im
e

Index Scan Sort & Join Other

(a) Total execution time breakdown

0

25

50

75

100

2 11 17 19 20 22 5 37 40 52 64 82

TPC-H TPC-DS

%
 o

f
In

d
e
x
 T

im
e

Walk Hash

(b) Index execution time breakdown

Figure 2: TPC-H & TPC-DS query execution time breakdown on MonetDB.

1 /∗ Constants used by the hashing funct ion ∗/
2 #define HPRIME 0xBIG
3 #define MASK 0xFFFF
4 /∗ Hashing funct ion ∗/
5 #define HASH(X) (((X) & MASK) ˆ HPRIME)
6
7 /∗ Key i t e r a t o r loop ∗/
8 do index (t a b l e t ∗t , ha sh tab l e t ∗ht) {
9 for (u int i = 0 ; i < t−>keys . s i z e ; i++)

10 probe hashtab le (t−>keys [i] , ht) ;
11 }
12
13 /∗ Probe hash t a b l e with given key ∗/
14 probe hashtab le (u int key , ha sh tab l e t ∗ht) {
15 u int idx = HASH(key) ;
16 node t ∗b = ht−>buckets+idx ;
17 while (b) {
18 i f (key == b−>key)
19 { /∗ Emit b−>id ∗/ }
20 b = b−>next ; /∗ next node ∗/
21 }
22 }

Listing 1: Indexing pseudo-code.

Listing 1 shows the pseudo-code for the core indexing
functionality, corresponding to Step 2 in Figure 1. The
do index function takes as input table t, and for each key
in the table, probes the hash table ht. The canonical
probe hashtable function hashes the input key and walks
through the node list looking for a match.

In real database systems, the indexing code tends to differ
from the abstraction in Listing 1 in a few important ways.
First, the hashing function is typically more robust than
what is shown above, employing a sequence of arithmetic
operations with multiple constants to ensure a balanced key
distribution. Second, each bucket has a special header node,
which combines minimal status information (e.g., number of
items per bucket) with the first node of the bucket, poten-
tially eliminating a pointer dereference for the first node.
Last, instead of storing the actual key, nodes can instead
contain pointers to the original table entries, thus trading
space (in case of large keys) for an extra memory access.

2.3 Profiling Analysis of a Modern DBMS
In order to understand the chief contributors to the exe-

cution time in database workloads, we study MonetDB [18],
a popular in-memory DBMS designed to take advantage of
modern processor and server architectures through the use
of column-oriented storage and cache-optimized operators.
We evaluate Decision Support System (DSS) workloads on
a server-grade Xeon processor with TPC-H [31] and TPC-
DS [26] benchmarks. Both DSS workloads were set up with

a 100GB dataset. Experimental details are described in Sec-
tion 5.

Figure 2a shows the total execution time for a set of TPC-
H and TPC-DS queries. The TPC-H queries spend up to
94% (35% on average) and TPC-DS queries spend up to
77% (45% on average) of their execution time on indexing.
Indexing is the single dominant functionality in these work-
loads, followed by scan and coupled sort&join operations.
The rest of the query execution time is fragmented among a
variety of tasks, including aggregation operators (e.g., sum,
max), library code, and system calls.

To gain insight into where the time goes in the indexing
phase, we profile the index-dominant queries on a full-system
cycle-accurate simulator (details in Section 5). We find that
hash table lookups account for nearly all of the indexing
time, corroborating earlier research [16]. Figure 2b shows
the normalized hash table lookup time, broken down into
its primitive operations: key hashing (Hash) and node list
traversal (Walk). In general, node list traversals dominate
the lookup time (70% on average, 97% max) due to their
long-latency memory accesses. Key hashing contributes an
average of 30% to the lookup latency; however, in cases when
the index table exhibits high L1 locality (e.g., queries 5, 37,
and 82), over 50% (68% max) of the lookup time is spent on
key hashing.

Summary: Indexing is an essential database manage-
ment system functionality that speeds up accesses to data
through hash table lookups and is responsible for up to 94%
of the query execution time. While the bulk of the index-
ing time is spent on memory-intensive node list traversals,
key hashing contributes 30% on average, and up to 68%, to
each indexing operation. Due to its significant contribution
to the query execution time, indexing presents an attractive
target for acceleration; however, maximizing the benefit of
an indexing accelerator requires accommodating both key
hashing and node list traversal functionalities.

3. DATABASE INDEXING ACCELERATION

3.1 Overview
Figure 3 highlights the key aspects of our approach to in-

dexing acceleration. These can be summarized as (1) walk
multiple hash buckets concurrently with dedicated walker
units, (2) speed up bucket accesses by decoupling key hash-
ing from the walk, and (3) share the hashing hardware
among multiple walkers to reduce hardware cost. We next

H

Next key

W

(a) Baseline design

H

Next key

W

H

Next key

W

(b) Parallel walkers

H

Next key gen. Next key fetch

W

H

Next key gen. Next key fetch

W

(c) Parallel walkers each
with a decoupled
hashing unit

H

Next key fetch

Next key fetch

Next key gen. W

W

(d) Parallel walkers with
a shared decoupled
hashing unit

Figure 3: Baseline and accelerated indexing hardware.

detail each of these optimizations by evolving the baseline
design (Figure 3a) featuring a single hardware context that
sequentially executes the code in Listing 1 with no special-
purpose hardware.

The first step, shown in Figure 3b, is to accelerate the
node list traversals that tend to dominate the indexing time.
While each traversal is fundamentally a set of serial node
accesses, we observe that there is an abundance of inter-
key parallelism, as each individual key lookup can proceed
independently of other keys. Consequently, multiple hash
buckets can be walked concurrently. Assuming a set of par-
allel walker units, the expected reduction in indexing time
is proportional to the number of concurrent traversals.

The next acceleration target is key hashing, which stands
on the critical path of accessing the node list. We make a
critical observation that because indexing operations involve
multiple independent input keys, key hashing can be decou-
pled from bucket accesses. By overlapping the node walk
for one input key with hashing of another key, the hashing
operation can be removed from the critical path, as depicted
in Figure 3c.

Finally, we observe that because the hashing operation
has a lower latency than the list traversal (a difference that
is especially pronounced for in-memory queries), the hashing
functionality can be shared across multiple walker units as
a way of reducing cost. We refer to a decoupled hashing
unit shared by multiple cores as a dispatcher and show this
design point in Figure 3d.

3.2 First-Order Performance Model
An indexing operation may touch millions of keys, offering

enormous inter-key parallelism. In practice; however, paral-
lelism is constrained by hardware and physical limitations.
We thus need to understand the practical bottlenecks that
may limit the performance of the indexing accelerator out-
lined in Section 3.1. We consider an accelerator design that
is tightly coupled to the core and offers full offload capability
of the indexing functionality, meaning that the accelerator
uses the core’s TLB and L1-D, but the core is otherwise idle
whenever the accelerator is running.

We study three potential obstacles to performance scal-
ability of a multi-walker design: (1) L1-D bandwidth, (2)
L1-D MSHRs, and (3) off-chip memory bandwidth. The
performance-limiting factor of the three elements is deter-
mined by the rate at which memory operations are generated
at the individual walkers. This rate is a function of the aver-
age memory access time (AMAT), memory-level parallelism
(MLP, i.e., the number of outstanding L1-D misses), and
the computation operations standing on the critical path of

each memory access. While the MLP and the number of
computation operations are a function of the code, AMAT
is affected by the miss ratios in the cache hierarchy. For a
given cache organization, the miss ratio strongly depends on
the size of the hash table being probed.

Our bottleneck analysis uses a simple analytical model
following the observations above. We base our model on
the accelerator design with parallel walkers and decoupled
hashing units (Figure 3c) connected via an infinite queue.
The indexing code, MLP analysis, and required computation
cycles are based on Listing 1. We assume 64-bit keys, with
eight keys per cache block. The first key to a given cache
block always misses in the L1-D and LLC and goes to main
memory. We focus on hash tables that significantly exceed
the L1 capacity; thus, node pointer accesses always miss in
the L1-D, but they might hit in the LLC. The LLC miss
ratio is a parameter in our analysis.

L1-D bandwidth: The L1-D pressure is determined by
the rate at which key and node accesses are generated. First,
we calculate the total number of cycles required to perform
a fully pipelined probe operation for each step (i.e., hashing
one key or walking one node in a bucket). Equation 1 shows
the cycles required to perform each step as the sum of mem-
ory and computation cycles. As hashing and walking are
different operations, we calculate the same metric for each
of them (subscripted as H and W).

Equation 2 shows how the L1-D pressure is calculated in
our model. In the equation, N defines the number of parallel
walkers each with a decoupled hashing unit. MemOps de-
fines the L1-D accesses for each component (i.e., hashing one
key and walking one node) per operation. As hashing and
walking are performed concurrently, the total L1-D pressure
is calculated by the addition of each component. We use a
subscripted notation to represent the addition; for example:
(X)H,W = (X)H + (X)W .

Cycles = AMAT ∗MemOps + CompCycles (1)

MemOps/cycle = (
MemOps

Cycles
)H,W ∗N ≤ L1ports (2)

Figure 4a shows the L1-D bandwidth requirement as a
function of the LLC miss ratio for a varying number of walk-
ers. The number of L1-D ports (typically 1 or 2) limits the
L1 accesses per cycle. When the LLC miss ratio is low, a
single-ported L1-D becomes the bottleneck for more than
six walkers. However, a two-ported L1-D can comfortably
support 10 walkers even at low LLC miss ratios.

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e
m

 O
p

s
/c

y
c
le

LLC Miss Ratio

1 2 4 8 10

of Walkers

(a) Constraint: L1-D bandwidth

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

O
u

ts
ta

n
d

in
g

 L
1
 M

is
s
e
s

Number of Walkers

(b) Constraint: L1-D MSHRs

0

1

2

3

4

5

6

7

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
a

lk
e

rs
 p

e
r

M
C

LLC Miss Ratio

(c) Constraint: memory bandwidth

Figure 4: Accelerator bottleneck analysis.

0

0.5

1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

W
a
lk

e
r
 U

ti
li
z
a
ti

o
n

LLC Miss Ratio

8 4 2 # of Walkers

(a) 1 node per bucket

0

0.5

1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

W
a
lk

e
r
 U

ti
li
z
a
ti

o
n

LLC Miss Ratio

8 4 2 # of Walkers

(b) 2 nodes per bucket

0

0.5

1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

W
a
lk

e
r
 U

ti
li
z
a
ti

o
n

LLC Miss Ratio

8 4 2 # of Walkers

(c) 3 nodes per bucket

Figure 5: Number of walkers that can be fed by a dispatcher as a function of bucket size and LLC miss ratio.

MSHRs: Memory accesses that miss in the L1-D reserve
an MSHR for the duration of the miss. Multiple misses to
the same cache block (a common occurrence for key fetches)
are combined and share an MSHR. A typical number of
MSHRs in the L1-D is 8-10; once these are exhausted, the
cache stops accepting new memory requests. Equation 3
shows the relationship between the number of outstanding
L1-D misses and the maximum MLP the hashing unit and
walker can together achieve during a decoupled hash and
walk.

L1Misses = max(MLPH +MLPW)∗N ≤ MSHRs (3)

Based on the equation, Figure 4b plots the pressure on the
L1-D MSHRs as a function of the number of walkers. As the
graph shows, the number of outstanding misses (and corre-
spondingly, the MSHR requirements) grows linearly with the
walker count. Assuming 8 to 10 MSHRs in the L1-D, corre-
sponding to today’s cache designs, the number of concurrent
walkers is limited to four or five, respectively.

Off-chip bandwidth: Today’s server processors tend to
feature a memory controller (MC) for every 2-4 cores. The
memory controllers serve LLC misses and are constrained by
the available off-chip bandwidth, which is around 12.8GB/s
with today’s DDR3 interfaces. A unit of transfer is a 64B
cache block, resulting in nearly 200 million cache block
transfers per second. We express the maximum off-chip
bandwidth per memory controller in terms of the maximum
number of 64-byte blocks that could be transferred per cycle.
Equation 4 calculates the number of blocks demanded from
the off-chip per operation (i.e., hashing one key or walking
one node in a bucket) as a function of L1-D and LLC miss
ratio (L1MR, LLCMR) and memory operations. Equation 5
shows the model for computing memory bandwidth pres-
sure, which is expressed as the ratio of the expected MC
bandwidth in terms of blocks per cycle (BWMC) and the
number of demanded cache blocks from the off-chip mem-

ory per cycle. The latter is calculated for each component
(i.e., hashing unit and walker).

OffChipDemands = L1MR ∗ LLCMR ∗MemOps (4)

WalkersPerMC ≤ BWMC

(OffChipDemands
Cycles

)H,W

(5)

Figure 4c shows the number of walkers that can be
served by a single DDR3 memory controller providing 9GB/s
of effective bandwidth (70% of the 12.8GB/s peak band-
width [7]). When LLC misses are rare, one memory con-
troller can serve almost eight walkers, whereas at high LLC
miss ratios, the number of walkers per MC drops to four.
However, our model assumes an infinite buffer between the
hashing unit and the walker, which allows the hashing unit
to increase the bandwidth pressure. In practical designs,
the bandwidth demands from the hashing unit will be throt-
tled by the finite-capacity buffer, potentially affording more
walkers within a given memory bandwidth budget.

Dispatcher: In addition to studying the bottlenecks to
scalability in the number of walkers, we also consider the po-
tential of sharing the key hashing logic in a dispatcher-based
configuration shown in Figure 3d. The main observation be-
hind this design point is that the hashing functionality is
dominated by ALU operations and enjoys a regular memory
access pattern with high spatial locality, as multiple keys fit
in each cache line in column-oriented databases. Meanwhile,
node accesses launched by the walkers have poor spatial lo-
cality but also have minimal ALU demands. As a result,
the ability of a single dispatcher to keep up with multiple
walkers is largely a function of (1) the hash table size, and
(2) hash table bucket depth (i.e., the number of nodes per
bucket). The larger the table, the more frequent the misses
at lower levels of the cache hierarchy, and the longer the stall
times at each walker. Similarly, the deeper the bucket, the

H P

Key,

Hashed key

W

W

W

W

Key′

To MMU

Figure 6: Widx overview. H: dispatcher, W: walker,
P: output producer.

more nodes are traversed and the longer the walk time. As
walkers stall, the dispatcher can run ahead with key hashing,
allowing it to keep up with multiple walkers. This intuition
is captured in Equation 6. Total cycles for dispatcher and
walkers is a function of AMAT (Equation 1). We multiply
the number of cycles needed to walk a node by the num-
ber of nodes per bucket to compute the total walking cycles
required to locate one hashed key.

WalkerUtilization =
Cyclesnode ∗Nodes/bucket

Cycleshash ∗N (6)

Based on Equation 6, Figure 5 plots the effective walker
utilization given one dispatcher and a varying number of
walkers (N). Whenever a dispatcher cannot keep up with
the walkers, the walkers stall, lowering their effective utiliza-
tion. The number of nodes per bucket affects the walkers’
rate of consumption of the keys generated by the dispatcher;
buckets with more nodes take longer to traverse, lowering
the pressure on the dispatcher. The three subfigures show
the walker utilization given 1, 2, and 3 nodes per bucket for
varying LLC miss ratios. As the figure shows, one dispatcher
is able to feed up to four walkers, except for very shallow
buckets (1 node/bucket) with low LLC miss ratios.

Summary: Our bottleneck analysis shows that practi-
cal L1-D configurations and limitations on off-chip memory
bandwidth constrain the number of walkers to around four
per accelerator. A single decoupled hashing unit is sufficient
to feed all four walkers.

4. WIDX

4.1 Architecture Overview
Figure 6 shows the high-level organization of our proposed

indexing acceleration widget, Widx, which extends the de-
coupled accelerator in Figure 3d. The Widx design is based
on three types of units that logically form a pipeline:
(1) a dispatcher unit that hashes the input keys,
(2) a set of walker units for traversing the node lists, and
(3) an output producer unit that writes out the matching
keys and other data as specified by the indexing function.

To maximize concurrency, the units operate in a decou-
pled fashion and communicate via queues. Data flows from
the dispatcher toward the output producer. All units share
an interface to the host core’s MMU and operate within the

PC F/D RF

ALU

<<

+
4

+
-

To Memory

To Buffer

From Buffer/Memory

In
s

tr
u

c
ti

o
n

C
o

n
fi

g

To Memory

To Buffer

B
ra

n
c

h

W
ri

te
b

a
c

k

Figure 7: Schematic design of a single Widx unit.

active application’s virtual address space. A single output
producer generally suffices as store latency can be hidden
and is not on the critical path of hash table probes.

A key requirement for Widx is the ability to support a
variety of hashing functions, database schemas, and data
types. As a result, Widx takes the programmable (instead of
fixed-function) accelerator route. In designing the individual
Widx units (dispatcher, walker, and output producer), we
observe significant commonality in the set of operations that
each must support. These include the ability to do simple
arithmetic (e.g., address calculation), control flow, and to
access memory via the MMU.

Based on these observations, each Widx unit employs a
custom RISC core featuring a minimalistic ISA shown in
Table 1. In addition to the essential RISC instructions, the
ISA also includes a few unit-specific operations to acceler-
ate hash functions with fused instructions (e.g., xor-shift)
and an instruction to reduce memory time (i.e., touch) by
demanding data blocks in advance of their use. This core
serves as a common building block for each Widx unit shown
in Figure 6. The compact ISA minimizes the implementa-
tion complexity and area cost while affording design reuse
across the different units.

Figure 7 shows the internals of a Widx unit. We adopted
a design featuring a 64-bit datapath, 2-stage pipeline, and
32 software-exposed registers. The relatively large number
of registers is necessary for storing the constants used in key
hashing. The three-operand ALU allows for efficient shift
operations that are commonly used in hashing. The critical
path of our design is the branch address calculation with
relative addressing.

4.2 Programming API
To leverage Widx, a database system developer must spec-

ify three functions: one for key hashing, another for the node
walk, and the last one for emitting the results. Either im-
plicitly or explicitly, these functions specify the data layout
(e.g., relative offset of the node pointer within a node data
structure) and data types (e.g., key size) used for the in-
dexing operations. Inputs to the functions include the hash
table pointer and size, input keys’ table pointer and size,
and the destination pointer for emitting results.

The functions are written in a limited subset of C, al-
though other programming languages (with restrictions)
could also be used. Chief limitations imposed by the Widx
programming model include the following: no dynamic
memory allocation, no stack, and no writes except by the

Table 1: Widx ISA. The columns show which Widx
units use a given instruction type.

Instruction H W P

ADD X X X
AND X X X
BA X X X
BLE X X X
CMP X X X
CMP-LE X X X
LD X X X
SHL X X X
SHR X X X
ST X
TOUCH X X X
XOR X X X
ADD-SHF X X
AND-SHF X
XOR-SHF X

output producer. One implication of these restrictions is
that functions that exceed a Widx unit’s register budget
cannot be mapped, as the current architecture does not
support push/pop operations. However, our analysis with
several contemporary DBMSs shows that, in practice, this
restriction is not a concern.

4.3 Additional Details
Configuration interface: In order to benefit from the

Widx acceleration, the application binary must contain a
Widx control block, composed of constants and instructions
for each of the Widx dispatcher, walker, and output pro-
ducer units. To configure Widx, the processor initializes
memory-mapped registers inside Widx with the starting ad-
dress (in the application’s virtual address space) and length
of the Widx control block. Widx then issues a series of loads
to consecutive virtual addresses from the specified starting
address to load the instructions and internal registers for
each of its units.

To offload an indexing operation, the core (directed by the
application) writes the following entries to Widx’s configu-
ration registers: base address and length of the input table,
base address of the hash table, starting address of the results
region, and a NULL value identifier. Once these are initial-
ized, the core signals Widx to begin execution and enters an
idle loop. The latency cost of configuring Widx is amortized
over the millions of hash table probes that Widx executes.

Handling faults and exceptions: TLB misses are the
most common faults encountered by Widx and are handled
by the host core’s MMU in its usual fashion. In architectures
with software-walked page tables, the walk will happen on
the core and not on Widx. Once the missing translation
is available, the MMU will signal Widx to retry the mem-
ory access. In the case of the retry signal, Widx redirects
PC to the previous PC and flushes the pipeline. The retry
mechanism does not require any architectural checkpoint as
nothing is modified in the first stage of the pipeline until an
instruction completes in the second stage.

Other types of faults and exceptions trigger handler exe-
cution on the host core. Because Widx provides an atomic
all-or-nothing execution model, the indexing operation is
completely re-executed on the host core in case the accel-
erator execution is aborted.

Table 2: Evaluation parameters.

Parameter Value

Technology 40nm, 2GHz

CMP Features 4 cores

Core Types
In-order (Cortex A8-like): 2-wide

OoO (Xeon-like): 4-wide, 128-entry ROB

L1-I/D Caches
32KB, split, 2 ports, 64B blocks, 10 MSHRs,

2-cycle load-to-use latency

LLC 4MB, 6-cycle hit latency

TLB 2 in-flight translations

Interconnect Crossbar, 4-cycle latency

Main Memory
32GB, 2 MCs, BW: 12.8GB/s

45ns access latency

5. METHODOLOGY
Workloads: We evaluate three different benchmarks,
namely the hash join kernel, TPC-H, and TPC-DS.

We use a highly optimized and publicly available hash join
kernel code [3], which optimizes the “no partitioning” hash
join algorithm [4]. We configure the kernel to run with four
threads that probe a hash table with up to two nodes per
bucket. Each node contains a tuple with 4B key and 4B
payload [21]. We evaluate three index sizes, Small, Medium
and Large. The Large benchmark contains 128M tuples (cor-
responding to 1GB dataset) [21]. The Medium and Small
benchmarks contain 512K (4MB raw data) and 4K (32KB
raw data) tuples respectively. In all configurations the outer
relation contains 128M uniformly distributed 4B keys.

We run DSS queries from the TPC-H [31] and TPC-
DS [26] benchmarks on MonetDB 11.5.9 [18] with a 100GB
dataset (a scale factor of 100) both for hardware profiling
and evaluation in the simulator. Our hardware profiling ex-
periments are carried out on a six-core Xeon 5670 with 96GB
of RAM and we used Vtune [19] to analyze the performance
counters. Vtune allows us to break down the execution time
into functions. To make sure that we correctly account for
the time spent executing each database operator (e.g., scan,
index), we examine the source code of those functions and
group them according to their functionality. We warm up
the DBMS and memory by executing all the queries once
and then we execute the queries in succession and report
the average of three runs. For each run, we randomly gen-
erate new inputs for queries with the dbgen tool [31].

For the TPC-H benchmark, we run all the queries and re-
port the ones with the indexing execution time greater than
5% of the total query runtime (16 queries out of 22). Since
there are a total of 99 queries in the TPC-DS benchmark,
we select a subset of queries based on a classification found
in previous work [26], considering the two most important
query classes in TPC-DS, Reporting and Ad Hoc. Report-
ing queries are well-known, pre-defined business questions
(queries 37, 40 & 81). Ad Hoc captures the dynamic nature
of a DSS system with the queries constructed on the fly to
answer immediate business questions (queries 43, 46, 52 &
82). We also choose queries that fall into both categories
(queries 5 & 64). In our runs on the cycle-accurate simula-
tor, we pick a representative subset of the queries based on
the average time spent in indexing.

0

1

2

3

4

5

6

1 2 4 1 2 4 1 2 4

Small Medium Large

N
o

rm
a

li
z
e

d

C
y

c
le

s
 p

e
r

T
u

p
le

 Comp Mem TLB Idle

(a) Widx walkers cycle breakdown for the Hash Join kernel
(normalized to Small running on Widx with one walker)

0

1

2

3

4

5

6

Small Medium Large

In
d

e
x

in
g

 S
p

e
e

d
u

p
 OoO 1 walker 2 walkers 4 walkers

(b) Speedup for the Hash Join kernel

Figure 8: Hash Join kernel analysis.

Processor parameters: The evaluated designs are sum-
marized in Table 2. Our baseline processor features aggres-
sive out-of-order cores with a dual-ported MMU. We evalu-
ate the Widx designs featuring one, two, and four walkers.
Based on the results of the model of Section 3.2, we do not
consider designs with more than four walkers. All Widx de-
signs feature one shared dispatcher and one result producer.
As described in Section 4, Widx offers full offload capabil-
ity, meaning that the core stays idle (except for the MMU)
while Widx is in use. For comparison, we also evaluate an
in-order core modeled after ARM Cortex A8.

Simulation: We evaluate various processor and Widx
designs using the Flexus full-system simulator [33]. Flexus
extends the Virtutech Simics functional simulator with tim-
ing models of cores, caches, on-chip protocol controllers, and
interconnect. Flexus models the SPARC v9 ISA and is able
to run unmodified operating systems and applications.

We use the SimFlex multiprocessor sampling methodol-
ogy [33], which extends the SMARTS statistical sampling
framework [35]. Our samples are drawn over the entire in-
dex execution until the completion. For each measurement,
we launch simulations from checkpoints with warmed caches
and branch predictors, and run 100K cycles to achieve a
steady state of detailed cycle-accurate simulation before col-
lecting measurements for the subsequent 50K cycles. We
measure the indexing throughput by aggregating the tuples
processed per cycle both for the baseline and Widx. To
measure the indexing throughput of the baseline, we mark
the beginning and end of the indexing code region and track
the progress of each tuple until its completion. Performance
measurements are computed at 95% confidence with an av-
erage error of less than 5%.

Power and Area: To estimate Widx’s area and power,
we synthesize our Verilog implementation with the Synopsys
Design Compiler [30]. We use the TSMC 45nm technology
(Core library: TCBN45GSBWP, Vdd: 0.9V), which is per-
fectly shrinkable to the 40nm half node. We target a 2GHz
clock rate. We set the compiler to the high area optimization
target. We report the area and power for six Widx units:
four walkers, one dispatcher, and one result producer, with
2-entry queues at the input and output of each walker unit.

We use published power estimates for OoO Xeon-like core
and in-order A8-like core at 2GHz [22]. We assume the
power consumption of the baseline OoO core to be equal
to Xeon’s nominal operating power [27]. Idle power is esti-
mated to be 30% of the nominal power [20]. As the Widx-
enabled design relies on the core’s data caches, we estimate
the core’s private cache power using CACTI 6.5 [25].

6. EVALUATION
We first analyze the performance of Widx on an optimized

hash join kernel code. We then present a case study on Mon-
etDB with DSS workloads, followed by an area and energy
analysis.

6.1 Performance on Hash Join Kernel
In order to analyze the performance implications of index

walks with various dataset sizes, we evaluate three different
index sizes; namely, Small, Medium, and Large, on a highly
optimized hash join kernel as explained in Section 5.

To show where the Widx cycles are spent we divide the
aggregate critical path cycles into four groups. Comp cycles
go to computing effective addresses and comparing keys at
each walker, Mem cycles count the time spent in the mem-
ory hierarchy, TLB quantifies the Widx stall cycles due to
address translation misses, and Idle cycles account for the
walker stall time waiting for a new key from the dispatcher.
Presence of Idle cycles indicates that the dispatcher is unable
to keep up with the walkers.

Figure 8a depicts the Widx walkers’ execution cycles
per tuple (normalized to Small running on Widx with one
walker) as we increase the number of walkers from one to
four. The dominant fraction of cycles is spent in memory
and as the index size grows, the memory cycles increase
commensurately. Not surprisingly, increasing the number of
walkers reduces the memory time linearly due to the MLP
exposed by multiple walkers. One exception is the Small
index with four walkers; in this scenario, node accesses from
the walkers tend to hit in the LLC, resulting in low AMAT.
As a result, the dispatcher struggles to keep up with the
walkers, causing the walkers to stall (shown as Idle in the
graph). This behavior matches our model’s results in Sec-
tion 3.

The rest of the Widx cycles are spent on computation and
TLB misses. Computation cycles constitute a small fraction
of the total Widx cycles because the Hash Join kernel im-
plements a simple memory layout, and hence requires triv-
ial address calculation. We also observe that the fraction
of TLB cycles per walker does not increase as we enable
more walkers. Our baseline core’s TLB supports two in-
flight translations, and it is unlikely to encounter more than
two TLB misses at the same time, given that the TLB miss
ratio is 3% for our worst case (Large index).

Figure 8b illustrates the indexing speedup of Widx nor-
malized to the OoO baseline. The one-walker Widx de-
sign improves performance by 4% (geometric mean) over
the baseline. The one-walker improvements are marginal

0

150

300

450

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

qry2 qry11 qry17 qry19 qry20 qry22

TPC-H

C
y

c
le

s
 p

e
r

T
u

p
le

Comp Mem TLB Idle

(a) Widx walkers cycle breakdown for TPC-H queries

0

100

200

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

qry5 qry37 qry40 qry52 qry64 qry82

TPC-DS

C
y

c
le

s
 p

e
r

T
u

p
le

Comp Mem TLB Idle

(b) Widx walkers cycle breakdown for TPC-DS queries

Figure 9: DSS on MonetDB. Note that Y-axis scales are different on the two subgraphs.

because the hash kernel implements an oversimplified hash
function, which does not benefit from Widx’s decoupled hash
and walk mechanisms, which overlap the hashing and walk-
ing time. However, the performance improvement increases
with the number of Widx walkers, which traverse buckets
in parallel. Widx achieves a speedup of 4x at best for the
Large index table, which performs poorly on the baseline
cores due to the high LLC miss ratio and limited MLP.

6.2 Case study on MonetDB
In order to quantify the benefits of Widx on a complex sys-

tem, we run Widx with the well-known TPC-H benchmark
and with the successor benchmark TPC-DS on a state-of-
the-art database management system, MonetDB.

Figure 9a breaks down the Widx cycles while running
TPC-H queries. We observe that the fraction of the com-
putation cycles in the breakdown increases compared to the
hash join kernel due to MonetDB’s complex hash table lay-
out. MonetDB stores keys indirectly (i.e., pointers) in the
index resulting in more computation for address calculation.
However, the rest of the cycle breakdown follows the trends
explained in the Hash Join kernel evaluation (Section 6.1).
The queries enjoy a linear reduction in cycles per tuple with
the increasing number of walkers. The queries with rela-
tively small index sizes (query 2, 11 & 17) do not experience
any TLB misses, while the memory-intensive queries (query
19, 20 & 22) experience TLB miss cycles up to 8% of the
walker execution time.

Figure 9b presents the cycles per tuple breakdown for
TPC-DS. Compared to TPC-H, a distinguishing aspect of
the TPC-DS benchmark is the small-sized index tables.1

Our results verify this fact as we observe consistently lower
memory time compared to that of TPC-H (mind the y-axis
scale change). As a consequence, some queries (query 5, 37,
64 & 82) go over indexes that can easily be accommodated
in the L1-D cache. Widx walkers are partially idle given
that they can run at equal or higher speed compared to the
dispatcher due to the tiny index, a behavior explained by
our model in Section 3.

1There are 429 columns in TPC-DS, while there are only
61 in TPC-H. Therefore, for a given dataset size, the index
sizes are smaller per column because the same size of dataset
is divided over a large number of columns.

0

1

2

3

4

5

6

q
ry

2

q
ry

1
1

q
ry

1
7

q
ry

1
9

q
ry

2
0

q
ry

2
2

q
ry

5

q
ry

3
7

q
ry

4
0

q
ry

5
2

q
ry

6
4

q
ry

8
2

TPC-H TPC-DS

In
d

e
x

in
g

 S
p

e
e

d
u

p

OoO 1 walker 2 walkers 4 walkers

Figure 10: Performance of Widx on DSS queries.

Figure 10 illustrates the performance of Widx on both
TPC-H and TPC-DS queries. Compared to OoO, four walk-
ers improve the performance by 1.5x-5.5x (geometric mean
of 3.1x). The maximum speedup (5.5x) is registered on
TPC-H query 20, which works on a large index with double
integers that require computationally intensive hashing. As
a result, this query greatly benefits from Widx’s features,
namely, the decoupled hash and multiple walker units with
custom ISA. The minimum speedup (1.5x) is observed on
TPC-DS query 37 due to L1-resident index (L1-D miss ratio
<1%). We believe that this is the lower limit for our design
because there are only a handful of unique index entries.

We estimate the benefits of indexing acceleration at the
level of the entire query by projecting the speedups attained
in the Widx-accelerated design onto the indexing portions
of the TPC-H and TPC-DS queries presented in Figure 2a.
By accelerating just the indexing portion of the query, Widx
speeds up the query execution by a geometric mean of 1.5x
and up to 3.1x (query 17). Our query speedups are limited
by the fraction of the time spent in indexing throughout the
overall execution. In query 17, the achieved overall speedup
is close to the indexing-only speedup with the four-walker
design as 94% of the execution time is spent indexing. The
lowest overall speedup (10%) is obtained in query 37 because
only 29% of the query execution is offloaded to Widx and as
explained above, the query works on an L1-resident index.

0

0.6

1.2

1.8

2.4

Indexing Runtime Energy Energy-Delay

M
e

tr
ic

 o
f

In
te

re
s

t
 (

N
o

rm
a

li
z
e

d
 t

o
 O

o
O

)
OoO In-order Widx (w/ OoO)

Figure 11: Indexing Runtime, Energy and Energy-
Delay metric of Widx (lower is better).

6.3 Area and Energy Efficiency
To model the area overhead and power consumption

of Widx, we synthesized our RTL design in the TSMC
40nm technology. Our analysis shows that a single Widx
unit (including the two-entry input/output buffers) occu-
pies 0.039mm2 with a peak power consumption of 53mW
at 2GHz. Our power and area estimates are extremely con-
servative due to the lack of publicly available SRAM com-
pilers in this technology. Therefore, the register file and
instruction buffer constitute the main source of area and
power consumption of Widx. The Widx design with six
units (dispatcher, four walkers, and an output producer) oc-
cupies 0.24mm2 and draws 320mW . To put these numbers
into perspective, an in-order ARM Cortex A8 core in the
same process technology occupies 1.3mm2, while drawing
480mW including the L1 caches [22]. Widx’s area overhead
is only 18% of Cortex A8 with comparable power consump-
tion, despite our conservative estimates for Widx’s area and
power. As another point of comparison, an ARM M4 mi-
crocontroller [1] with full ARM Thumb ISA support and a
floating-point unit occupies roughly the same area as the
single Widx unit. We thus conclude that Widx hardware
is extremely cost-effective even if paired with very simple
cores.

Figure 11 summarizes the trade-offs of this study by
comparing the average runtime, energy consumption, and
energy-delay product of the indexing portion of DSS work-
loads. In addition to the out-of-order baseline, we also in-
clude an in-order core as an important point of comparison
for understanding the performance/energy implications of
the different design choices.

An important conclusion of the study is that the in-order
core performs significantly worse (by 2.2x on average) than
the baseline OoO design. Part of the performance difference
can be attributed to the wide issue width and reordering
capability of the OoO core, which benefits the hashing func-
tion. The reorder logic and large instruction window in the
OoO core also help in exposing the inter-key parallelism be-
tween two consecutive hash table lookups. For queries that
have cache-resident index data, the loads can be issued from
the imminent key probe early enough to partially hide the
cache access latency.

In terms of energy efficiency, we find that the in-order
core reduces energy consumption by 86% over the OoO core.
When coupled with Widx, the OoO core offers almost the

same energy efficiency (83% reduction) as the in-order de-
sign. Despite the full offload capability offered by Widx and
its high energy efficiency, the total energy savings are limited
by the high idle power of the OoO core.

In addition to energy efficiency, QoS is a major concern
for many database workloads. We thus study the efficiency
of various designs on both performance and energy together
via the energy-delay product metric. Due to its performance
and energy-efficiency benefits, Widx improves the energy-
delay product by 5.5x over the in-order core and by 17.5x
over the OoO baseline.

7. DISCUSSION
Other join algorithms and software optimality: In

this paper, we focused on hardware-oblivious hash join al-
gorithms that run on the state-of-the-art software. In or-
der to exploit on-chip cache locality, researchers have pro-
posed hardware-conscious approaches that have a table-
partitioning phase prior to the main join operation [23]. In
this phase, a hash table is built on each small partition of the
table, thus making the individual hash tables cache-resident.
The optimal partition size changes across hardware plat-
forms based on the cache size, TLB size, etc.

Widx’s functionality does not require any form of data
locality, and thus is independent of any form of data parti-
tioning. Widx is, therefore, equally applicable to hash join
algorithms that employ data partitioning prior to the main
join operation [23]. Due to the significant computational
overhead involved in table partitioning, specialized hardware
accelerators that target partitioning [34] can go hand in hand
with Widx.

Another approach to optimize join algorithms is the use of
SIMD instructions. While the SIMD instructions aid hash-
joins marginally [16, 21], another popular algorithm, sort-
merge join, greatly benefits from SIMD optimizations dur-
ing the sorting phase. However, prior work [2] has shown
that hash join clearly outperforms the sort-merge join. In
general, software optimizations target only performance,
whereas Widx both improves performance and greatly re-
duces energy.

Broader applicability: Our study focused on MonetDB
as a representative contemporary database management sys-
tem; however, we believe that Widx is equally applicable to
other DBMSs. Our profiling of HP Vertica and SAP HANA
indicate that these systems rely on indexing strategies, akin
to those discussed in this work, and consequently, can bene-
fit from our design. Moreover, Widx can easily be extended
to accelerate other index structures, such as balanced trees,
which are also common in DBMSs.

LLC-side Widx: While this paper focused on a Widx
design tightly coupled with a host core, Widx could
potentially be located close to the LLC instead. The
advantages of LLC-side placement include lower LLC access
latencies and reduced MSHR pressure. The disadvantages
include the need for a dedicated address translation logic, a
dedicated low-latency storage next to Widx to exploit data
locality, and a mechanism for handling exception events.
We believe the balance is in favor of a core-coupled design;
however, the key insights of this work are equally applicable
to an LLC-side Widx.

8. RELATED WORK
There have been several optimizations for hash join al-

gorithms both in hardware and software. Recent work
proposes vector instruction extensions for hash table
probes [16]. Although promising, the work has several im-
portant limitations. One major limitation is the DBMS-
specific solution, which is limited to the Vectorwise DBMS.
Another drawback is the vector-based approach, which lim-
its performance due to the lock-stepped execution in the
vector unit. Moreover, the Vectorwise design does not ac-
celerate key hashing, which constitutes up to 68% of lookup
time. Finally, the vector-based approach keeps the core fully
engaged, limiting the opportunity to save energy.

Software optimizations for hash join algorithms tend to
focus on the memory subsystem (e.g., reducing cache miss
rates through locality optimizations) [21, 23]. These tech-
niques are orthogonal to our approach and our design would
benefit from such optimizations. Another memory subsys-
tem optimization is to insert prefetching instructions within
the hash join code [5]. Given the limited intra-tuple paral-
lelism, the benefits of prefetching in complex hash table or-
ganizations are relatively small compared to the inter-tuple
parallelism as shown in [16].

Recent work has proposed on-chip accelerators for energy
efficiency (dark silicon) in the context of general-purpose
(i.e., desktop and mobile) workloads [12, 13, 14, 28, 32].
While these proposals try to improve the efficiency of the
memory hierarchy, the applicability of the proposed tech-
niques to big data workloads is limited due to the deep soft-
ware stacks and vast datasets in today’s server applications.
Also, existing dark silicon accelerators are unable to extract
memory-level parallelism, which is essential to boost the ef-
ficiency of indexing operations.

1980s witnessed proliferation of database machines, which
sought to exploit the limited disk I/O bandwidth by coupling
each disk directly with specialized processors [8]. However,
high cost and long design turnaround time made custom
designs unattractive in the face of cheap commodity hard-
ware. Today, efficiency constraints are rekindling an inter-
est in specialized hardware for DBMSs [6, 11, 17, 24, 34].
Some researchers proposed offloading hash-joins to network
processors [11] or to FPGAs [6] for leveraging the highly
parallel hardware. However, these solutions incur invoca-
tion overheads as they communicate through PCI or through
high-latency buses, which affect the composition of multiple
operators. Moreover, offloading the joins to network proces-
sors or FPGAs requires expensive dedicated hardware, while
Widx utilizes the on-chip dark silicon. We believe that our
approach for accelerating schema-aware indexing operations
is insightful for the next-generation of data processing hard-
ware.

9. CONCLUSION
Big data analytics lie at the core of today’s business.

DBMSs that run analytics workloads rely on indexing data
structures to speed up data lookups. Our analysis of Mon-
etDB, a modern in-memory database, on a set of data an-
alytics workloads shows that hash-table-based indexing op-
erations are the largest single contributor to the overall ex-
ecution time. Nearly all of the indexing time is split be-
tween ALU-intensive key hashing operations and memory-
intensive node list traversals. These observations, combined

with a need for energy-efficient silicon mandated by the slow-
down in supply voltage scaling, motivate Widx, an on-chip
accelerator for indexing operations.

Widx uses a set of programmable hardware units to
achieve high performance by (1) walking multiple hash buck-
ets concurrently, and (2) hashing input keys in advance of
their use, removing the hashing operations from the critical
path of bucket accesses. By leveraging a custom RISC core
as its building block, Widx ensures the flexibility needed to
support a variety of schemas and data types. Widx mini-
mizes area cost and integration complexity through its sim-
ple microarchitecture and through tight integration with a
host core, allowing it to share the host core’s address trans-
lation and caching hardware. Compared to an aggressive
out-of-order core, the proposed Widx design improves in-
dexing performance by 3.1x on average, while saving 83% of
the energy by allowing the host core to be idle while Widx
runs.

10. ACKNOWLEDGMENTS
We thank Cansu Kaynak, Alexandros Daglis, Stratos

Idreos, Djordje Jevdjic, Pejman Lotfi-Kamran, Pınar Tözün,
Stavros Volos, and the anonymous reviewers for their in-
sightful feedback on the paper. This work is supported
in part by the HP Labs Innovation Research Program and
Research Promotion Foundation (RPF), with grants IRP-
11472 and 0609(BIE)/09 respectively.

11. REFERENCES
[1] ARM M4 Embedded Microcontroller.

http://www.arm.com/products/processors/cortex-
m/cortex-m4-processor.php.

[2] C. Balkesen, G. Alonso, and M. Ozsu. Multi-core,
main-memory joins: Sort vs. hash revisited.
Proceedings of the VLDB Endowment, 7(1), 2013.

[3] C. Balkesen, J. Teubner, G. Alonso, and M. Ozsu.
Main-memory hash joins on multi-core CPUs: Tuning
to the underlying hardware. In Proceedings of the 29th
International Conference on Data Engineering, 2013.

[4] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core CPUs. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
Data, 2011.

[5] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving hash join performance through
prefetching. ACM Transactions on Database Systems,
32(3), 2007.

[6] E. S. Chung, J. D. Davis, and J. Lee. LINQits: Big
data on little clients. In Proceedings of the 40th
Annual International Symposium on Computer
Architecture, 2013.

[7] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte,
and O. Mutlu. Memory power management via
dynamic voltage/frequency scaling. In Proceedings of
the 8th ACM International Conference on Autonomic
Computing, 2011.

[8] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H. I. Hsiao, and R. Rasmussen. The
GAMMA database machine project. IEEE
Transactions on Knowledge and Data Engineering,
2(1), 1990.

[9] H. Esmaeilzadeh, E. Blem, R. St. Amant,
K. Sankaralingam, and D. Burger. Dark silicon and
the end of multicore scaling. In Proceedings of the 38th
Annual International Symposium on Computer
Architecture, 2011.

[10] Global Server Hardware Market 2010-2014.
http://www.technavio.com/content/global-server-
hardware-market-2010-2014.

[11] B. Gold, A. Ailamaki, L. Huston, and B. Falsafi.
Accelerating database operators using a network
processor. In Proceedings of the 1st International
Workshop on Data Management on New Hardware,
2005.

[12] V. Govindaraju, C.-H. Ho, and K. Sankaralingam.
Dynamically specialized datapaths for energy efficient
computing. In Proceedings of the 17th Annual
International Symposium on High Performance
Computer Architecture, 2011.

[13] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and
D. August. Bundled execution of recurring traces for
energy-efficient general purpose processing. In
Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, 2011.

[14] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In
Proceedings of the 37th Annual International
Symposium on Computer Architecture, 2010.

[15] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Toward dark silicon in servers. IEEE
Micro, 31(4), 2011.

[16] T. Hayes, O. Palomar, O. Unsal, A. Cristal, and
M. Valero. Vector extensions for decision support
DBMS acceleration. In Proceedings of the 45th Annual
IEEE/ACM International Symposium on
Microarchitecture, 2012.

[17] IBM Netezza Data Warehouse Appliances.
http://www-01.ibm.com/software/data/netezza/.

[18] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. MonetDB: Two
decades of research in column-oriented database
architectures. IEEE Data Engineering Bulletin, 35(1),
2012.

[19] Intel Vtune. http://software.intel.com/en-
us/articles/intel-vtune-amplifier-xe/.

[20] Intel Xeon Processor 5600 Series Datasheet, Vol 2.
http://www.intel.com/content/www/us/en-
/processors/xeon/xeon-5600-vol-2-datasheet.html.

[21] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D.
Nguyen, N. Satish, J. Chhugani, A. Di Blas, and
P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs. In
Proceedings of the 35th International Conference on
Very Large Data Bases, 2009.

[22] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos,
O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic,
S. Idgunji, E. Ozer, and B. Falsafi. Scale-out
processors. In Proceedings of the 39th Annual
International Symposium on Computer Architecture,
2012.

[23] S. Manegold, P. Boncz, and M. Kersten. Optimizing

main-memory join on modern hardware. IEEE
Transactions on Knowledge and Data Engineering,
14(4), 2002.

[24] R. Mueller, J. Teubner, and G. Alonso. Glacier: A
query-to-hardware compiler. In Proceedings of the
2010 ACM SIGMOD International Conference on
Management of Data, 2010.

[25] N. Muralimanohar, R. Balasubramonian, and
N. Jouppi. Optimizing NUCA organizations and
wiring alternatives for large caches with CACTI 6.0.
In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, 2007.

[26] M. Poess, R. O. Nambiar, and D. Walrath. Why you
should run TPC-DS: A workload analysis. In
Proceedings of the 33rd International Conference on
Very Large Data Bases, 2007.

[27] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang.
A dual-core multi-threaded Xeon processor with 16MB
L3 cache. In Solid-State Circuits Conference, 2006.

[28] J. Sampson, G. Venkatesh, N. Goulding-Hotta,
S. Garcia, S. Swanson, and M. Taylor. Efficient
complex operators for irregular codes. In Proceedings
of the 17th Annual International Symposium on High
Performance Computer Architecture, 2011.

[29] J. E. Short, R. E. Bohn, and C. Baru. How Much
Information? 2010 Report on Enterprise Server
Information, 2011.

[30] Synopsys Design Compiler.
http://www.synopsys.com/.

[31] The TPC-H Benchmark. http://www.tpc.org/tpch/.

[32] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K.
Venkata, M. B. Taylor, and S. Swanson. QsCores:
Trading dark silicon for scalable energy efficiency with
quasi-specific cores. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, 2011.

[33] T. Wenisch, R. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. Hoe. SimFlex: Statistical sampling of
computer system simulation. IEEE Micro, 26(4), 2006.

[34] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross.
Navigating big data with high-throughput,
energy-efficient data partitioning. In Proceedings of the
40th Annual International Symposium on Computer
Architecture, 2013.

[35] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. SMARTS: Accelerating microarchitecture
simulation via rigorous statistical sampling. In
Proceedings of the 30th Annual International
Symposium on Computer Architecture, 2003.

