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SYNAPTIC NEUROSCIENCE

A commentary on

Branch-specific plasticity enables self-
organization of non-linear computation 
in single neurons
by Legenstein, R., and Maass, W. (2011). J. 
Neurosci. 31, 10787–10802.

More than 60 years ago, the McGill 
University professor Donald Hebb pub-
lished his famous postulate stating that 
to store a memory trace, the connection 
from a neuron that persistently helps acti-
vate another one should be strengthened 
(Hebb, 1949). Inspired by Hebb’s postulate, 
Rosenblatt (1958) a decade later introduced 
the perceptron learning machine as a sim-
plified model of information storage and 
retrieval in the brain. This model was able 
to perform binary classification through a 
learning rule that altered synaptic weights, 
and thereby created big expectations in the 
field of artificial neural networks: Here was 
a simple neural-network-like machine that 
could learn to recognize patterns and to tell 
them apart.

The excitement was not long-lived, how-
ever. Minsky and Papert (1969) proved that 
a single-layer perceptron is only capable of 
learning linearly separable patterns, which 
means it cannot learn a XOR function, as 
this would require it to respond when one, 
or the other input is active but not both. 
Individual perceptrons were thus inher-
ently flawed, it seemed. Minsky and Papert’s 
findings were therefore widely but errone-
ously interpreted to mean that all percep-
trons suffered from the same problem, even 
though they had in actuality shown that 
multi-layer perceptrons had the capacity 
for non-linear computations. Nevertheless, 
the winter of connectionism research had 
arrived, and it required around a decade 
for interest in the field to be revived, after 
developments by pioneers such as Stephen 
Grossberg, John Hopfield, and David 
Rumelhart (Abbott, 2008). Yet even after 
this revival it has remained unclear what 
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types of non-linear computations are pos-
sible to execute in individual neurons of 
the actual brain.

In more recent years, synaptic plastic-
ity theory has been extended to include the 
precise timing of spikes in pre and post-
synaptic neurons, based on theoretical as 
well as experimental studies (Gerstner et al., 
1996; Markram et al., 1997). This has led 
to the development of the spike-timing- 
dependent plasticity (STDP) paradigm, 
which has caused great interest as a biologi-
cally plausible neuronal basis for informa-
tion storage in the brain, in particular for 
the learning of causal relationships, as it is 
temporally sensitive (Markram et al., 2011).

As was the case in Rosenblatt’s (1958) 
perceptron paper, the vast majority of theo-
retical synaptic plasticity studies treat neu-
rons as points in space, entirely devoid of 
dendritic arborizations. There has been an 
ongoing debate in the field regarding the 
extent to which dendrites are important for 
computations in the brain; perhaps they are 
merely an epiphenomenal bug rather than 
a feature (Häusser and Mel, 2003)? Hebb 
(1972) took an interestingly extreme view 
and surmised that dendrites are merely 
there to connect and therefore serve no 
purpose in plasticity. But dendrites are key 
to distinguishing neuronal types – the fan-
shaped dendritic tree typifies the Purkinje 
cells, while the ascending thick-tufted den-
dritic arbor defines the neocortical layer-5 
pyramidal cell – so it would seem strange 
if dendrites did nothing more than to hook 
cells up to each other (Sjöström et al., 2008). 
Indeed, recent studies have shown that syn-
aptic plasticity depends on the location of a 
synapse in the dendritic tree (Sjöström and 
Häusser, 2006) and that dendritic branches 
themselves are plastic (Losonczy et al., 
2008). By measuring the coupling between 
local dendritic spikes and the soma before 
and after a synaptic plasticity induction 
protocol in the hippocampus, Losonczy 
et al. (2008) discovered that dendrites too 
are plasticity. Based on their findings, they 

proposed the existence of a branch-strength 
potentiation (BSP) cellular learning rule, 
which is input-specific to a degree, suggest-
ing that individual dendritic compartments 
could be involved in storing spatio-tempo-
ral features. But why is BSP needed? After 
all, it would seem that Hebbian learning 
in general and STDP in particular provide 
sufficient means for information storage in 
the brain.

In a recently published study, Legenstein 
and Maass (2011) attacked this key issue 
using an entirely theoretical approach. 
They introduced a new experimentally 
based phenomenological model that 
brought together the STDP and BSP 
learning rules. They applied their model 
to a simple feature-binding problem, in 
which cell assemblies coding for different 
features (e.g., yellow, star, black, and disk) 
were randomly connected to the branches 
of the postsynaptic cell. The neuron was 
then trained on pairs of features, such as 
yellow + star and black + disk, after which 
the neuron responded correctly to pairs of 
trained features, but not to other combi-
nations such as yellow + disk. This feature 
was due to the emergence of synaptic clus-
tering and competition between dendritic 
branches that resulted from the interplay 
between STDP and BSP, allowing a single 
neuron to bind input features in a self-
organized manner.

Despite the interesting features emerging 
from this model, and as happened with the 
perceptron, the Legenstein–Maass model 
was not able to solve the XOR problem 
(i.e., responding to either pair of features, 
but not to both pairs together). Indeed, 
the XOR problem might only be solvable 
at the network level, requiring inhibi-
tory interneurons to do so. Nevertheless, 
whether a single neuron of the brain can or 
cannot perform non-linear pattern separa-
tion remains an open question (Sjöström 
et al., 2008). It would also be interesting 
to know the information storage capacity 
of such Legenstein–Maass neurons. Finally, 
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although STDP is necessary in their model, 
Hebbian learning together with synaptic 
scaling (Turrigiano et al., 1998) are likely 
to yield similar results.

The take-home message of the study of 
Legenstein and Maass (2011) is that indi-
vidual neurons can potentially operate as 
small networks in their own right, bind-
ing features at the single-cell level. This 
suggests a form of dendritic homunculus, 
which can dendritically bind specific fea-
ture combinations via a combination of 
STDP and BSP, thus acting as a substrate 
for the correlation theory of brain func-
tion (von der Malsburg, 1981) as well as 
for the binding problem (Treisman, 1996). 
The Legenstein–Maass study is therefore 
relevant to several disciplines, including 
experimental and theoretical neuroscience 
as well as psychology.

RefeRences
Abbott, L. F. (2008). Theoretical neuroscience rising. 

Neuron 60, 489–495.

Costa and Sjöström Cellular learning rules for binding

Frontiers in Synaptic Neuroscience www.frontiersin.org September 2011 | Volume 3 | Article 5 | 2

http://www.frontiersin.org/Synaptic_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive

	One cell to rule them all, and in the dendrites bind them
	References


