
In my early teens, I was fascinated by electron-
ics. I’ve always liked creating things, and I could
build devices that seemed to have a life of their
own—even if they just played random musical
notes or flashed colored lights. I met my first com-
puter when I was around fifteen—we had a school
trip to a local engineering firm that ran an Elliot
905, and I was hooked. We had a chance to write
and run our own programs, and I remember writ-
ing Fortran code to do some numerical integration.
The Fortran compiler had to be loaded off paper
tape and followed by the source code. This then
produced a paper tape of the object code, which
you could run. The machine flashed its lights and
hummed a tune as it moved the data around, then
the answer came out on a teletype roll. Sometimes
you could fix small errors by manually punching
extra holes in the tape.

I went on to work for ICL, a UK computer com-
pany formed in 1968, during the design of the
2900 series, learning more about hardware and
how to program in machine code. But it was
around 1979 before I actually got my hands on
my own computer hardware—I built an Acorn
System I from a kit, soldering in the chips and pro-
gramming in hex. Then I started working with
larger microprocessor systems that supported
higher-level languages and more sophisticated soft-
ware. This was an interesting time because the
hardware was still simple enough that it was pos-
sible to understand the whole process. I designed
and built a video framegrabber, including the ana-
log electronics—but I also wrote the LISP inter-
preter that processed the images.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

As things became more complex, this kind of generalization got a lot harder.
I was seduced by the possibilities of the first Apple Macintosh and the Sun
3/50. I wrote software in high-level languages that ran at a layer once re-
moved from the hardware. Even the hardware design people were using
software and simulations and programmable chips.

Eventually, I became interested in managing lots of machines. All of the as-
sociated system administration problems are now well documented, but at
the time this was uncharted territory—how do we get the software onto all
these machines without loading each one individually? How do we set up
the configuration files so that the clients talk to the right servers? How do
we make sure it all stays up-to-date and correct? How do we make sure that
the whole installation actually does what it is intended to do?—if we even
have a clear idea of what it is supposed to do in the first place!

For the past few years I’ve been working on “autonomic systems” and try-
ing to create infrastructures that can reconfigure automatically in response
to failures or problems with loading. But the recent explosion of interest in
virtualization has increased the complexity by another order of magnitude,
with modern datacenters supporting virtual machines that migrate around
the physical hardware. The network connections are established by pro-
gramming VLANs, and the storage comes from network-attached devices.
This means that the entire datacenter is now programmable—we can rewire
network connections, change storage sizes, and replace failed hardware, all
by “reprogramming the virtual infrastructure.”

This all begins to sound very like the early days of computer programming
when software replaced the hard-wired connections. So I started to think
about the analogy, and I wondered what we could learn from the way in
which computer programming has evolved.

The charm of history and its enigmatic lesson consist in the fact that, from
age to age, nothing changes and yet everything is completely different.

 Aldous Huxley

It seems clear that there have been definite steps in the evolutionary pro-
cess. When a particular level becomes complex enough, a new layer of ab-
straction develops to advance the technology to the next stage—transistors,
chips, assembler code, high-level languages, operating systems, etc.—and
each stage comes with new techniques, new theories, and a new generation
of specialists. Yet, over the past 10–15 years, I’ve spent a lot of time think-
ing about the problems of configuring large computing installations, and I
am often frustrated by how little progress there seems to be. Compared to
the rigor in designing a new chip, most computing installations are set up in
a very ad hoc way—there is no systematic process nor a way of demonstrat-
ing the correctness, nor is there even a clear idea of the overall specification.
Why is this?

Wikipedia has a good description of some of the early computers. EDVAC
was one of the first computers to support “stored programs.” Before that,
machines such as ENIAC had used switches and patch leads to set up the
instructions. This sounds familiar to me—there was a time when I could
change the network port in my office by walking down the hall and chang-
ing the patch panel. Now I have to find someone who knows how to make
the right incantation to the switches! But these early computers were still
programmed by the engineers with an intimate knowledge of the hardware.

In 1953, John Backus proposed the idea of a what we would now call a
“higher-level” language for the IBM 704. His team created the Fortran lan-
guage and the first compiler. It’s fascinating to read about this process and
think about the analogy with today’s system configuration tools. The initial
motivations were very similar—for example, efficiency. The cost of the pro-
grammers associated with a computer installation was higher than the cost
of the computer itself:

The programmer attended a one-day course on Fortran and spent some
more time referring to the manual. He then programmed the job in four
hours, using 47 Fortran statements. These were compiled by the 704 in
six minutes, producing about 1000 instructions. He estimated that it
might have taken three days to code this job by hand. [1]

Correctness (hence reliability) was also a manual process:

He studied the output (no tracing or memory dumps were used) and was
able to localise his error in a Fortran statement he had written. He rewrote
the offending statement, recompiled and found that the resulting program
was correct. He estimated that it might have taken three days to code this
job by hand, plus an unknown time to debug it. [1]

Of course, there were other benefits too; programs were now portable be-
tween different machines, and the language was much closer to the state-
ment of the problem to be solved. This meant that users themselves could
learn one language and their programs would run on almost every computer
created since that time. However, this new concept of “automatic program-
ming” wasn’t universally accepted; many people were concerned about the
efficiency of the code. Backus and Heising emphasized how much the fear of
not being able to compete with hand-coded assembler code influenced the
design of the first Fortran compiler. And my favorite quote comes from Ir-
vine Ziller—one of the original Fortran team:

And in the background was the scepticism, the entrenchment of many
of the people who did programming in this way at that time; what was
called “hand-to-hand combat” with the machine. [2]

This definitely reminds me of the time I have spent trying to convince peo-
ple to configure systems by using the tools, rather than simply hand-editing
some configuration file because “it is an emergency” or “it is only a one-off.”

Most practical configuration languages have not been specifically “designed”—
their functions are often related closely to the operations provided by a par-
ticular tool, and their syntax and semantics have not been carefully thought
out. It is interesting that the same was true of the early programming lan-
guages. John Backus writes:

We simply made up the language as we went along. We did not regard
language design as a difficult problem, merely a simple prelude to the real
problem: designing a compiler which could produce efficient programs. [3]

Of course, this was all to change—people soon realized that translating the
problem description into a usable program was the biggest source of effort
and errors. In the fifty years since then, there has been a huge amount of
work on programming languages and their related theory. (See Figure 1 for a
timeline.) Backus himself gave his initial to the BNF notation, which he co-
developed for describing the formal syntax of programming languages. Pe-
riodically, different paradigms have appeared. Over the years, some of these
have become accepted, and others have faded away.

I was quite surprised when I looked into this to see the amount of time be-
tween the “invention” of a language and its acceptance as a common produc-
tion tool. Something like 10–15 years doesn’t seem to be atypical. It appears
to take this long for people to become comfortable with a new approach, for
the features of the language to be refined, and for implementations to be ac-
cepted as stable. Of course, the increasing power of the machines along with
the increasing complexity of typical code also changes the balance. If we
look at the development of configuration languages on the same scale (Fig.
2), perhaps we shouldn’t be surprised at the apparent lack of progress.

It would be a mistake to try and draw too much of an analogy between pro-
gramming and configuration languages, but it is interesting to look briefly at
a few ideas and see what we can learn—both from the features that evolved
and from the process itself.

Early programming languages were based on a model that was close to the
operation of the hardware. Large arithmetic expressions could be translated
into multiple instructions, but the flow of control had to be specified explic-
itly (using conditionals and branches) in a way that mapped fairly directly
onto the underlying hardware. The next significant step was the introduc-
tion of structured programming. Here, the explicit control flow was replaced
with control structures; these mapped more closely onto the kind of opera-
tions that people wanted to model. Independent routines with local variables
also made it easier to reuse code and for multiple programmers to work on
the same project. Modern programs are supported by frameworks and op-

erating systems that deal with entities at a much higher level of abstraction,
such as files and windows.

Current configuration languages still seem to operate at a level close to the
hardware—manipulating files and processes, for example. There is a big gap
between this and the level at which a system administrator normally wants
to talk about the infrastructure—in terms of services (mail, Web, database,
etc.) and the migration strategies for the virtual machines, for example. It
is certainly possible to configure multiple systems with a single statement,
and it is common to have constructs that encapsulate concepts such as “Web
server.” But even the ability to exchange a “Web server” configuration be-
tween two sites is rare—certainly if we include all the associated conse-
quences, such as DNS entries and firewall holes.

It is not entirely clear why there has been so little progress in raising the
abstraction level. The virtual infrastructure certainly presents a few prob-
lems, such as the distributed and unreliable nature of the underlying sys-
tem, that are not present when programming a single machine. However,
CIM, for example, provides one possible way of modeling entities at a much
higher level. Perhaps one difficulty is the relative complexity of the underly-
ing “machine”—the infrastructure is complex and it changes rapidly as new
software and services are added. System administrators tend to need a more
agile approach, preferring Perl to Java and Cfengine to CIM. Or perhaps it
will simply take a few more years for the appropriate paradigms to emerge.

Existing configuration languages are often “declarative” (to varying degrees).
This means that the user specifies the desired configuration, and the tool
works out what it needs to change to make this true. For example, you
might specify that a configuration file should contain a certain line. The
tool will then add that line, only if it is not already present. There isn’t space
here to go into detail, but declarative configuration languages have a lot of
practical advantages. The problem, though, is that the tool has to work out
the necessary steps by itself. This is fine when things are simple (as in the
example here), but if we are specifying, say, the relationship between a set of
virtual services, then working out the deployment steps can be much more
complex; the placement of the virtual machines, their configuration, and the
order in which we move things are all important. This may be too complex
or too critical to leave completely to some automatic process.

General-purpose declarative languages such as Prolog have been around
since the 1970s, but they remain confined to a comparatively small num-
ber of applications for similar reasons. Indeed, the configuration situation
is actually more difficult, because the intermediate states of a configuration
change may be important, whereas the intermediate states of a computation
are purely internal.

“Automatic programming” of the virtual infrastructure is hard. It is not easy
to specify correctly what is required. Translating high-level requirements
into implementable specifications is hard. The languages are immature and
contain considerable accidental complexity. The solutions can be difficult to
compute, and automatic solutions may be difficult to understand and trust.
I suspect that the idea of fully “automatic configuration,” from a declarative
service description, is really a myth. At several points in the history of pro-
gramming, new approaches have led to talk of the “death of the program-

mer.” Certainly the programming problems change, but they don’t really
become easier—they just enable a new level of abstraction.

I am still interested in languages and ways of specifying configurations. In
the future, there may well be completely new approaches that provide a new
degree of automation. But recently I’ve become interested in frameworks
that might support a better integration of manual and automatic processes—
this is inspired by a similar approach in AI research [4], and it may provide
a smoother transition toward more automation, as the techniques become
available and accepted.

[1] J.W. Backus et al., “The FORTRAN Automatic Coding System”:
http://archive.computerhistory.org/resources/text/Fortran/102663113.05.01
.acc.pdf.

[2] The Bulletin of the Computer Conservation Society, Number 41, Autumn
2007: http://www.cs.man.ac.uk/CCS/res/res41.htm.

[3] Computer History Museum, Fellow Awards, 1997—John Backus:
http://www.computerhistory.org/fellowawards/index.php?id=70.

[4] I-X: Technology for Intelligent Systems: http://www.aiai.ed.ac.uk/
project/ix/.

