
Configuration Tools: Working Together
Paul Anderson and Edmund Smith – University of Edinburgh

ABSTRACT

Since the LISA conferences began, the character of a typical ‘‘large installation’’ has
changed greatly. Most large sites tended to consist of a comparatively small number of hand-
crafted ‘‘servers’’ supporting a larger number of very similar ‘‘clients’’ (which would usually be
configured with the aid of some automatic tool). A modern large site involves a more complex
mesh of services, often with demanding requirements for completely automatic reconfiguration of
entire services to provide fault-tolerance. As these changes have happened however, the tools
available to provide configuration management for a site have not evolved to keep pace with these
new challenges. This paper looks at some of the reasons why configuration tools have failed to
move forward, and presents some suggestions for enabling the state of the art to advance.

Background and Motivation

Configuration Tools have been an important
theme at LISA for many years, and most conferences
include one or more papers in this area. Despite
increasing recognition of the importance of the config-
uration problem, there remains both a lack of concep-
tual commonality and a lack of progressive innovation
in the area.

No significant standards have so far emerged, and
new tools often merely espouse variations on existing
approaches, frequently using both completely new
specifications and code. For example, ten years sepa-
rate the initial description of LCFG [5] and the presen-
tation of Newfig [12], yet there is no clear evidence of
conceptual progress. There is little or no attempt to
create standards in a way which would reduce the bar-
rier to new development or enable a greater shared
understanding of the configuration problem.

Wi t h i n the configuration management commu-
nity, a great deal of ongoing discussion revolves around
this apparent failure to either successfully disseminate
the concepts underpinning existing tools, and the expe-
riences gained from those tools, or to realise them in
tool implementations suitable for a wider audience.

Furthermore, despite the slow rate of progress,
no sign of convergence between tools is apparent.
There are essentially no standards in this area, with
each tool being not only entirely coded from scratch,
but also unable to interoperate with other tools, or
share configuration data with them. Although the Con-
figuration Description, Deployment and Lifecycle
Management (CDDLM) working group of the Global
Grid Forum (GGF) has published a standard interface
for configuration tools on grid fabrics, their focus is
upon exposing a web-service interface to the underly-
ing configuration system, which falls somewhat wide
of the mark in addressing the current problems faced
by system administrators.

This absence of standard tools has lead to many
large sites developing their own tools. To create a

functional configuration management system in its
entirety, however, is a significant undertaking, and
even those sites which have been able to invest suffi-
cient resources in a system to make it sustainable have
been unable to gain a wider community of users. It
seems likely that in many cases, the sheer difficulty of
developing and maintaining a large monolithic system
(often written by people with a shortage of time and
no background in software development) has limited
both the functionality and the portability of tools.

It is surprising indeed, given the importance of
this area, that we find ourselves typically unable to
recommend any current system to interested users.

Levels of Configuration
Perhaps because of the above difficulties, most

existing tools deal with configuration specifications at
a very primitive level; they involve ‘‘files’’ and ‘‘per-
missions’’, rather than ‘‘high-level’’ concepts such as
‘‘services’’, and the relationships between nodes –
Figure 1 shows some typical statements at increas-
ingly higher levels of abstraction.

Ultimately, the requirements for a service are
always expressed in high-level terms and most tools
require these to be manually translated first into some
lower-level requirements. As systems become more
complex, this process is an increasing source of errors.
Manual intervention is also unacceptable for auto-
nomic systems which must reconfigure automatically
in response to demand and failure. A future generation
of configuration tools will need to be able to accept
high-level requirement specifications, and to reason in
much more sophisticated ways in order to determine
the appropriate details. This is an inevitable conse-
quence of the growing complexity of the modern
installation, and the fact that the number of adminis-
trators a site needs does not scale linearly with the
number of machines managed.

There is an analogy with computer programming
here: early languages provided very little abstraction
from the underlying machine, but as the size and

19th Large Installation System Administration Conference (LISA ’05) 31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Configuration Tools: Working Together Anderson and Smith

complexity of systems has grown, so has the separa-
tion from the hardware operations. In a similar way,
configuration tools must adapt to aid administrators to
manage the complexity of their systems.

Low Level
‘‘Copy this disk image onto these machines’’

↓
‘‘Put these files on these machines’’

↓
‘‘Put this line in sendmail.cf on this machine’’

↓
‘‘Configure machine X as a mail server’’

↓
‘‘Configure machine X as a mail server for this

cluster ’’ (and the clients will automatically
be configured to match)

↓
‘‘Configure any suitable machine as a mail server

for this cluster’’ (and the clients will
automatically be configured to match)

↓
Configure enough mail servers to guarantee an

SMTP response time of X seconds
High Level

Figure 1: Levels of configuration specification.

The Configuration Tool Zoo

There are a plethora of tools available which pur-
port to address some aspect of the configuration man-
agement problem. Many of these are described in
more detail in surveys such as [6]. However, we
present the following examples as typical, in that they
demonstrate a variety of the most common
approaches. In particular we note that:

• The tools have different lexicons – for example,
there is no common agreement on how to spec-
ify the ‘‘mail relay’’ for a particular client.

• They use different languages and file formats.
• Their deployment operations provide different

guarantees regarding pre- and post-conditions.

In general, these tools are also intended for direct
manual use and present no intermediate interfaces
between the human-generated specification, and the
direct manipulation of the target machine.

Arusha
Arusha [11] uses an XML-based source language

for describing configuration information. It is intended
to facilitate sharing of configuration information
between sites.

LCFG
LCFG [5, 7, 2] has a site-wide repository of declara-
tive configuration data which is compiled into XML
descriptions for transmission to the individual hosts.
Clients execute components, each of which takes its
specification from a corresponding section of the
XML profile.

Quattor
Quattor [3] has a similar architecture to LCFG,

differing principally in the exact forms of the compo-
nents and the capabilities of the central compiler. Both
Quattor and LCFG have been used successfully to
specify ‘‘complete’’ configurations for large, complex
sites.

BCFG

BCFG [9] is a new tool from Argonne National
Laboratories, based upon a highly centralised model
of configuration construction. Complete configuration
file sets are computed centrally for each client
(together with attribute data), before being distributed
in an XML envelope.

Cfengine

Cfengine [8] is probably the most widely-used
‘‘configuration tool,’’ but perhaps the most difficult to
fit into a common model. It is frequently used to spec-
ify only partial configuration information, and its
specification language is less well suited to manipula-
tion by independent programs.

The CDDLM Standard

The CDDLM standard proposal [1] is interesting
in that it represents the first formal attempt at a stan-
dard in this area that we are aware of. It is a proposed
international standard which provides a tool-indepen-
dent specification for the transmission of configura-
tion information. The intention is to provide complete
configuration control, aimed as it is at the manage-
ment of grids – a highly federated environment requir-
ing autonomic operation.

A Common Model

Despite the range of views and models set out
earlier, there are in fact two distinct capabilities a
modern system must provide:

1. Deciding what configuration a particular node
should have.

2. Creating the desired configuration on a node.

This is the difference between, for example,
deciding that a machine must have a package installed
on it, and actually installing that package. The funda-
mental idea is to separate these two distinct roles into
separate systems: systems that communicate through a
configuration description. For the sake of brevity, in
future we will call a tool able to decide what the con-
figuration of a node should be a configuration man-
agement system, and a tool capable of creating a con-
figuration on a node a deployment engine.

Writing a deployment engine requires an enor-
mous amount of code, and keeping it current requires
continuous maintenance. The systems we are asked to
manage were not typically designed for neither bulk
nor automated maintenance. There are a myriad of file
formats, a slew of ways to restart a service, endless
configuration files and preconditions. Each of these

32 19th Large Installation System Administration Conference (LISA ’05)



Anderson and Smith Configuration Tools: Working Together

will typically find a place somewhere within the
deployment engine.

At present, each configuration tool author begins
by writing a deployment engine, and many deploy-
ment engines exist (albeit inside a configuration tool,
and not accessible independently). Once the deploy-
ment engine is complete, whatever time and resources
remain can be devoted to configuration management.
Unfortunately, as we mentioned earlier, the amount of
time and resources remaining tends to be small, and
configuration management has remained in a rela-
tively primitive state for many years. At present, the
only mechanism typically available is the ability to
group nodes and configure them as a unit.

An overview of some existing configuration man-
agement operations is given in ‘‘Managing Configura-
tion Data’’ together with a discussion of proposed
alternatives. We arg u e that the core of the difficulty in
advancing the state of the art is that each current
project must include both a deployment engine and a
configuration management tool. Whilst deployment
engines are well-understood and well-developed, they
represent such a large amount of work that must be
performed before configuration management can begin
that no time is available to develop advanced configu-
ration management systems. This is despite the fact
that it is not our inability to deploy a configuration on a
node that makes a large modern installation so hard to
manage, but that the amount of information involved is
too large to be managed in an ad-hoc fashion.

By separating out the deployment engine from
the configuration management tool, we make it possi-
ble to implement one without implementing the other.
We believe that this could lead to a rapid advance in
the sophistication of management tools. In addition,
we believe that many of the existing configuration
tools discussed previously could be released as
deployment engines relatively easily, as their configu-
ration management functions are both small and
peripheral, so one might imagine easy to isolate. This
is certainly true for LCFG, for example.

A Document Interface to Deployment Engines
In this paper we aim to convince the reader that if

deployment engines conformed to a minimal configu-
ration description standard, it would allow the indepen-
dent development of configuration management tools.
This appears the only plausible way to relieve the cur-
rent stagnation in configuration tool development, and
enable the creation of a new generation of configura-
tion tool, capable of managing a modern network.

This section presents one possible interface to
deployment engines, which we believe is most use-
fully realised as a document. This is similar to the
familiar tool chain for program development (e.g.,
autoconf, automake, make, gcc, ld, etc.) More impor-
tant than the format of the document is what such a
document represents:

A configuration description specifies a complete,
unambiguous and instantaneous configuration for the
target machine or system.

• Complete means that everything the deployment
engine is capable of specifying is given a value.

• Unambiguous means that no further logic is
required to determine the parameters of the
deployment engine. There are no references, no
late binding, nor any database queries required.

• Instantaneous means that the specification is a
snapshot of a node’s state that the engine
should be working towards. There is no time
dependency stated.

Our proposed document format is XML-based,
simply on the grounds that XML is a widely-used and
convenient way of representing structured data such as
configuration parameters. Most languages provide
XML parsers and processing libraries which simplify
the development of cross-platform libraries and tools.
There is no suggestion here that tools should provide
users with an XML interface, only that it is a conve-
nient format for exchanging data between a manage-
ment tool and a deployment engine.

Entries
<entry name="foo">
<value>bar</value>
<origin>
<file name="foo.cfg" line="132"/>

</origin>
</entry>
<entry>
<value>baz</value>
<origin>
<file name="anon.cfg" line="211"/>

</origin>
</entry>

An entry represents a data item. An entry may be
either named or unnamed. When named, the entry rep-
resents a key-value pair, the most common method of
storage for configuration data (e.g., [10, 5, 9, 3]). The
entry’s name attribute is the key, and the value is
inside the value element (which must be text – there
may not be any nested elements.) In the example, the
key ‘‘foo’’ was bound to the value ‘‘bar ’’. An entry
may also be unnamed, for example for use as a mem-
ber of a list of values. The origin element is optional,
specifying a list of files and lines which were used to
determine this value. It is purely to enable a deploy-
ment engine to give meaningful errors when the files
the user edited were passed to a different tool.

Structs
<struct name="sudoers">
<entry>
<value>joe</value>

</entry>
<entry name="admin">
<value>jane</value>

</entry>
</struct>

19th Large Installation System Administration Conference (LISA ’05) 33



Configuration Tools: Working Together Anderson and Smith

Like entries, structs have an optional name. They
provide a means of structuring data items. Structs may
contain both named and unnamed entries and structs.
A struct containing only named entries can be thought
of as a record, a struct containing only unnamed
entries is a list. The elements contained in a struct are
ordered. Structs may not contain character data (only
structs and entries.)

Configurations
<configuration target="lcfg-engine"

version="1.0.3">
<struct name="applications">
<entry>
<value>emacs</value>
</entry>
</struct>
</configuration>

The configuration element is the root of the
XML document. It serves to contain all the other ele-
ments. The target attribute indicates the deployment
engine for which this configuration is intended, and
the version attribute a minimum version number for
that engine. This is largely to provide sanity checking
(you wouldn’t want to accidentally hand a configura-
tion to an old version of the tool and have it trash a
machine in confusion.)

Avoiding the Phantom Lexicon

This section has presented one possible approach
to defining a ‘‘low level’’ configuration description
document format. We have sidestepped the issue of a
standard lexicon (that is, defining a standard set of
keys whose values should be similarly interpreted by
all compliant deployment engines.) We argue that such
a standard lexicon could not be meaningfully defined
in the present environment, where there is so little
commonality between existing tools.

Our purpose is to enable progress towards greater
sophistication in configuration management by provid-
ing a standard method of interfacing with low level
deployment engines. Whilst a standard lexicon would
both allow sites using different deployment engines to
share configuration data, and allow them to migrate
easily between engines, we do not believe there is
enough understanding of what the appropriate lexicon
would be to define it at present. The most pressing
need in this area is to begin to decompose the problem.
When the issues involved are better understood, it will
be possible to standardise a lexicon. If we cannot start
moving forward, we will never reach that point.

The choice of the ‘‘level’’ at which to specify
this interface is crucial; if the level is too low (it con-
tains too little structuring information), then it will not
be possible for common tools to perform meaningful
operations on the configuration. If the level is too
high, then the mismatch between the common format
and the assumptions of existing tools will be too great,
and no meaningful translation will be possible. This

proposal is based on a study of the existing tools in the
previous section (and others), and we believe that an
interface at the level presented is the minimum required
to support useful common operations (see the next sec-
tion), while providing a large degree of architectural
freedom for the tools themselves.

Managing Configuration Data

It might seem that the interface set out earlier is
too limited to support sophisticated management tech-
niques. In this section, we will attempt to show that a
wide range of transformations can be applied to struc-
tured configuration data, without needing to have the
management tool ‘‘understand’’ that data. There is an
analogy here with the use of simple UNIX command
line tools, applied in a filter chain, to perform more
complex tasks: tools such as sort, grep, m4, and even
awk can be combined to perform powerful transforma-
tions on text files, even though the programs them-
selves have very little knowledge of the text file struc-
ture apart for a simple division into fields and records.

Classing
The most widespread operation available in con-

figuration tools to manage configuration data is class-
ing: groups of machines are assigned to particular
classes, with configuration data being associated with
each class. Alternatively, this can be seen as establish-
ing predicates about machines, and associating with
each predicate a set of configuration information.

A simple example might involve a ‘‘webserver ’’
class, associated with configuration data that specifies
webserver specific packages and configuration options.
In order to deploy a new webserver, it is only necessary
to place it in the ‘‘webserver ’’ class, and all the neces-
sary configuration files and packages will be deployed.

Basic classing gives the administrator an enor-
mous increase in the manageability of their network.
By separating out roles into classes, it becomes possi-
ble for an administrator to create complex combina-
tion configurations very quickly. Complex updates can
also be rapidly deployed, as changes can be made to
class definitions rather than to individual machines: if
a bug is found in xinet on Fedora Core 3, it suffices to
update the class definition for ‘‘Fedora Core 3
machine,’’ which all FC3 machines inherit. There is
no possibility of missing, or overlooking a machine,
nor is it necessary to modify each machine by hand.

Advanced Classing Operations
Whilst almost all configuration tools provide

their own mechanism for managing simple classes of
objects, this feature still remains to be fully explored.
The simple scenarios described above are both power-
ful and useful, but as the use of automation matures,
administrators find there are unanswered questions in
this approach. Consider a ‘‘highly-secured’’ class, and
a ‘‘web-server ’’ class, each managed by different
teams. These classes have different objectives, and

34 19th Large Installation System Administration Conference (LISA ’05)



Anderson and Smith Configuration Tools: Working Together

overlapping domains. It is entirely possible specifica-
tions from one class will conflict with another. To our
knowledge, no current configuration tool presents a
satisfactory answer to the question of how conflicts
can be resolved.

Current suggestions for progress in this area
include:

• Prioritisation A machine might belong to dif-
ferent classes with different priorities, enabling
the data specified by one class to be out-
weighed by another. Or classes might set values
with different priorities, so allowing them to be
safely overridden elsewhere. This would avoid
the order-dependent (or even oscillatory) deci-
sion process displayed by current tools.

• Constraints Rather than specifying definite
values for properties, it might be possible to
specify ranges of values. This would enable a
tool to mediate between different groups auto-
matically. Consider the web-server team speci-
fying that either port 80 or 8080 be used, and
the security team that only ports over 1000 be
used. These requirements are not conflicting,
but had the webserver team simply said port 80,
there would be no way for the tool to mediate.

Aggregation
It is common for some aspect of the configura-

tion of a system to be derived from the configurations
of other machines. This might be a client being con-
figured with respect to its servers, or a server from its
clients. Specifying this information manually is error
prone and time consuming. By introducing automa-
tion, we both save ourselves time and increase our
confidence in the correctness of our network’s config-
uration. Typical examples include:

• A firewall host may want to open holes for ser-
vices marked as public. Specifying this in the
configuration of the hosts, rather than in the
configuration of the firewall, means that when
the host’s service is decommissioned, so is the
firewall hole (automatically).

• A DHCP server might want to allocate fixed
addresses to individual nodes. Again, the fixed
address for a host is most naturally stored with
the host itself. This means the server must
aggregate those values into its configuration.
This can be done systematically by a manage-
ment tool.

The only tool we are aware of that provides explicit
aggregation operations is LCFG, although Quattor and
others have the ability to derive parts of a host’s configu-
ration from a database. Future research in this area is
likely to focus upon the ways in which aggregation can
be provided without a central configuration server – it
has been suggested that one way to achieve this would
be through the use of peer-to-peer technologies.

Again we note that, given just a structured tree of
data, it is possible to implement a generic aggregation

function, for example by converting values across a
group of files into a list of values in the target file.

Sequencing and Planning

Configurations cannot be changed atomically, as
there are frequently multiple dependents upon a single
value. For example, it may be necessary to both bring
up a new server and redirect all clients to point at it,
before the old server can be taken down. Thus far we
have avoided talking about how configuration changes
can be sequenced. To the best of our knowledge, none
of the available tools tackle this question.

One possible approach, as yet untested, is to allow
the user to specify a set of invariants that must remain
true during the deployment of any configuration. These
can be used to break down a deployment into multiple
steps, each of which maintains the invariants. One
example of an invariant might be ‘‘A client must not be
configured to point at a non-existent server.’’

Although there can be significant sophistication
required to maintain an arbitrary invariant, simple
invariants of the kind given above can be shown to
generate safe 3-step transitions between configura-
tions. Of course, some integration with monitoring, or
user-feedback, would be needed in a real tool to step
through the intermediate configurations. It does little
good to create several intermediate steps then deploy
them all at once!

The important point here is that the specification
of invariants can be done in a general way (all that is
required is to be able to establish requirements on
pairs of values – to the tool it is unimportant what
those values represent.) This is an area in which even
very simple tools can generate large advances in the
state of the art.

Delegation and Authentication

A large installation is not managed by a single
person. Often there will be several teams working
together, each tasked with maintaining different
aspects of the network’s configuration. We discussed
the possibility of using a configuration management
system to perform some automatic mediation between
teams. Here we are concerned with the security issues
involved in delegating configuration aspects to people
outside of the central teams.

Configuration management systems at present
have a boolean notion of authorisation: a user is either
authorised to perform any action whatsoever on any
machine, or they are not authorised to perform any.
Although we might feel that there are many people
involved in the management of a system who should
have some limited control of some aspects of a
machine, current tools do not enable us to act upon
that idea.

The simplest example is allowing users to con-
trol their own machines to some extent. It seems that
many sites allow users a choice either of complete

19th Large Installation System Administration Conference (LISA ’05) 35



Configuration Tools: Working Together Anderson and Smith

freedom and responsibility, or of accepting a com-
pletely prescribed system. Machines may have giga-
bytes of unnecessary software installed on them
because users are unable to choose which software is
most applicable to them.

The solution to these problems is to introduce a
notion of limited delegation, or authorisation, into our
tools. For example a constraint-based system could set
hard boundaries on what a user can do to their
machine, while still providing much more flexibility
than is currently available. Nor would it be necessary
for users to understand the tools if unprivileged user-
space helpers were available to guide them through
the options.

Again, we believe that authorisation and limited
delegation are features that could be explored without
a known underlying lexicon to work to. Restrictions
and security information can be identified with areas
of the configuration data tree, and are no less securely
or usefully enforced for not being understood by the
tool that does so.

An Example

The following example demonstrates how some
of the above features might be used to implement the
comparatively high-level configuration requirement:

Configure two DHCP servers on every Ethernet
segment. The DHCP servers should provide
fixed IP addresses for all the other machines on
the segment.

Conventionally, this policy might typically be imple-
mented using a partially automated approach such as
the following:

• Two appropriate machines on each ethernet
segment might be identified manually.

• The lists of machines on each segment, together
with their corresponding IP and MAC addresses
may be extracted from some database using an
ad-hoc script and massaged into the right form
for the configuration files.

• The configuration files would be distributed to
the appropriate machines, and the DHCP dae-
mons started on them, possibly with the aid of
some tool such as cfengine or LCFG.

Of course, there are many others ways of doing
this, but this is certainly typical, and this particular
example provides a simple illustration of several
important configuration manipulations.

Note that most existing ‘‘configuration tools’’
would be able to handle the last operation automati-
cally, but probably not the first. This illustrates the dif-
ferent between configuration deployment and configu-
ration management. The manual operations involved in
the above configuration management process make it
unsuitable for an autonomic environment; if a DHCP
servers fails, a new one must be selected manually. The

disconnect between the independently created IP data-
base, and the actual deployed machines is also a poten-
tial source of errors (if we decommission a machine,
can we guarantee that someone will remember to
remove the MAC address from the database?).

A configuration management tool must accept
the high-level statement of the requirement, and trans-
late it automatically into a form suitable for the
deployment engine. For example, this might involve
the following process:

• A monitoring system would provide a list of
active machines on each ethernet segment.

• A constraint process would be used to select
two (active) candidate machines on each seg-
ment.

• A classing mechanism would allocate a DHCP-
server class to each of these machines. This
class would define the appropriate parameters
to configure and start the DHCP service.

• An aggregation mechanism would collect the
IP/MAC mappings from the individual node
configurations and make them available as part
of the server configuration.

The result of this process would be a complete,
unambiguous configuration specification for each
machine which could then be passed to the deploy-
ment engine. This solves the two problems of the
manual approach noted above; replacements will auto-
matically be configured for failed servers, and
machines which are decommissioned will automati-
cally be removed from the DHCP configuration files.

The result of the configuration management
process is clearly expressible using the simple docu-
ment interface outlined earlier. Clients would be con-
figured to run DHCP client software (with no special
parameters), and servers would be configured to run
DHCP servers (with a specified list of IP/MAC
address pairs). The deployment engine would need to
translate these simple requirements from the XML
description into the appropriate configuration files and
daemon operations – a conceptually simple process,
but one which may involve a considerable amount of
code to handle the details.

It is important to note that most of the above
configuration management operations themselves are
quite generic; there are many other applications of the
operations such as ‘‘classing’’ and ‘‘aggregation’’ –
they are not specific to the DHCP example, and can be
implemented as generic operations on the simple
XML structures proposed earlier.

Conclusions

Advances in the sophistication of modern config-
uration tools have been hampered by the inability to
decompose the problem into subtasks with well defined
interfaces. If everyone who wanted to create a program-
ming language chose their character set differently,

36 19th Large Installation System Administration Conference (LISA ’05)



Anderson and Smith Configuration Tools: Working Together

wrote their own editor, then created the entire tool-
chain, we would not see the sophistication and flexi-
bility that we do today.

This paper proposes a simple level of interopera-
tion which should allow independent development of
higher-level configuration management tools, without
the need to reinvent the wheel at each step. Such tools
would benefit from the full range of available deploy-
ment engines, and separate out the maintenance bur-
den onto more than one team.

We are sufficiently realistic to recognise that
many tools, developed for internal use, will not be
modified simply to meet the requirements of some
external standard unless there is a significant practical
benefit. We do hope, however, that the principles out-
lined herein will at least influence the development of
new configuration tools, and promote a higher degree
of interoperability in the future.

We would like to invite comment and discussion
of the issues raised here on the lssconf mailing list1.

Acknowledgements

Many people have been involved in the develop-
ment of the ideas presented in this paper, and contrib-
uted their time to explain tools, and principles. In par-
ticular, the authors are grateful to Narayan Desai
(Argonne National Laboratories), Luke Kanies (Reduc-
tive), Kent Skaar (BladeLogic), John Sechrest (Alpha
Omega Computer Systems), Andrew Hume (AT&T
Research), and all the participants of the LISA and
Edinburgh [4] Configuration workshops.

This work has been partly funded by a grant
from the Joint Information System Committee (JISC).2

Author Biographies

Paul Anderson is a Principal Computing Officer
with the School of Informatics at Edinburgh Univer-
sity, where he divides his time between research
projects in System Configuration and practical man-
agement of the School’s computing infrastructure. He
can be reached at dcspaul@inf.ed.ac.uk .

Edmund Smith worked as a researcher in system
configuration on the OGSAConfig project at the Uni-
versity of Edinburgh, which finished in 2004. He is
currently studying for a Ph.D. in Psychology at the
University of Stirling. He can be reached at esmith4@
inf.ed.ac.uk .

References

[1] The GGF CDDLM working group, https://forge.
gridforum.org/projects/cddlm-wg .

[2] LCFG, http://www.lcfg.org .
[3] Quattor, http://www.quattor.org .

1http://homepages.inf.ed.ac.uk/group/lssconf/
2http://www.jisc.ac.uk/ .

[4] JISC-sponsored workshop on representations of
configuration data, http://homepages.inf.ed.ac.uk/
group/lssconf , April, 2005.

[5] Anderson, Paul, ‘‘Towards a high-level machine
configuration system,’’ Proceedings of the 8th
Large Installations Systems Administration
(LISA) Conference, pp. 19-26, USENIX, Berke-
ley, CA, http://www.lcfg.org/doc/LISA8_Paper.
pdf, 1994.

[6] Anderson, Paul, George Beckett, Kostas Kavous-
sanakis, Guillaume Mecheneau, and Peter Toft,
Technologies for large-scale configuration man-
agement, Technical report, The GridWeaver
Project, http://www.gridweaver.org/WP1/report1.
pdf, December, 2002.

[7] Anderson, Paul and Alastair Scobie, ‘‘Large
scale Linux configuration with LCFG,’’ Pro-
ceedings of the Atlanta Linux Showcase, pp.
363-372, USENIX, Berkeley, CA, http://www.
lcfg.org/doc/ALS2000.pdf, 2000.

[8] Burgess, Mark, ‘‘Cfengine: a site configuration
engine,’’ USENIX Computing Systems, Vol. 8,
Num. 3, http://www.iu.hio.no/mark/papers/paper1.
pdf, 1995.

[9] Desai, Narayan, Andrew Lusk, Rick Bradshaw,
and Remy Evard, BCFG: A configuration man-
agement tool for heterogeneous environments,
Technical report, Argonne National Laboratory,
2003.

[10] Goldsack, Patrick, Smartfrog: Configuration,
ignition and management of distributed applica-
tions, Technical report, HP Research Labs.

[11] Holgate, Matt and Will Partain, ‘‘The Arusha
project: A framework for collaborative systems
administration,’’ Proceedings of the 15th Large
Installations Systems Administration (LISA) Con-
ference, USENIX, Berkeley, CA, http://www.
usenix.org/events/lisa2001/tech/full_papers/hol-
gate/holgate.pdf, 2001.

[12] LeFebvre, William and David Snyder, ‘‘Auto-
configuration by file construction: Configuration
management with Newfig,’’ Proceedings of the
18th Large Installations Systems Administration
(LISA) Conference, pp. 93-104, USENIX, Berke-
ley, CA, http://www.usenix.org/publications/library/
proceedings/lisa04/tech/lefebvre.html , 2005.

19th Large Installation System Administration Conference (LISA ’05) 37




