

Edinburgh Research Explorer

Stochastic Context-Free Grammars, Regular Languages, and
Newton's Method

Citation for published version:
Etessami, K, Stewart, A & Yannakakis, M 2013, Stochastic Context-Free Grammars, Regular Languages,
and Newton's Method. in 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 7966, Springer-Verlag Berlin Heidelberg, pp.
199-211. DOI: 10.1007/978-3-642-39212-2_20

Digital Object Identifier (DOI):
10.1007/978-3-642-39212-2_20

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-39212-2_20
https://www.research.ed.ac.uk/portal/en/publications/stochastic-contextfree-grammars-regular-languages-and-newtons-method(e4f1a8c9-8afe-4a93-8256-0279c8b373c5).html

ar
X

iv
:1

30
2.

64
11

v1
 [

cs
.F

L
]

 2
6

Fe
b

20
13

Stochastic Context-Free Grammars, Regular

Languages, and Newton’s Method

Kousha Etessami1, Alistair Stewart1, and Mihalis Yannakakis2

1 School of Informatics, University of Edinburgh
kousha@inf.ed.ac.uk , stewart.al@gmail.com

2 Department of Computer Science, Columbia University
mihalis@cs.columbia.edu

Abstract. We study the problem of computing the probability that a
given stochastic context-free grammar (SCFG), G, generates a string in
a given regular language L(D) (given by a DFA, D). This basic problem
has a number of applications in statistical natural language processing,
and it is also a key necessary step towards quantitative ω-regular model
checking of stochastic context-free processes (equivalently, 1-exit recur-
sive Markov chains, or stateless probabilistic pushdown processes).

We show that the probability that G generates a string in L(D) can
be computed to within arbitrary desired precision in polynomial time
(in the standard Turing model of computation), under a rather mild as-
sumption about the SCFG, G, and with no extra assumption about D.
We show that this assumption is satisfied for SCFG’s whose rule prob-
abilities are learned via the well-known inside-outside (EM) algorithm
for maximum-likelihood estimation (a standard method for constructing
SCFGs in statistical NLP and biological sequence analysis). Thus, for
these SCFGs the algorithm always runs in P-time.

1 Introduction

Stochastic (or Probabilistic) Context-Free Grammars (SCFG) are context-free
grammars where the rules (productions) have associated probabilities. They are
a central stochastic model, widely used in natural language processing [14], with
applications also in biology (e.g. [2, 12]). A SCFG G generates a language L(G)
(like an ordinary CFG) and assigns a probability to every string in the language.
SCFGs have been extensively studied since the 1970’s. A number of important
problems on SCFGs can be viewed as instances of the following regular pattern
matching problem for different regular languages:

Given a SCFG G and a regular language L, given e.g., by a deterministic
finite automaton (DFA) D, compute the probability PG(L) that G generates a
string in L, i.e. compute the sum of the probabilities of all the strings in L.

A simple example is when L = Σ∗, the set of all strings over the terminal
alphabet Σ of the SCFG G. Then this problem simply asks to compute the
probability PG(L(G)) of the language L(G) generated by the grammar G. Al-
ternatively, if we view the SCFG as a stochastic process that starts from the

http://arxiv.org/abs/1302.6411v1

start nonterminal, repeatedly applies the probabilistic rules to replace (say, left-
most) nonterminals, and terminates when a string of terminals is reached, then
PG(L(G)) is simply the probability that this process terminates. Another simple
example is when L is a singleton, L = {w}, for some string w; in this case the
problem corresponds to the basic parsing question of computing the probability
that a given string w is generated by the SCFG G. Another basic well-studied
problem is the computation of prefix probabilities: given a SCFG G and a string
w, compute the probability that G generates a string with prefix w [11, 21].
This is useful in online processing in speech recognition [11] and corresponds to
the case L = wΣ∗. A more complex problem is the computation of infix prob-
abilities [1, 18], where we wish to compute the probability that G generates a
string that contains a given string w as a substring, which corresponds to the
language L = Σ∗wΣ∗. In general, even when rule probabilities of the SCFG G
are rational, the probabilities we wish to compute can be irrational. Thus the
typical aim for “computing” them is to approximate them to desired precision.

Stochastic context-free grammars are closely related to 1-exit recursive Markov
chains (1-RMC) [8], and to stateless probabilistic pushdown automata (also called
pBPA) [5]; these are two equivalent models for a subclass of probabilistic pro-
grams with recursive procedures. The above regular pattern matching problem
for SCFGs is equivalent to the problem of computing the probability that a
computation of a given 1-RMC (or pBPA) terminates and satisfies a given reg-
ular property. In other words, it corresponds to the quantitative model checking
problem for 1-RMCs with respect to regular finite string properties.

We first review some prior related work, and then describe our results.

Previous Work. As mentioned above, there has been, on the one hand, sub-
stantial work in the NLP literature on different cases of the problem for various
regular languages L, and on the other hand, there has been work in the verifi-
cation and algorithms literature on the analysis and model checking of recursive
Markov chains and probabilistic pushdown automata. Nevertheless, even the
simple special case of L = Σ∗, the question of whether it is possible to compute
(approximately) in polynomial time the desired probability for a given SCFG
G (i.e. the probability PG(L(G)) of L(G)) was open until very recently. In [7]
we showed that PG(L(G)) can be computed to arbitrary precision in polynomial
time in the size of the input SCFG G and the number of bits of precision. From
a SCFG G, one can construct a multivariate system of equations x = PG(x),
where x is a vector of variables and PG is a vector of polynomials with positive
coefficients which sum to (at most) 1. Such a system is called a probabilistic poly-
nomial system (PPS), and it always has a non-negative solution that is smallest
in every coordinate, called the least fixed point (LFP). A particular coordinate
of the LFP of the system x = PG(x) is the desired probability PG(L(G)). To
compute PG(L(G)), we used a variant of Newton’s method on x = PG(x), with
suitable rounding after each step to control the bit-size of numbers, and showed
that it converges in P-time to the LFP [7]. Building on this, we also showed that
the probability PG({w}) of string w under SCFG G can also be computed to
any precision in P-time in the size of G, w and the number of bits of precision.

The use of Newton’s method was proposed originally in [8] for computing
termination probabilities for (multi-exit) RMC’s, which requires the solution of
equations from a more general class of polynomial systems x = P (x), called
monotone polynomial systems (MPS), where the polynomials of P have positive
coefficients, but their sum is not restricted to ≤ 1. An arbitrary MPS may not
have any non-negative solution, but if it does then it has a LFP, and a version
of Newton provably converges to the LFP [8]. There are now implementations of
variants of Newton’s method in several tools [22, 16] and experiments show that
they perform well on many instances. The rate of convergence of Newton for
general MPSs was studied in detail in [4], and was further studied most recently
in [20] (see below). In certain cases, Newton converges fast, but in general there
are exponential bad examples. Furthermore, there are negative results indicating
it is very unlikely that any non-trivial approximation of termination probabilities
of multi-exit RMCs, and the LFP of MPSs, can be done in P-time (see [8]).

The model checking problem for RMCs (equivalently pPDAs) and ω-regular
properties was studied in [5, 9]. This is of course a more general problem than
the problem for SCFGs (which correspond to 1-RMCs) and regular languages
(the finite string case of ω-regular languages). It was shown in [9] that in the
case of 1-RMCs, the qualitative problem of determining whether the probability
that a run satisfies the property is 0 or 1 can be solved in P-time in the size of
the 1-RMC, but for the quantitative problem of approximating the probability,
the algorithm runs in PSPACE, and no better complexity bound was known.

The particular cases of computing prefix and infix probabilities for a SCFG
have been studied in the NLP literature, but no polynomial time algorithm for
general SCFGs is known. Jelinek and Lafferty gave an algorithm for grammars
in Chomsky Normal Form (CNF) [11]. Note that a general SCFG G may not
have any equivalent CNF grammar with rational rule probabilities, thus one can
only hope for an “approximately equivalent" CNF grammar; constructing such
a grammar in the case of stochastic grammars G is non-trivial, at least as dif-
ficult as computing the probability of L(G), and the first P-time algorithm was
given in [7]. Another algorithm for prefix probabilities by Stolcke [21] applies
to general SCFGs, but in the presence of unary and ǫ-rules, the algorithm does
not run in polynomial time. The problem of computing infix probabilities was
studied in [1, 16, 18], and in particular [16, 18] cast it in the general regular lan-
guage framework, and studied the general problem of computing the probability
PG(L(D)) of the language L(D) of a DFA D under a SCFG G. From G and
D they construct a product weighted context-free grammar (WCFG) G′: a CFG
with (positive) weights on the rules, which may not be probabilities, in partic-
ular the weights on the rules of a nonterminal may sum to more than 1. The
desired probability PG(L(D)) is the weight of L(G′). As in the case of SCFGs,
this weight is given by the LFP of a monotone system of equations y = PG′(y),
however, unlike the case of SCFGs the system now is not a probabilistic system
(thus our result of [7] does not apply). Nederhof and Satta then solve the system
using the decomposed Newton method from [8] and Broyden’s (quasi-Newton)
method, and present experimental results for infix probability computations.

Most recently, in [20], we have obtained worst-case upper bounds on (rounded
and exact) Newton’s method applied to arbitrary MPSs, x = P (x), as a function
of the input encoding size |P | and log(1/ǫ), to converge to within additive error
ǫ > 0 of the LFP solution q∗. However, our bounds in [20], even when 0 < q∗ ≤
1, are exponential in the depth of (not necessarily critical) strongly connected
components of x = P (x), and furthermore they also depend linearly on log(1

q∗min
),

where q∗min = mini q
∗
i , which can be ≈ 1

22
|P | . As we describe next, we do far better

in this paper for the MPSs that arise from the “product” of a SCFG and a DFA.

Our Results. We study the general problem of computing the probability
PG(L(D)) that a given SCFG G generates a string in the language L(D) of
a given DFA D. We show that, under a certain mild assumption on G, this
probability can be computed to any desired precision in time polynomial in the
encoding sizes of G & D and the number of bits of precision.

We now sketch briefly the approach and state the assumption on G. First we
construct from G and D the product weighted CFG G′ = G⊗D as in [16] and
construct the corresponding MPS y = PG′(y), whose LFP contains the desired
probability PG(L(D)) as one of its components.The system is monotone but not
probabilistic. We eliminate (in P-time) those variables that have value 0 in the
LFP, and apply Newton, with suitable rounding in every step. The heart of the
analysis shows there is a tight algebraic correspondence between the behavior of
Newton’s method on this MPS and its behavior on the probabilistic polynomial
system (PPS) x = PG(x) of G. In particular, this correspondence shows that,
with exact arithmetic, the two computations converge at the same rate. By
exploiting this, and by extending recent results we established for PPSs, we
obtain the conditional polynomial upper bound. Specifically, call a PPS x = P (x)
critical if the spectral radius of the Jacobian of P (x), evaluated at the LFP q∗

is equal to 1 (it is always ≤ 1). We can form a dependency graph between the
variables of a PPS, and decompose the variables and the system into strongly
connected components (SCCs); an SCC is called critical if the induced subsystem
on that SCC is critical. The critical depth of a PPS is the maximum number of
critical SCCs on any path of the DAG of SCCs (i.e. the max nesting depth of
critical SCCs). We show that if the PPS of the given SCFG G has bounded (or
even logarithmic) critical depth, then we can compute PG(L(D)) (for any DFA
D) in polynomial time in the size of G, D and the number of bits of precision.

Furthermore, we show this condition is satisfied by a broad class of SCFGs
used in applications. Specifically, a standard way the probabilities of rules of a
SCFG are set is by using the EM (inside-outside) algorithm. We show that the
SCFGs constructed in this way are guaranteed to be noncritical (i.e., have critical
depth 0). So for these SCFGs, and any DFA, the algorithm runs in P-time.

The paper is organized as follows. Section 2 gives definitions and background.
Section 3 establishes tight algebraic connections between the behavior of Newton
on the PPS of the SCFG, and on the MPS of the product WCFG. Section 4
proves the claimed bounds on rounded Newton’s method. Section 5 shows the
noncriticality of SCFGs obtained by the EM method. Proofs are in the Appendix.

2 Definitions and Background

A weighted context-free grammar (WCFG), G = (V,Σ,R, p), has a finite set V
of nonterminals, a finite set Σ of terminals (alphabet symbols), and a finite list
of rules, R ⊂ V × (V ∪ Σ)∗, where each rule r ∈ R is a pair (A, γ), which we
usually denote by A → γ, where A ∈ V and γ ∈ (V ∪Σ)∗. Finally p : R → R

+

maps each rule r ∈ R to a positive weight, p(r) > 0. We often denote a rule

r = (A → γ) together with its weight by writing A
p(r)→ γ. We will sometimes

also specify a specific non-terminal S ∈ V as the starting symbol.

Note that we allow γ ∈ (V ∪ Σ)∗ to possibly be the empty string, denoted
by ǫ. A rule of the form A→ǫ is called an ǫ-rule. For a rule r = (A → γ), we
let left(r) := A and right(r) := γ. We let RA = {r ∈ R | left(r) = A}.
For A ∈ V , let p(A) =

∑

r∈RA
p(r). A WCFG, G, is called a stochastic or

probabilistic context-free grammar (SCFG or PCFG; we shall use SCFG), if for
∀A ∈ V , p(A) ≤ 1. An SCFG is called proper if ∀A ∈ V, p(A) = 1.

We will say that an WCFG, G = (V,Σ,R, p) is in Simple Normal Form
(SNF) if every nonterminal A ∈ V belongs to one of the following three types:

1. type L: every rule r ∈ RA, has the form A
p(r)−−→ B.

2. type Q: there is a single rule in RA: A
1−→ BC, for some B,C ∈ V .

3. type T: there is a single rule in RA: either A
1−→ ǫ, or A

1−→ a for some a ∈ Σ.

For a WCFG, G, strings α, β ∈ (V ∪ Σ)∗, and π = r1 . . . rk ∈ R∗, we write

α
π⇒ β if the leftmost derivation starting from α, and applying the sequence π

of rules, derives β. We let p(α
π⇒ β) =

∏k
i=1 p(rk) if α

π⇒ β, and p(α
π⇒ β) = 0

otherwise. If A
π⇒ w for A ∈ V and w ∈ Σ∗, we say that π is a complete derivation

from A and its yield is y(π) = w. There is a natural one-to-one correspondence
between the complete derivations of w starting at A and the parse trees of w
rooted at A, and this correspondence preserves weights.

For a WCFG, G = (V,Σ,R, p), nonterminal A ∈ V , and terminal string

w ∈ Σ∗, we let pG,w
A =

∑

{π|y(π)=w} p(A
π⇒ w). For a general WCFG, pG,w

A need

not be a finite value (it may be +∞, since the sum may not converge). Note

however that if G is an SCFG, then pG,w
A defines the probability that, starting

at nonterminal A, G generates w, and thus it is clearly finite.

The termination probability (termination weight) of an SCFG (WCFG), G,

starting at nonterminal A, denoted qGA , is defined by qGA =
∑

w∈Σ∗ p
G,w
A . Again,

for an arbitrary WCFG qGA need not be a finite number. A WCFG G is called
convergent if qGA is finite for all A ∈ V . We will only encounter convergent
WCFGs in this paper, so when we say WCFG we mean convergent WCFG,
unless otherwise specified. In G is an SCFG, then qGA is just the total probability
with which the derivation process starting at A eventually generates a finite
string and (thus) stops, so SCFGs are clearly convergent.

An SCFG, G, is called consistent starting at A if qGA = 1, and G is called
consistent if it is consistent starting at every nonterminal. Note that even if a
SCFG, G, is proper this does not necessarily imply that G is consistent. For an

SCFG, G, we can decide whether qGA = 1 in P-time ([8]). The same decision
problem is PosSLP-hard for convergent WCFGs ([8]).

For any WCFG, G = (V,Σ,R, p), with n = |V |, assume the nonterminals
in V are indexed as A1, . . . , An. We define the following monotone polyno-

mial system of equations (MPS) associated with G, denoted x = PG(x).
Here x = (x1, . . . , xn) denotes an n-vector of variables. Likewise PG(x) =
(PG(x)1, . . . , PG(x)n) denotes an n-vector of multivariate polynomials over the
variables x = (x1, . . . , xn). For a vector κ = (κ1, κ2, . . . , κn) ∈ N

n, we use the
notation xκ to denote the monomial xκ1

1 xκ2
2 . . . xκn

n . For a non-terminal Ai ∈ V ,
and a string α ∈ (V ∪ Σ)∗, let κi(α) ∈ N denote the number of occurrences of
Ai in the string α. We define κ(α) ∈ N

n to be κ(α) = (κ1(α), κ2(α), . . . , κn(α)).
In the MPS x = PG(x), corresponding to each nonterminal Ai ∈ V , there

will be one variable xi and one equation, namely xi = PG(x)i, where: PG(x)i ≡
∑

r=(A→α)∈RAi
p(r)xκ(α). If there are no rules associated with Ai, i.e., if RAi

= ∅,
then by default we define PG(x)i ≡ 0. Note that if r ∈ RAi

is a terminal rule,
i.e., κ(r) = (0, . . . , 0), then p(r) is one of the constant terms of PG(x)i.

Note: Throughout this paper, for any n-vector z, whose i’th coordinate zi
“corresponds” to nonterminal Ai, we often find it convenient to use zAi

to refer
to zi. So, e.g., we alternatively use xAi

and PG(x)Ai
, instead of xi and PG(x)i.

Note that if G is a SCFG, then in x = PG(x), by definition, the sum of the
monomial coefficients and constant terms of each polynomial PG(x)i is at most
1, because

∑

r∈RAi
p(r) ≤ 1 for every Ai ∈ V . An MPS that satisfies this extra

condition is called a probabilistic polynomial system of equations (PPS).
Consider any MPS, x = P (x), with n variables, x = (x1, . . . , xn). Let R≥0

denote the non-negative real numbers. Then P (x) defines a monotone operator
on the non-negative orthant R

n
≥0. In general, an MPS need not have any real-

valued solution: consider x = x+ 1. However, by monotonicity of P (x), if there
exists a ∈ R

n
≥0 such that a = P (a), then there is a least fixed point (LFP) solution

q∗ ∈ R
n
≥0 such that q∗ = P (q∗), and such that q∗ ≤ a for all solutions a ∈ R

n
≥0.

Proposition 1. (cf. [8] or see [17]) For any SCFG (or convergent WCFG), G,
with n nonterminals A1, . . . , An, the LFP solution of x = PG(x) is the n-vector
qG = (qGA1

, . . . , qGAn
) of termination probabilities (termination weights) of G.

For computation purposes, we assume that the input probabilities (weights)
associated with rules of input SCFGs or WCFGs are positive rationals encoded
by giving their numerator and denominator in binary. We use |G| to denote the
encoding size (i.e., number of bits) of a input WCFG G.

Given any WCFG (SCFG) G = (V,Σ,R, p) we can compute in linear time
an SNF form WCFG (resp. SCFG) G′ = (V ′Σ,R′, p′) of size |G′| = O(|G|) with

V ′ ⊇ V such that qG,w
A = qG

′,w
A for all A ∈ V , w ∈ Σ∗ (cf. [8] and Proposition

2.1 of [7]). Thus, for the problems studied in this paper, we may assume wlog
that a given input WCFG or SCFG is in SNF form.

A DFA, D = (Q,Σ,∆, s0, F), has states Q, alphabet Σ, transition function
∆ : Q × Σ → Q, start state s0 ∈ Q and final states F ⊆ Q. We extend ∆ to
strings: ∆∗ : Q × Σ∗ → Q is defined by induction on the length |w| ≥ 0 of

w ∈ Σ∗: for s ∈ Q, ∆∗(s, ǫ) := s. Inductively, if w = aw′, with a ∈ Σ, then
∆∗(s, w) := ∆∗(∆(s, a), w′). We define L(D) = {w ∈ Σ∗ | ∆∗(s0, w) ∈ F}.

Given a WCFG G and a DFA D over the same terminal alphabet, for any
nonterminal A of G, we define qG,D

A =
∑

w∈L(D) q
G,w
A . If G is a SCFG, qG,D

A

simply denotes the probability that G, starting at A, generates a string in L(D).

Our goal is to compute qG,D
A , given SCFG G and DFA D. In general, qG,D

A may be
an irrational probability, even when all of the rule probabilities of G are rational
values. So one natural goal is to approximate qG,D

A to within desired precision.
More precisely, the approximation problem is this: given as input an SCFG, G,
with a specified nonterminal A, a DFA, D, over the same terminal alphabet Σ,
and a rational error threshold δ > 0, output a rational value v ∈ [0, 1] such that

|v − qG,D
A | < δ. We would like to do this as efficiently as possible as a function

of the input size: |G|, |D|, and log(1/δ).

To compute qG,D
A , it will be useful to define a WCFG obtained as the prod-

uct of a SCFG and a DFA. We assume, wlog, that the input SCFG is in
SNF form. The product (or intersection) of a SCFG G = (V,Σ,R, p) in
SNF form, and DFA, D = (Q,Σ,∆, s0, F), is defined to be a new WCFG,
G ⊗D = (V ′, Σ,R′, p′), where the set of nonterminals is V ′ = Q × V ×Q. As-
suming n = |V | and d = |Q|, then |V ′| = d2n. The rules R′ and rule probabilities
p′ of the product G⊗D are defined as follows (recall G is assumed to be in SNF):

– Rules of form L: For every rule of the form (A
p−→ B) ∈ R, and every pair of

states s, t ∈ Q, there is a rule (sAt)
p−→ (sBt) in R′.

– Rules of form Q: for every rule (A
1−→ BC) ∈ R, and for all states s, t, u ∈ Q,

there is a rule (sAu)
1−→ (sBt)(tCu) in R′.

– Rules of form T: for every rule (A
1−→ a) ∈ R, where a ∈ Σ, and for every

state s ∈ Q, if ∆(s, a) = t, then there is a rule (sAt)
1−→ a in R′.

For every rule (A
1−→ ǫ) ∈ R, and every s ∈ Q, there is a rule (sAs)

1−→ ǫ

Associated with the WCFG, G ⊗D, is the MPS y = PG⊗D(y), where y is now
a d2n-vector of variables, where n = |V | and d = |Q|. The LFP solution of this

MPS captures the probabilities qG,D
A in the following sense:

Proposition 2. (cf. [18], or [9] for a variant of this) For any SCFG, G =
(V,Σ,R, p), and DFA, D = (Q,Σ,∆, s0, F), the LFP solution qG⊗D of the MPS
x = PG⊗D(x), satisfies 0 ≤ qG⊗D ≤ 1. Furthermore, for any A ∈ V and s, t ∈ Q,

qG⊗D
(sAt) =

∑

{w|∆∗(s,w)=t} q
G,w
A . Thus, for every A ∈ V , qG,D

A =
∑

t∈F qG⊗D
(s0At).

Newton’s method (NM). For an MPS (or PPS), x = P (x), in n variables,
let B(x) := P ′(x) denote the Jacobian matrix of P (x). In other words, B(x)

is an n × n matrix such that B(x)i,j = ∂Pi(x)
∂xj

. For a vector z ∈ R
n, assuming

that matrix (I − B(z)) is non-singular, we define a single iteration of Newton’s
method (NM) for x = P (x) on z via the following operator:

N (z) := z + (I −B(z))−1(P (z)− z) (1)

Using Newton iteration, starting at n-vector x(0) := 0, yields the following iter-
ation: x(k+1) := N (x(k)), for k = 0, 1, 2,

For every MPS, we can detect in P-time all the variables xj such that q∗j = 0
[8]. We can then remove these variables and their corresponding equation xj =
P (x)j , and substitute their values on the right hand sides of remaining equations.
This yields a new MPS, with LFP q′ > 0, which corresponds to the non-zero
coordinates of q∗. It was shown in [8] that one can always apply a decomposed
Newton’s method to this MPS, to converge monotonically to the LFP solution.

Proposition 3. (cf. Theorem 6.1 of [8] and Theorem 4.1 of [4]) Let x = P (x)
be a MPS, with LFP q∗ > 0. Then starting at x(0) := 0, the Newton itera-
tions x(k+1) := N (x(k)) are well defined and monotonically converge to q∗, i.e.
limk→∞ x(k) = q∗, and x(k+1) ≥ x(k) ≥ 0 for all k ≥ 0.

Unfortunately, it was shown in [8] that obtaining any non-trivial additive
approximation to the LFP solution of a general MPS, even one whose LFP is
0 < q∗ ≤ 1, is PosSLP-hard, so we can not compute the termination weights of
general WCFGs in P-time (nor even in NP), without a major breakthrough in
the complexity of numerical computation. (See [8] for more information.)

Fortunately, for the class of PPSs, we can do a lot better. First we can identify
in P-time also all the variables xj such that q∗j = 1 [8] and remove them from
the system. We showed recently in [7] that by then applying a suitably rounded
down variant of Newton’s method to the resulting PPS, we can approximate q∗

within additive error 2−j in time polynomial in the size of the PPS and j.

3 Balance, Collapse, and Newton’s method

For an SCFG, G = (V,Σ,R, p), and a DFA, D = (Q,Σ,∆, s0, F), we want to
relate the behavior of Newton’s method on the MPS associated with the WCFG,
G⊗D, to that of the PPS associated with the SCFG G. We shall show that there
is indeed a tight correspondence, regardless of what the DFA D is. This holds
even when G itself is a convergent WCFG, and thus x = PG(x) is an MPS. We
need an abstract algebraic way to express this correspondence. A key notion will
be balance, and the collapse operator defined on balanced vectors and matrices.

Consider the LFP qG of x = PG(x), and LFP qG⊗D of y = PG⊗D(y). By Pro-

pos. 1 and 2, for any A ∈ V , qGA =
∑

w∈Σ∗ q
G,w
A is the probability (weight) that G,

starting at A, generates any finite string. Likewise qG⊗D
(sAt) =

∑

{w|∆∗(s,w)=t} q
G,w
A

is the probability (weight) that, starting at A, G generates a finite string w such
that ∆∗(s, w) = t. Thus, for any A ∈ V and s ∈ Q, qGA =

∑

t∈Q qG⊗D
(sAt) .

It turns out that analogous relationships hold between many other vectors
associated with G and G ⊗D, including between the Newton iterates obtained
by applying Newton’s method to their respective PPS (or MPS) and the prod-
uct MPS. Furthermore, associated relationships also hold between the Jacobian
matrices BG(x) and BG⊗D(y) of PG(x) and PG⊗D(y), respectively.

Let n = |V | and let d = |Q|. A vector y ∈ R
d2n, whose coordinates are

indexed by triples (sAt) ∈ Q×V ×Q, is called balanced if for any non-terminal

A, and any pair of states s, s′ ∈ Q,
∑

t∈Q y(sAt) =
∑

t∈Q y(s′At). In other words,
y is balanced if the value of the sum

∑

t∈Q y(sAt) is independent of the state s.

As already observed, qG⊗D ∈ R
d2n
≥0 is balanced. Let B ⊆ R

d2n denote the set
of balanced vectors. Let us define the collapse mapping C : B → R

n. For any
A ∈ V , C(y)A :=

∑

t y(sAt). Note: C(y) is well-defined, because for y ∈ B, and
any A ∈ V , the sum

∑

t y(sAt) is by definition independent of the state s.

We next extend the definition of balance to matrices. A matrix M ∈ R
d2n×d2n

is called balanced if, for any non-terminals B,C ∈ V and states s, u ∈ Q,
and for any pair of states v, v′ ∈ Q,

∑

t M(sBt),(uCv) =
∑

t M(sBt),(uCv′), and
for any s, v ∈ Q and s′, v′ ∈ Q,

∑

t,u M(sBt),(uCv) =
∑

t,u M(s′Bt),(uCv′). Let

B
× ⊆ R

d2n×d2n denote the set of balanced matrices. We extend the collapse

map C to matrices. C : B× → R
n×n is defined as follows. For any M ∈ B

×, and
any B,C ∈ V , C(M)BC :=

∑

t,u M(sBt),(uCv). Note, again, C(M) is well-defined.
We denote the Newton operator, N , applied to a vector x′ ∈ R

n for the
PPS x = PG(x) associated with G by NG(x

′). Likewise, we denote the Newton

operator applied to a vector y′ ∈ R
d2n for the MPS y = PG⊗D(y) associated

with G ⊗ D by NG⊗D(y′). For a real square matrix M , let ρ(M) denote the
spectral radius of M . The main result of this section is the following:

Theorem 1. Let x = PG(x) be any PPS (or MPS), with n variables, associated
with a SCFG (or WCFG) G, and let y = PG⊗D(y) be the corresponding product

MPS, for any DFA D, with d states. For any balanced vector y ∈ B ⊆ R
d2n,

with y ≥ 0, ρ(BG⊗D(y)) = ρ(BG(C(y))). Furthermore, if ρ(BG⊗D(y)) < 1,
then NG⊗D(y) is defined and balanced, NG(C(y)) is defined, and C(NG⊗D(y)) =
NG(C(y)). Thus, NG⊗D preserves balance, and the collapse map C “commutes”
with N over non-negative balanced vectors, irrespective of what the DFA D is.

We prove this in the appendix via a series of lemmas that reveal many alge-
braic/analytic properties of balance, collapse, and Newton’s method. Key is:

Lemma 1. Let B≥0 = B ∩R
d2n
≥0 and B

×
≥0 = B∩ R

d2n×d2n
≥0 .

We have qG⊗D ∈ B≥0 and C(qG⊗D) = qG, and:

(i) If y ∈ B≥0 ⊆ R
d2n
≥0 then BG⊗D(y) ∈ B

×
≥0, and C(BG⊗D(y)) = BG(C(y)).

(ii) If y ∈ B≥0, then PG⊗D(y) ∈ B≥0, and C(PG⊗D(y)) = PG(C(y)).
(iii) If y ∈ B≥0 and ρ(BG(C(y))) < 1, then I −BG⊗D(y) is non-singular,

(I −BG⊗D(y))−1 ∈ B
×
≥0, and C((I −BG⊗D(y))

−1) = (I −BG(C(y)))
−1.

(iv) If y ∈ B≥0 and ρ(BG(C(y))) < 1, then NG⊗D(y) ∈ B
×

and C(NG⊗D(y)) = NG(C(y)).

An easy consequence of Thm. 1 (and Prop. 3) is that if we use NM with
exact arithmetic on the PPS or MPS, x = PG(x), and on the product MPS,
y = PG⊗D(y), they converge at the same rate:

Corollary 1. For any PPS or MPS, x = PG(x), with LFP qG > 0, and cor-
responding product MPS, y = PG⊗D(y), if we use Newton’s method with exact
arithmetic, starting at x(0) := 0, and y(0) := 0, then all the Newton iterates x(k)

and y(k) are well-defined, and for all k: x(k) = C(y(k)).

4 Rounded Newton on PPSs and product MPSs

To work in the Turing model of computation (as opposed to the unit-cost RAM
model) we have to consider rounding between iterations of NM, as in [7].

Definition 1. (Rounded-down Newton’s method (R-NM), with parame-
ter h.) Given an MPS, x = P (x), with LFP q∗, where q∗ > 0, in R-NM with
integer rounding parameter h > 0, we compute a sequence of iteration vectors
x[k]. Starting with x[0] := 0, ∀k ≥ 0 we compute x[k+1] as follows:

1. Compute x{k+1} := NP (x
[k]), where NP (x) is the Newton op. defined in (1).

2. For each coordinate i = 1, . . . , n, set x
[k+1]
i to be equal to the maximum mul-

tiple of 2−h which is ≤ max(x
{k+1}
i , 0). (In other words, round down x{k+1}

to the nearest multiple of 2−h, while ensuring the result is non-negative.)

Unfortunately, rounding can cause iterates x[k] to become unbalanced. Neverthe-
less, we can handle this. For any PPS, x = P (x), with Jacobian matrix B(x), and
LFP q∗, ρ(B(q∗)) ≤ 1 ([8, 7]). If ρ(B(q∗)) < 1, we call the PPS non-critical.
Otherwise, if ρ(B(q∗)) = 1, we call the PPS critical. For SCFGs whose PPS
x = PG(x) is non-critical, we get good bounds, even though R-NM iterates can
become unbalanced:

Theorem 2. For any ǫ > 0, and for an SCFG, G, if the PPS x = PG(x) has
LFP 0 < qG ≤ 1 and ρ(BG(q

G)) < 1, then if we use R-NM with parameter
h+2 to approximate the LFP solution of the MPS y = PG⊗D(y), then ‖qG⊗D −
y[h+1]‖∞ ≤ ǫ where h := 14|G|+ 3 + ⌈log(1/ǫ) + log d⌉.

Thus we can compute the probability qG,D
A =

∑

t∈F qG⊗D
s0At within additive

error δ > 0 in time polynomial in the input size: |G|, |D| and log(1/δ), in the
standard Turing model of computation.

We in fact obtain a much more general result. For any SCFG, G, and corre-
sponding PPS, x = PG(x), with LFP q∗ > 0, the dependency graph, HG = (V,E),
has the variables (or the nonterminals of G) as nodes and has the following edges:
(xi, xj) ∈ E iff xj appears in some monomial in PG(x)i with a positive coeffi-
cient. We can decompose the dependency graph HG into its SCCs, and form the
DAG of SCCs, H ′

G. For each SCC, S, suppose its corresponding equations are
xS = PG(xS , xD(S))S , where D(S) is the set of variables xj 6∈ S such that there
is a path in HG from some variable xi ∈ S to xj . We call a SCC, S, of HG, a
critical SCC if the PPS xS = PG(xS , q

G
D(S))S is critical. In other words, the

SCC S is critical if we plug in the LFP values qG into variables that are in lower
SCCs, D(S), then the resulting PPS is critical. We note that an arbitrary PPS,
x = PG(x) is non-critical if and only if it has no critical SCC. We define the
critical depth, c(G), of x = PG(x) as follows: it is the maximum length, k, of
any sequence S1,S2, . . . ,Sk, of SCCs of HG, such that for all i ∈ {1, . . . , k − 1},
Si+1 ⊆ D(Si), and furthermore, such that for all j ∈ {1, . . . , k}, Sj is critical.
Let us call a critical SCC, S, of HG a bottom-critical SCC, if D(S) does not
contain any critical SCCs. By using earlier results ([8, 3]) we can compute in
P-time the critical SCCs of a PPS, and its critical depth (see the appendix).

PPSs with nested critical SCCs are hard to analyze directly. It turns out we
can circumvent this by “tweaking” the probabilities in the SCFG G to obtain an
SCFG G′ with no critical SCCs, and showing that the “tweaks” are small enough
so that they do not change the probabilities of interest by much. Concretely:

Theorem 3. For any ǫ > 0, and for any SCFG, G, in SNF form, with qG > 0,
with critical depth c(G), consider the new SCFG, G′, obtained from G by the
following process: for each bottom-critical SCC, S, of x = PG(x), find any rule

r = A
p−→ B of G, such that A and B are both in S (since G is in SNF, such a

rule must exist in every critical SCC). Reduce the probability p, by setting it to

p′ = p(1 − 2−(14|G|+3)2c(G)

ǫ2
c(G)

). Do this for all bottom-critical SCCs. This
defines G′, which is non-critical. Using G′ instead of G, if we apply R-NM, with
parameter h + 2 to approximate the LFP qG

′⊗D of MPS y = PG′⊗D(y), then
‖qG⊗D − x[h+1]‖∞ ≤ ǫ where h := ⌈log d+ (3 · 2c(G) + 1)(log(1/ǫ) + 14|G|+ 3)⌉.
Thus we can compute qG,D

A =
∑

t∈F qG⊗D
s0At within additive error δ > 0 in time

polynomial in: |G|, |D|, log(1/δ), and 2c(G), in the Turing model of computation.

The proof is very involved, and is in the appendix. There, we also give a family
of SCFGs, and a 3-state DFA that checks the infix probability of string aa, and
we explain why these examples indicate it will likely be difficult to overcome the
exponential dependence on the critical-depth c(G) in the above bounds.

5 Non-criticality of SCFGs obtained by EM
In doing parameter estimation for SCFGs, in either the supervised or unsuper-
vised (EM) settings (see, e.g., [17]), we are given a CFG, H, with start nonter-
minal S, and we wish to extend it to an SCFG, G, by giving probabilities to the
rules of H. We also have some probability distribution, P(π), over the complete
derivations, π, of H that start at start non-terminal S. (In the unsupervised
case, we begin with an SCFG, and the distribution P arises from the prior rule
probabilities, and from the training corpus of strings.) We then assign each rule
of H a (new) probability as follows to obtain (or update) G:

p(A → γ) :=

∑

π P(π)C(A → γ, π)
∑

π P(π)C(A, π)
(2)

where C(r, π) is the number of times the rule r is used in the complete derivation
π, and C(A, π) =

∑

r∈RA
C(r, π). Equation (2) only makes sense when the sums

∑

π P(π)C(A, π) are finite and nonzero, which we assume; we also assume every
non-terminal and rule of H appears in some complete derivation π with P(π) > 0.

Proposition 4. If we use parameter estimation to obtain SCFG G using equa-
tion (2), under the stated assumptions, then G is consistent3, i.e. qG = 1, and
furthermore the PPS x = PG(x) is non-critical, i.e., ρ(BG(1)) < 1.

It follows from Prop. 4 and Thm. 2, that for SCFGs obtained by parameter
estimation and EM, we can compute the probability qG,D

A of generating a string
in L(D) to within any desired precision in P-time, for any DFA D.

3 Consistency of the obtained SCFGs is well-known; see, e.g., [15, 17] & references
therein; also [19] has results related to Prop. 4 for restricted grammars.

References

[1] A. Corazza, R. De Mori, D. Gretter, and G. Satta. Computation of probabilities
for an island-driven parser. IEEE Trans. PAMI, 13(9):936–950, 1991.

[2] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:

Probabilistic models of Proteins and Nucleic Acids. Cambridge U. Press, 1999.
[3] J. Esparza, A. Gaiser, and S. Kiefer. Computing least fixed points of probabilistic

systems of polynomials. In Proc. 27th STACS, pages 359–370, 2010.
[4] J. Esparza, S. Kiefer, and M. Luttenberger. Computing the least fixed point of

positive polynomial systems. SIAM J. on Computing, 39(6):2282–2355, 2010.
[5] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown

automata. Logical Methods in Computer Science, 2(1):1 – 31, 2006.
[6] K. Etessami, A. Stewart, and M. Yannakakis. Polynomial-time algorithms for

branching Markov decision processes and probabilistic min(max) polynomial Bell-
man equations. In ICALP, 2012. See full version at arXiv:1202.4798.

[7] K. Etessami, A. Stewart, and M. Yannakakis. Polynomial-time algorithms for
multi-type branching processes and stochastic context-free grammars. In Proc.

44th ACM STOC, 2012. Full version is available at arXiv:1201.2374.
[8] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,

and monotone systems of nonlinear equations. Journal of the ACM, 56(1), 2009.
[9] K. Etessami and M. Yannakakis. Model checking of recursive probabilistic sys-

tems. ACM Trans. Comput. Log., 13(2):12, 2012.
[10] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge U. Press, 1985.
[11] F. Jelinek and J. D. Lafferty. Computation of the probability of initial sub-

string generation by stochastic context-free grammars. Computational Linguistics,
17(3):315–323, 1991.

[12] B. Knudsen and J. Hein. Pfold: RNA secondary structure prediction using stochas-
tic context-free grammars. Nucleic Acids Res., 31:3423–3428, 2003.

[13] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, 2nd
edition, 1985.

[14] C. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-

cessing. MIT Press, 1999.
[15] M.-J. Nederhof and G. Satta. Estimation of consistent probabilistic context-free

grammars. In HLT-NAACL, 2006.
[16] M.-J. Nederhof and G. Satta. Computing partition functions of PCFGs. Research

on Language and Computation, 6(2):139–162, 2008.
[17] M.-J. Nederhof and G. Satta. Probabilistic parsing. New Developments in Formal

Languages and Applications, 113:229–258, 2008.
[18] M.-J. Nederhof and G. Satta. Computation of infix probabilities for probabilistic

context-free grammars. In EMNLP, pages 1213–1221, 2011.
[19] J. Sánchez and J.-M. Benedí. Consistency of stochastic context-free grammars

from probabilistic estimation based on growth transformations. IEEE Trans.

Pattern Anal. Mach. Intell., 19(9):1052–1055, 1997.
[20] A. Stewart, K. Etessami, and M. Yannakakis. Upper bounds for Newton’s method

on monotone polynomial systems, and P-time model checking of probabilistic one-
counter automata. arXiv:1302.3741 (submitted for publication), 2013.

[21] A. Stolcke. An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics, 21(2):167–201, 1995.

[22] D. Wojtczak and K. Etessami. Premo: an analyzer for probabilistic recursive
models. In Proc. 13th TACAS, pages 66–71, 2007.

http://arxiv.org/abs/1202.4798
http://arxiv.org/abs/1201.2374
http://arxiv.org/abs/1302.3741

A Proof of Theorem 1 (and of Lemma 1).

Theorem 1. Let x = PG(x) be any PPS (or MPS), with n variables, as-
sociated with a SCFG (or WCFG) G, and let y = PG⊗D(y) be the corre-
sponding product MPS, for any DFA D, with d states. For any balanced vec-
tor y ∈ B ⊆ R

d2n, with y ≥ 0, ρ(BG⊗D(y)) = ρ(BG(C(y))). Furthermore, if
ρ(BG⊗D(y)) < 1, then NG⊗D(y) is defined and balanced, NG(C(y)) is defined,
and C(NG⊗D(y)) = NG(C(y)). Thus, NG⊗D preserves balance, and the collapse
map C “commutes” with N over non-negative balanced vectors, irrespective of
what the DFA D is.

We establish this via a series of lemmas that reveal many algebraic and ana-
lytic properties of balance, collapse, and their interplay with Newton’s method.
Lemma 2 first establishes a series of algebraic and analytic properties of ar-
bitrary balanced vectors and matrices. Lemma 1 then uses these to establish
properties of the specific balanced matrices and vectors arising during iterations
of Newton’s method on PPSs (and MPSs), and on corresponding product MPSs.
Theorem 1 is an immediate consequence of Lemma 1, parts (i)&(iv), below.

Lemma 2. Consider the set B ⊆ R
d2n of balanced vectors, and the set B× ⊆

R
d2n×d2n of balanced matrices. Let B≥0 = B ∩R

d2n
≥0 and B

×
≥0 = B∩R

d2n×d2n
≥0 .

(i) B and B
× are both closed under linear combinations. In other words:

∑

i αiv
〈i〉 ∈ B and

∑

i αiM
〈i〉 ∈ B

×, if, ∀ i, v〈i〉 ∈ B and M 〈i〉 ∈ B
×.

Furthermore, C is a linear map on both B and B
×. In other words:

C(
∑

i αiv
〈i〉) =

∑

i αiC(v
〈i〉) and C(

∑

i αiM
〈i〉) =

∑

i αiC(M
〈i〉),

whenever, ∀i, αi ∈ R, v〈i〉 ∈ B, and M 〈i〉 ∈ B
×.

(ii) If M ∈ B
× and v ∈ B, then Mv ∈ B and C(Mv) = C(M)C(v).

(iii) If M,M ′ ∈ B
×, then MM ′ ∈ B

× and C(MM ′) = C(M)C(M ′).
(iv) If M ∈ B

×
≥0, and v ∈ R

d2n is any vector, then C(Mv) ≥ C(M)C(v), where we

extend the map C to arbitrary v′ ∈ R
d2n by letting C(v′)A := mins

∑

t v
′
(sAt).

(v) If M ∈ B
×
≥0, then ρ(M) = ρ(C(M)). In other words, the collapse operator C

preserves the spectral radius of balanced non-negative matrices.
(vi) If v ∈ B≥0, then ‖v‖∞ ≤ ‖C(v)‖∞. If M ∈ B

×
≥0 then ‖M‖∞ ≤ d‖C(M)‖∞.

Proof.
(i): This can be verified directly from the definitions of balance and collapse. In
particular, for any nonterminal A ∈ V , and any states s, s′ ∈ Q:

∑

t

(
∑

i

αiv
〈i〉)(sAt) =

∑

i

αi

∑

t

v
〈i〉
(sAt)

=
∑

i

αiC(v
〈i〉)A (because every v〈i〉 is balanced)

=
∑

i

αi

∑

t

v
〈i〉
(s′At)

=
∑

t

(
∑

i

αiv
〈i〉)(s′At)

Also, we have C(
∑

i αiv
〈i〉)A :=

∑

t(
∑

i αiv
〈i〉)(sAt) =

∑

i αiC(v
〈i〉)A.

Likewise, for any nonterminals B,C ∈ V , and any states s, u ∈ Q and v, v′ ∈ Q:

∑

t

(
∑

i

αiM
〈i〉)(sBt),(uCv) =

∑

i

αi

∑

t

M
〈i〉
(sBt),(uCv)

=
∑

i

αi

∑

t

M
〈i〉
(sBt),(uCv′) (because every M 〈i〉 is balanced)

=
∑

t

(
∑

i

αiM
〈i〉)(sBt),(uCv′)

Similarly, for any nonterminals B,C, and any states s, v, s′, v′ ∈ Q:

∑

t,u

(
∑

i

αiM
〈i〉)(sBt),(uCv) =

∑

i

αi

∑

t,u

M
〈i〉
(sBt),(uCv)

=
∑

i

αi

∑

t,u

M
〈i〉
(s′Bt),(uCv′) (because every M 〈i〉 is balanced)

=
∑

t,u

(
∑

i

αiM
〈i〉)(s′Bt),(uCv′)

Now, C(
∑

i αiM
〈i〉)B,C :=

∑

t,u(
∑

i αiM
〈i〉)(sBt),(uCv) =

∑

i αi

∑

t,u M
〈i〉
(sBt),(uCv) =

∑

i αiC(M
〈i〉)B,C .

(ii): For any non-terminal B and state s:

∑

t

(Mv)(sBt) =
∑

t,u,C,z

M(sBt),(uCz)vuCz

=
∑

u,C,z

(
∑

t

M(sBt),(uCz))vuCz

=
∑

C,u

(
∑

t

M(sBt),(uCz))
∑

z

vuCz (since M is balanced)

=
∑

C,u

(
∑

t

M(sBt),(uCz))C(v)C (since v is balanced)

=
∑

C

(
∑

t,u

M(sBt),(uCz))C(v)C

=
∑

C

C(M)B,CC(v)C (since M is balanced)

= (C(M)C(v))B

which is independent of s. So C(Mv)B =
∑

t(Mv)(sBt) = (C(M)C(v))B .

(iii): For any non-terminal D,E, and states s, w, x ∈ Q:
∑

t

(MM ′)(sDt),(wEx) =
∑

t,u,C,v

M(sDt),(uCv)M
′
(uCv),(wEx)

=
∑

u,C,v

(
∑

t

M(sDt),(uCv))M
′
(uCv),(wEx)

=
∑

C,u

(
∑

t

M(sDt),(uCv))
∑

v

M ′
(uCv),(wEx) (since M is balanced)

Since M ′ ∈ B
×, the last sum is independent of x, which is what we aimed to

show. Next consider:
∑

t,w

(MM ′)(sDt),(wEx) =
∑

t,w,u,C,v

M(sDt),(uCv)M
′
(uCv),(wEx)

=
∑

u,w,C,v

(
∑

t

M(sDt),(uCv))M
′
(uCv),(wEx)

=
∑

C,u,w

(
∑

t

M(sDt),(uCv))
∑

v

M ′
(uCv),(wEx) (since M is balanced)

=
∑

C,u

(
∑

t

M(sDt),(uCv))
∑

v,w

M ′
(uCv),(wEx)

=
∑

C,u

(
∑

t

M(sDt),(uCv))C(M
′)C,E (since M ′ is balanced)

=
∑

C

C(M)D,CC(M
′)C,E (since B is balanced)

= (C(M)C(M ′))D,E

So,
∑

t,w(MM ′)(sDt),(wEx) is independent of s, x and C(MM ′)D,E =
∑

t,w(MM ′)(sDt),(wEx) =
(C(M)C(M ′))D,E , for any D,E ∈ V .

(iv): For any non-terminal B and state s:
∑

t

(Mv)(sBt) =
∑

t,u,C,z

M(sBt),(uCz)vuCz

=
∑

u,C,z

(
∑

t

M(sBt),(uCz))vuCz

=
∑

C,u

(
∑

t

M(sBt),(uCz))
∑

z

vuCz (since M is balanced)

≥
∑

C,u

(
∑

t

M(sBt),(uCz))min
u

∑

z

vuCz (since (
∑

t M(sBt),(uCz)) ≥ 0) for any C, u

=
∑

C

C(M)B,CC(v)C = (C(M)C(v))B

Since this holds for any B and any s, C(Mv)B = mins

∑

t(Mv)(sBt) ≥ (C(M)C(v))B .

(vi): (we will prove part (v) below) Since v ∈ B≥0, v(sAt) ≤
∑

t′ v(sAt′) = C(v)A
so ‖v‖∞ ≤ ‖C(v)‖∞. For M ∈ B

×
≥0:

‖M‖∞ = max
s,B,t

∑

u,C,v

M(sBt),(uCv)

≤ max
s,B

∑

u,C,v,t

M(sBt),(uCv)

= max
s,B

∑

C,v

C(M)B,C

= max
B

d
∑

C

C(M)B,C

= d‖C(M)‖∞

(v): By standard facts from Perron-Frobenius theory (see e.g. Theorem 8.3.1 of
[10]), the non-negative matrix C(M), has as an eigenvalue ρ(C(M)) associated
with which is a non-negative eigenvector vG 6= 0. That is C(M)vG = ρ(C(M))vG
for some non-zero vG ≥ 0. Now consider any non-negative balanced vector u with
C(u) = vG. (Such a u obviously exists.) Let f(u) = 1

ρ(C(M))Mu. By part (ii),

Mu is balanced and C(Mu) = C(M)vG = ρ(C(M))vG. So, f(u) is non-negative
and balanced and has C(f(u)) = vG. The set of non-negative balanced vector
u with C(u) = vG is compact (it is a product of simplices) and the continuous
function f maps this set into itself. So by Brouwer’s fixed point theorem, f has
a fixed point, that is a u∗ with u∗ = 1

ρ(C(M))Mu∗. That is, u∗ is an eigenvector

of M with eigenvalue ρ(C(M)). So ρ(M) ≥ ρ(C(M)).

In the other direction, we use the fact (see, e.g., Theorem 5.6.12 of [10]) that
for any square matrix N , limk→∞‖Nk‖∞ = 0 if and only if ρ(N) < 1.

Now for M ∈ B
×
≥0 assume, for contradiction, that ρ(M) > ρ(C(M)). Then

ρ(1
ρ(M)M) = 1

ρ(M)ρ(M) = 1 > 1
ρ(M)ρ(C(M)) = ρ(1

ρ(M)C(M)). Thus, by the

above fact from matrix theory, we have that limk→∞ ‖(1
ρ(M)C(M))k‖∞ = 0.

But for any k ≥ 1,

0 ≤ ‖(1

ρ(M)
M)k‖∞ ≤ d‖C((1

ρ(M)
M)k)‖∞ (by part (vi))

= d‖C(1

ρ(M)
M)k‖ (by part (iii))

= d‖(1

ρ(M)
C(M))k‖∞ (by part (i))

And thus, since the right hand side goes to 0 as k → ∞, we must also have
limk→∞ ‖(1

ρ(M)M)k‖∞ = 0, but this is a contradiction, because ρ(1
ρ(M)M) = 1.

So, our assumption ρ(M) > ρ(C(M)) must be false.

Having established both directions, we conclude that ρ(M) = ρ(C(M)). ⊓⊔

Lemma 1. Let B≥0 = B ∩ R
d2n
≥0 and B

×
≥0 = B ∩R

d2n×d2n
≥0 .

Let BG(x) denote the Jacobian of the PPS (or MPS) x = PG(x), and let
BG⊗D(y) be the Jacobian of MPS y = PG⊗D(y).
Then qG⊗D ∈ B≥0 and C(qG⊗D) = qG, and:

(i) If y ∈ B≥0 ⊆ R
d2n
≥0 then BG⊗D(y) ∈ B

×
≥0, and C(BG⊗D(y)) = BG(C(y)).

(ii) If y ∈ B≥0, then PG⊗D(y) ∈ B≥0, and C(PG⊗D(y)) = PG(C(y)).
(iii) If y ∈ B≥0 and ρ(BG(C(y))) < 1, then I −BG⊗D(y) is non-singular,

(I −BG⊗D(y))−1 ∈ B
×
≥0, and C((I −BG⊗D(y))

−1) = (I −BG(C(y)))
−1.

(iv) If y ∈ B≥0 and ρ(BG(C(y))) < 1, then NG⊗D(y) ∈ B
×

and C(NG⊗D(y)) = NG(C(y)).

Proof.
Firstly, let us recall why qG⊗D ∈ B≥0 and C(qG⊗D) = qG. Recall these are the

LFP qG, of x = PG(x), and the LFP qG⊗D of y = PG⊗D(y). By Propositions 1

and 2, for any nonterminal A ∈ V , qGA =
∑

w∈Σ∗ q
G,w
A is the probability (weight)

that G generates any finite string w. Likewise qG⊗D
(sAt) =

∑

{w|∆∗(s,w)=t} q
G,w
A is the

probability (weight) that, starting at A, G generates a finite string w such that
∆∗(s, w) = t. Thus, clearly, for any A ∈ V , and any s ∈ Q, qGA =

∑

t∈Q qG⊗D
(sAt) =

C(qG⊗D)A. Now we prove the enumerated assertions one by one:

(i): We need to argue both that BG⊗D(y) ∈ B
×
≥0, and that C(BG⊗D(y)) =

BG(C(y)), for y ∈ B≥0. Again, recall that we are assuming wlog that G is in
SNF form. We split the proof into cases depending on the type of non-terminal
A in BG⊗D(y)(sAt),(uEv). Let δα,β denote the Dirac function: δα,β := 1 if α = β,
and δα,β := 0 if α 6= β.
Type Q: For any non-terminal A of type Q, the only rule in RA has the form

A
1−→ BC, and PG(x)A ≡ xBxC . And, for any states s, t ∈ Q, PG⊗D(y)(sAt) ≡

∑

w∈Q y(sBw)y(wCt). Thus

BG⊗D(y)(sAt),(uEv)
.
=

∂PG⊗D(y)(sAt)

∂y(uEv)
= δt,v · δE,C · y(sBu) + δs,u · δE,B · y(vCt)

Thus
∑

t

BG⊗D(y)(sAt),(uEv) = δE,C · y(sBu) + δs,u · δE,B ·
∑

t

y(vCt)

Since y is balanced,
∑

t y(vCt) is independent of v, so
∑

t B(sAt),(uEv) is indepen-
dent of v. Next we note that:

∑

t,u

BG⊗D(y)(sAt),(uEv) = δE,C

∑

u

y(sBu) + δE,B

∑

t

y(vCt)

Thus
∑

t,u

BG⊗D(y)(sAt),(uEv) = δE,CC(y)B + δE,BC(y)C = BG(C(y))

Type T: For any non-terminal A of type T, PG(x)A does not depend on x, and
PG⊗D(y)sAt does not depend on y, for any s, t ∈ Q. Thus

∑

t BG⊗D(y)(sAt),(uCv) =
0, and

∑

t,u BG⊗D(y)(sAt),(uCv) = 0 = BG(C(y))A,C .

Type L: For any non-terminal A of type L, recall that PG(x)A =
∑

r∈RA
prxBr

.
And for any states s, t, PG⊗D(y)(sAt) =

∑

r∈RA
pry(sBrt).

Thus, all the entries of BG(x))A,C and BG⊗D(y)(sAt),(uCv) are independent
of x and y, respectively. And

BG⊗D(y)(sAt),(uCv) =
∂PG⊗D(y)(sAt)

∂y(uCv)
= δs,u · δt,v · BG(x)A,C

Consequently
∑

t BG⊗D(y)(sAt),(uCv) = δs,uBG(x)A,C =, which is independent
of v. And,

∑

t,u BG⊗D(y)(sAt),(uCv) = BG(x)A,C , which is independent of s and
v, and BG(x)A,C = BG(C(y))A,C , because BG(x)A,C is independent of x.

Having shown that for all nonterminals A and C, and all nonterminals
s, u ∈ Q, the sum

∑

t BG⊗D(y)(sAt),(uCv) is independent of v. And we have
also shown that for all nonterminals A and C, the sum

∑

t,u BG⊗D(y)(sAt),(uCv)

is independent of s and v, and furthermore, that the latter sum (which is by
definition C(BG⊗D(y))A,C), is equal to BG(C(y)). Thus our proof for part (i) is
complete.

(ii): Part (ii) could be proved using a case-by-case analysis similar to part (i). In-
stead, we shall use part (i). Recall that PG(x) and PD⊗G(y) have no polynomials
of degree more than 2. Furthermore:

PG(x) = PG(0) +BG(
1

2
x)x

And

PG⊗D(y) = PG⊗D(0) +BG⊗D(
1

2
y)y

By the previous parts of this Lemma, and by Lemma 2, we know that
BG⊗D(12y)y is balanced, and C(BG⊗D(

1
2y)y) = BG(

1
2C(y))C(y). All that re-

mains is to show that PG⊗D(0) is balanced and that C(PG⊗D(0)) = PG(0), and
again use the properties established in Lemma 2.

Now, unless a non-terminal A has type T, PG(0)A = 0, and for any states
s, t ∈ Q, PG⊗D(0)(sAt) = 0. So, in these cases, there is nothing to prove. If the

nonterminal A does have type T, then PG(x)A = 1. If there is a rule A
1−→ a,

for some a ∈ Σ, then for any state s ∈ Q, there is a unique state t′ ∈ Q with

∆(s, a) = t′. If instead there is a rule A
1−→ ǫ, then let t′ := s. In both cases, note

that
∑

t PG⊗D(y)(sAt) = 1 = PG(C(y))A, since PG⊗D(y)(sAt) = 1 when t = t′

and PG⊗D(y)(sAt) = 0 otherwise. Thus also C(PG⊗D(y)) = PG(C(y)) in all cases.

(iii): By assumption, ρ(BG(C(y))) < 1, so by Lemma 2 (iv), ρ(BG⊗D(y)) < 1. It
is a basic fact that for any square M ≥ 0 if ρ(M) < 1 then (I−M) is non-singular

and (I − M)−1 =
∑∞

i=0 M
i. (See, e.g., [13], Theorem 15.2.2, page 531). Thus

I − BG⊗D(y) is non-singular, and (I − BG⊗D(y))−1 =
∑∞

i=0(BG⊗D(y))i. Note
that each (BG⊗D(y))i, for i ≥ 0, is balanced, by using the previous parts of this

Lemma and Lemma 2 (iii), and thus so are the partial sums
∑k

i=0(BG⊗D(y))i,

for any k ≥ 0. Therefore (I − BG⊗D(y))−1 = limk→∞

∑k
i=1(BG⊗D(yG⊗D))i is

a limit of balanced non-negative matrices. But then (I − BG⊗D(y))
−1 must be

balanced, because the definition of balance for a matrix M requires equalities
between continuous (in fact, linear) functions of the entries, and thus if all the

matrices
∑k

i=1(BG⊗D(yG⊗D))i satisfy these conditions, then so does their limit.
Furthermore C is a linear and continuous function on matrices, so C((I −

BG⊗D(y))−1) =
∑∞

i=1 C(BG⊗D(y)i) =
∑∞

i=1 C(BG⊗D(y))i = (I−C(BG⊗D(y)))−1.
By part (i) of this Lemma, this is equal to (I −BG(C(y)))

−1. Done.

(iv): By part (ii) of this Lemma, PG⊗D(y) is balanced and C(PG⊗D(y)) =
PG(C(y)). Part (iii) of this lemma says that (I − BG⊗D(y))−1 is balanced and
C((I −BG⊗D(y))−1) = (I − C(BG⊗D(y)))−1. Now we can apply the various al-
gebraic properties of balanced vectors and matrices from Lemma 2 to conclude
that

NG⊗D(y) := y + (I −BG⊗D(y)−1(PG⊗D(y)− y)

is balanced and that C(NG⊗D(y)) = C(y)+(I−BG(C(y)))
−1(PG(C(y))−C(y)) =

NG(C(y)). ⊓⊔

As mentioned already, Theorem 1 follows immediately from Lemma 1, parts
(i)&(iv).

B Proofs for Section 4

We will first show how to compute in P-time the critical SCCs and the critical
depth of a PPS. We then proceed to prove the main theorems of the section:
Theorems 2 and 3.

Let x = P (x) be a PPS (wlog in SNF), with LFP q∗ > 0, let B(x) be its
Jacobean matrix, and let H = (V,E) be its dependency graph. If B is a square
matrix and I, J are subsets of indices, we will use BI,J to denote the submatrix
with rows in I and columns in J , and we use BI to denote the square submatrix
BI,I .

Proposition 5. Given a PPS x = P (x) with LFP q∗ > 0, we can compute in
polynomial time its critical SCCs and its critical depth.

Proof. We know that for each SCC S of H , either all the variables (nodes) of the
SCC have value 1 in the LFP q∗, or they all have value < 1; moreover, if they
have value 1, then so do all the variables that they can reach in H , i.e., q∗S = 1

implies q∗D(S) = 1 [8]. Furthermore, we can determine which variables and SCCs

have value 1, and which value < 1, in polynomial time [8] (this was improved to
strongly polynomial time in [3]). We also know that ρ(B(q∗)) ≤ 1, thus a PPS

is critical iff ρ(B(q∗)) = 1. Furthermore, by Theorem 3.6 of [7], if q∗ < 1, then
ρ(B(q∗)) < 1.

Therefore, for each SCC S, we can determine whether it is critical as follows.
If q∗S < 1 then S is not critical. If q∗S = 1, then S is critical iff ρ(B(1)S) = 1,
and it is not critical iff ρ(B(1)S) < 1; we can determine which of the two is the
case as follows. Since the spectral radius of B(1)S is at most 1, ρ(B(1)S) = 1 iff
there is a vector u 6= 0 such that (B(1)S) · u = u (and we can take u ≥ 0 to be
an eigenvector for the eigenvalue 1 in this case since the matrix is nonnegative),
or equivalently since the constraints are homogeneous in u, this is the case iff
the set of linear equations {(B(1)S) · u = u;

∑

i ui = 1} has a solution. This can
be checked in (strongly) polynomial time by standard methods.

Once we have identified the critical SCCs, it is straightforward to compute
the critical depth in linear time in the size of the DAG of SCCs by a traversal
of the DAG in topological order. ⊓⊔

Proposition 6. A PPS x = P (x) is critical if and only if at least one of its
SCCs is critical.

Proof. (Only if): Suppose first that the PPS is critical, i.e., that ρ(B(q∗)) = 1.
Let v ≥ 0, v 6= 0, be an eigenvector of B(q∗) for the eigenvalue 1, i.e., B(q∗)v = v.
Let S be a lowest SCC that contains a variable with nonzero value in v, i.e. vS 6= 0
and vD(S) = 0. Then vS = B(q∗)S,S∪D(S) · vS∪D(S) = B(q∗)S · vS . Thus, vS is
an eigenvector of B(q∗)S with eigenvalue 1, hence ρ(B(q∗)S) ≥ 1, and since we
always have ρ(B(q∗)S) ≤ 1, if follows that S is a critical SCC.

(If): Conversely, suppose that there is a critical SCC, and let S be a highest
critical SCC in the DAG of SCC’s. Then ρ(B(q∗)S) = 1. Let u ≥ 0 be an
eigenvector of B(q∗)S with eigenvalue 1. Let E(S) be the (possibly empty) set
of variables which depend on variables in S but are not themselves in S. If
E(S) = ∅ then let v be a vector with vS = u and vi = 0 for all variables xi /∈ S.
Then B(q∗)v = v, i.e., v is an eigenvector of B(q∗) with eigenvalue 1, hence
ρ(B(q∗)) ≥ 1 and the PPS is critical.

Suppose that E(S) is nonempty. Then E(S) contains no critical SCCs by
our choice of S. This implies by our proof above for the (only if) direction
that the PPS xE(S) = P (xE(S), xD(E(S))) is not critical, i.e., ρ(B(q∗)E(S)) < 1.
Thus, (I − B(q∗)E(S))

−1 exists. Let v be the vector with vS = u, vE(S) =
(I −B(q∗)E(S))

−1B(q∗)E(S),S · vS and vi = 0 for all xi not in either S or E(S).
We claim that B(q∗)v = v. If xi does not depend on a variable in S, then

any xj which xi depends on also does not depend on S and so has vj = 0. So
(B(q∗)v)i = 0 = vi. Next we consider (B(q∗)v)S . Since D(S) is disjoint from
S and E(S), vD(S) = 0. So (B(q∗)v)S = (B(q∗))S · vS = vS . Lastly consider
(B(q∗)v)E(S).

(B(q∗)v)E(S) = B(q∗)E(S) · vE(S) +B(q∗)E(S),S · vS
= vE(S) − (I −B(q∗)E(S)) · vE(S) +B(q∗)E(S),S · vS
= vE(S) −B(q∗)E(S),S · vS +B(q∗)E(S),S · vS
= vE(S)

So B(q∗)v = v. Therefore, ρ(B(q∗) ≥ 1 and hence the PPS is critical. ⊓⊔

In the remainder of this section we will prove Theorem 3, and along the way,
we will also establish Theorem 2. The proof of Theorem 3 is long and involved.
We first need to recall, and establish, a series of Lemmas and Theorems.

Lemma 3. (Lemma C.3 of [6]) If A is a non-negative matrix, and vector u > 0
is such that Au ≤ u and ‖u‖∞ ≤ 1, and α, β ∈ (0, 1) are constants such that for
every i ∈ {1, ...n}, one of the following two conditions holds:

(I) (Au)i ≤ (1− β)ui

(II) there is some k, 1 ≤ k ≤ n, and some j, such that (Ak)ij ≥ α and (Au)j ≤
(1− β)uj .

then (I −A) is non-singular, ρ(A) < 1,4 and

‖(I −A)−1‖∞ ≤ n

u2
minαβ

Lemma 4. (Lemma A.4 of [7]) Let A be a non-singular n × n matrix with
rational entries. If the product of the denominators of all these entries is m,
then

‖A−1‖∞ ≤ nm‖A‖n∞
Lemma 5. (Lemma 5.4 from [4]; or see Lemma 3.7 from [7]) Let x = P (x) be a
monotone system of polynomial equations which has a LFP q∗. For any positive
vector d ∈ R

n
>0 that satisfies B(q∗)d ≤ d, any positive real value λ > 0, and

any nonnegative vector x ∈ R
n
≥0, if q∗ − x ≤ λd, and (I −B(x))−1 exists and is

nonnegative, then

q∗ −N (x) ≤ λ

2
d

Theorem 4. (Theorem 3.12 of [7]) For a PPS, x = P (x) in n variables, in SNF
form, with LFP q∗, such that 0 < q∗ < 1, for all i = 1, . . . , n: 1 − q∗i ≥ 2−4|P |.
In other words, ‖q∗‖∞ ≤ 1− 2−4|P |.

Theorem 5. (Theorem 4.6 of [6])
(i) if x = P (x) is a PPS with q∗ < 1 and 0 ≤ y < 1 then

‖(I − B(
1

2
(y + q∗)))−1‖∞ ≤ 210|P |max{2(1− y)−1

min, 2
|P |}

(ii) if x = P (x) is a strongly connected PPS with q∗ = 1 and 0 ≤ y < 1, then

‖(I −B(y))−1‖∞ ≤ 24|P | 1

(1− y)min

4 Although the fact that the conditions imply also that ρ(A) < 1 is not stated explicitly
in Lemma C.3 of [6], it is indeed established in the proof in [6].

Lemma 6. If x = P (x) is a strongly connected PPS (in SNF form), with Jaco-

bian B(x), and if B(121)v ≤ v for some vector v > 0, then ‖v‖∞

vmin
≤ 2|P |

Proof. (This proof is a variant of that of Lemma 3.10 in [7].) Let l = argmaxi vi,
and let k = argminj vj . Since x = P (x) is in SNF form, every non-zero entry
of the matrix B(121) is either 1/2 or is a coefficient of some monomial in some
polynomial P (x)i of P (x). Moreover, B(121) is irreducible. Calling the entries
of B(121), bi,j , we have a sequence of distinct indices, i1, i2, . . . , im, with l = i1,
k = im, m ≤ n, where each bij ij+1 > 0. (Just take the “shortest positive path”
from l to k.) For any j:

(B(
1

2
1)v)ij+1 ≥ bijij+1vij

By simple induction: vk ≥ (
∏m−1

j=1 bijij+1)vl. Note that |P | includes the en-
coding size of each positive coefficient of every polynomial P (x)i. We argued
before that each bijij+1 is either a coefficient of x = P (x), or is equal to 1/2.
Furthermore, if we consider the equation xij = P (x)ij , and denote its encoding

size as |Pij |, then it is easy to see bij ij+1 ≥ 2−|Pij
|, because either bijij+1 ap-

pears in P (x)ij , or else bijij+1 = 1/2, but it is always the case that |Pij | ≥ 1.
Now, the ij ’s are distinct (because we are using a shortest path). Therefore,

since |P | = ∑n
i=1 |Pi|, we must have

∏m−1
j=1 bijij+1 ≥ 2−|P |, and thus we have:

vk ≥ 2−|P |vl. ⊓⊔
Theorem 6. If x = P (x) is an MPS with n variables, with LFP q∗ ≤ 1, and
ρ(B(q∗)) < 1, and if we use any rounded-down Newton iteration method defined
by x[0] := 0, and for all k ≥ 0, and x[k+1] := max(0,N (x(k))− ek), where ek is
some error vector such that 0 ≤ (ek)i ≤ 2−(h+2) for all i ∈ {1, . . . , n}, then for
any 0 < ǫ ≤ 1, ‖q∗ − x[h+1]‖∞ ≤ ǫ, whenever the chosen parameter h satisfies
h ≥ ⌈log ‖(I −B(q∗))−1‖∞ + log 1

ǫ ⌉.
Proof. We shall use Lemma 5 to prove this. We need to find a vector v, with
B(q∗)v ≤ v and v > 0, called a cone vector, such that we can bound the ratio
vmax

vmin
. Here vmax = maxi vi, and vmin = mini vi.

Since we know that ρ(B(q∗)) < 1, we have that (I−B(q∗)) is nonsingular, and
(I−B(q∗))−1 =

∑∞
i=0 B(q∗)i. We simply take v := 1

‖(I−B(q∗))−1‖∞
(I−B(q∗))−1

1

as our cone vector.
Then B(q∗)v = v− 1

‖(I−B(q∗))−1‖∞
1 ≤ v and v = 1

‖(I−B(q∗))−1‖∞
(1+B(q∗)1+

B(q∗)21...) ≥ 1
‖(I−B(q∗))−1‖∞

1. The latter not only shows that v > 0, but also

that vmin ≥ 1
‖(I−B(q∗))−1‖∞

. Recall that by definition, since (I − B(q∗))−1 is

non-negative, ‖(I − B(q∗))−1‖∞ is the maximum row sum of any row of (I −
B(q∗))−1 =

∑∞
i=0 B(q∗)i. It follows that vmax ≤ 1, since B(q∗)0 = I.

Now, x[0] := 0, and q∗ ≤ 1, so we know that q∗ − x[0] ≤ 1 ≤ ‖(I −
B(q∗))−1‖∞v ≤ 2hǫv (by definition of h). Now, for all k > 0, ek ≤ 2−(h+2)

1 ≤
1
4ǫ

1
‖(I−B(q∗))−1‖∞

1 ≤ 1
4ǫv.

Applying Lemma 5, if q∗ − x[k] ≤ λv, then q∗ − x[k+1] ≤ q∗ −N (x[k]) + ek ≤
(λ2 + 1

4)ǫv. It follows by induction that, for all k ≥ 1, q∗ − x[k] ≤ (2h−k + 1
2)ǫv

When k = h+1, this gives q∗ −x[h+1] ≤ ǫv. Since vmax = ‖v‖∞ ≤ 1, this means
that ‖q∗ − x[h+1]‖∞ ≤ ǫ as required. ⊓⊔

Theorem 7. If the PPS x = P (x) with LFP solution q∗ has ρ(B(q∗)) < 1
and we use any rounded-down Newton iteration, starting at x[0] = 0, defined by
x[k+1] = max(0, x[k] +(I−B(x[k]))−1(P (x[k])−x[k])− ek), for any error vectors
ek where 0 ≤ (ek)i ≤ 2−(h+2) for all i ∈ {1, . . . , n}, then for any given 0 < ǫ ≤ 1,
‖q∗ − x[h+1]‖∞ ≤ ǫ, where h = 14|P |+ 3 + ⌈log(1/ǫ)⌉.

Theorem 7 follows from Theorem 6 and an upper bound on ‖(I − B(q∗))−1‖∞.
The following Lemma gives us this, from which Theorem 7 follows immediately:

Lemma 7. If the PPS x = P (x) with LFP solution q∗ has ρ(B(q∗)) < 1 then

‖(I −B(q∗))−1‖∞ ≤ 214|P |+3

Proof. We split into several cases, based on q∗.

Case 1: q∗ < 1. In this case we just need to use Theorem 5 (i), in which we set
y := q∗, combined with Theorem 4, to conclude that:

‖(I −B(q∗))−1‖∞ ≤ 214|P |+1

Case 2: q∗ = 1. In this case we can instead use the following result from [7]:

Lemma 8. For a PPS x = P (x), if (I −B(1)) is non-singular then

‖(I −B(1))−1‖∞ ≤ 3nn2|P | ≤ 23|P |

Proof. The proof of this is basically identical to a proof in [7] for a closely related
fact, which was based on more assumptions (but not all of the assumptions were
needed).

If we take (I − B(1)) to be the matrix A of Lemma 4, then noting that the
product of all the denominators in (I −B(1)) is at most 2|P |, this yields:

‖(I −B(1))−1‖∞ ≤ n2|P |‖(I −B(1))‖n∞

Of course ‖(I −B(1))‖∞ ≤ 1 + ‖B(1)‖∞ ≤ 3 (note that here we are using the
fact that the system is in SNF normal form). Thus

‖(I −B(1))−1‖∞ ≤ 3nn2|P |

Furthermore, as discussed in [7] (see section A.6, first paragraph), for any PPS
x = P (x) we can assume wlog that the equation for every variable requires at
least 3 bits, and thus that |P | ≥ 3n ≥ n log 3+ logn. Therefore 3nn2|P | ≤ 23|P |.

⊓⊔

Case 3: Neither q∗ < 1 nor q∗ = 1. To finish the proof of Lemma 7, we will
combine the above two results for the first two cases to deal with the case when
neither q∗ < 1 nor q∗ = 1, but that nevertheless ρ(B(q∗)) < 1. (It is indeed
possible for all three of these conditions to hold, when some coordinates of q∗

are 1, and others less than 1.)
Let A (for “always”) denote the set of variables xi for which q∗i = 1, and let

M (for “maybe”) denote the set of variables xi for which 0 < q∗i < 1. We can
obviously assume that both A and M are non-empty; otherwise one of the two
above theorems gives the result. Furthermore, variables in A obviously cannot
depend on those in M (neither directly nor indirectly). Thus we can describe
B(q∗) by the following block decomposition

B(q∗) =

(

B(q∗)M B(q∗)M,A

0 B(q∗)A

)

We need a lemma:

Lemma 9. For any matrix M satisfying the block decomposition given by

M =

(

A B
0 D

)

, if both A and D are square and non-singular matrices, then M is

also non-singular, and:

‖M−1‖∞ ≤ max{‖A−1‖∞ + ‖A−1‖∞‖B‖∞‖D−1‖∞, ‖D−1‖∞}

Proof. The standard formula for the blockwise inverse of a matrix gives
(

A B
0 D

)−1

=

(

A−1 −A−1BD−1

0 D−1

)

, provided that A and D are non-singular.

(The formula can easily be verified directly by multiplying by

(

A B
0 D

)

.)

Now recall that the l∞ norm for a matrix C is ‖C‖∞ = maxi
∑

j |Cij |, i.e.,
it is the maximum sum across any row of the absolute value of the entries of the
row. So

‖M−1‖∞ ≤ max{‖A−1‖∞ + ‖A−1‖∞‖B‖∞‖D−1‖∞, ‖D−1‖∞}

⊓⊔

Now, (I − B(q∗)) =

(

I −B(q∗)M −B(q∗)M,A

0 I −B(q∗)A

)

, so ‖(I − B(q∗))−1‖∞ ≤
max{‖(I−B(q∗)M)−1‖∞+‖(I−B(q∗)M)−1‖∞‖B(q∗)M,A‖∞‖(I−B(q∗)A)

−1‖∞,
‖(I −B(q∗)A)

−1‖∞}.
Since we always wlog assume that x = P (x) is a PPS is SNF normal form,
‖B(q∗)‖∞ ≤ 2. More specifically, ‖B(q∗)M,A‖∞ ≤ 2. By Case 1, since 0 < q∗M <
1, ‖(I − B(q∗)M)−1‖∞ ≤ 214|PM |+1, where |PM | denotes the encoding size of
the system of equations xM = P (xM , 1A)M , restricted to the variables in M ,
and with 1 plugged in for all variables in A. Also, by Lemma 8, since q∗A = 1,
‖(I−B(q∗)A)

−1‖∞ ≤ 23|PA|, where xA = P (x)A denotes the system of equations

restricted to variables in A (note that these do not depend on variables in M).
Thus,

‖(I −B(q∗))−1‖∞ ≤ max{214|PM |+1 + 214|PM |+2+3|PA|, 23|PA|}

This can be simplified to ‖(I−B(q∗))−1‖∞ ≤ 214|P |+3. This completes the proof
of Lemma 7. ⊓⊔

We now have enough to deal with the non-critical case of Theorem 2.

Theorem 2. For any ǫ > 0, and for an SCFG, G, if the PPS x = PG(x) has
LFP 0 < qG ≤ 1 and ρ(BG(q

G)) < 1, then if we use R-NM with parameter
h+2 to approximate the LFP solution of the MPS y = PG⊗D(y), then ‖qG⊗D −
y[h+1]‖∞ ≤ ǫ where h := 14|G|+ 3 + ⌈log(1/ǫ) + log d⌉.

Thus we can compute the probability qG,D
A =

∑

t∈F qG⊗D
s0At within additive

error δ > 0 in time polynomial in the input size: |G|, |D| and log(1/δ), in the
standard Turing model of computation.

Proof. Lemma 1 yields that (I − BG⊗D(qG⊗D))−1 ∈ B
×
≥0, and that C((I −

BG⊗D(qG⊗D))−1) = (I − (BG(q
G))−1. Lemma 2(vi) relates the norms:

‖(I − BG⊗D(q
G⊗D))−1‖∞ ≤ d‖(I − (BG(q

G))−1‖∞. We need a bound on the
latter norm. Lemma 7 shows ‖(I −BG(q

G))−1‖∞ ≤ 214|G|+3. So
‖(I − BG⊗D(qG⊗D))−1‖∞ ≤ d214|G|+3. Plugging this bound into Theorem 6
yields the result. ⊓⊔

To deal with critical SCCs, we need a way to analyse how an error in the
LFP q∗ inside one SCC, S, where q∗S = 1, affects those SCCs that depend on it:

Theorem 8. Given a PPS, y = P (y) in SNF form, such that for a subvector
x of y, whose equations are x = P (x, yD(x)), when restricting y = P (y) to the
variables in x, and if we let yD(x) := z, for a real-valued vector 0 ≤ z < 1, and
if the resulting PPS, x = P (x, z) has LFP q∗z > 0, and if q∗

1
is the LFP solution

of x = P (x,1) (note that q∗
1
≥ q∗z), then:

(i) If q∗
1
< 1 then, ‖q∗

1
− q∗z‖∞ ≤ 214|P |+2‖1− z‖∞

(ii) If the PPS x = P (x,1) is strongly connected and q∗
1
= 1 then ‖1− q∗z‖∞ ≤

23|P |
√

‖1− z‖∞

(iii) If the PPS, x = P (x, 1), is strongly connected and q∗
1
= 1, and ρ(B(1,1)) < 1

then ‖1− q∗z‖∞ ≤ 23|P |‖1− z‖∞
Bad examples given in [4] (see also [20]), show that there are critical PPSs

with q∗1 = 1, and with ‖1 − q∗z‖∞ ≥
√

‖1− z‖∞. Thus we cannot hope to get
a bound linear in ‖1 − z‖∞ in all cases. Cases (i) and (iii) of Theorem 8 say
that we can get a linear bound except for critical PPSs, where we indeed need a
square root in the strongly connected case (case (ii)).

Proof (of Theorem 8). We first prove the following:

Lemma 10. For 0 ≤ z ≤ z′ ≤ 1, and for all 0 ≤ x ≤ 1, ‖P (x, z′)−P (x, z)‖∞ ≤
2‖z − z′‖∞
Proof. Consider the k’th coordinate, P (x, y)k, of the PPS polynomials P (x, y),
in SNF form. We distinguish cases based on the type of xk. If xk has type Q:

then P (x, z)k and P (x, z′)k both have the form xixj , or both have form z
(′)
i xj ,

or both the form xiz
(′)
j , or both the form z

(′)
i z

(′)
j . Thus, since 0 ≤ z ≤ z′ ≤ 1,

and 0 ≤ x ≤ 1, we have 0 ≤ P (x, z′)k − P (x, z)k ≤ z′iz
′
j − zizj ≤ 2‖z − z′‖∞.

In the case where xk has type L, we have 0 ≤ P (x, z′)k − P (x, z)k ≤
∑

j pk,j(z
′
j −zj) ≤ ‖z−z′‖∞, because the coefficients pk,j of the type L equation

must sum to ≤ 1.
Finally, if xk has type T, P (x, z)k and P (x, z′)k are equal constants, so their

difference is 0. ⊓⊔

Lemma 11. If x = P (x, z) is a PPS with LFP q∗z > 0 and x = P (x, z′) has
LFP q∗z′ > 0 for some 0 ≤ z ≤ z′ ≤ 1, and (I−B(12 (q

∗
z′ +q∗z), z

′)) is non-singular
then

‖q∗z′ − q∗z‖∞ ≤ 2‖(I −B(
1

2
(q∗z′ + q∗z), z

′))−1‖∞‖z′ − z‖∞

Proof. From Lemma 4.3 of [6], applied to the PPS x = P (x, z′), (where we let
y := q∗z), we have:

(q∗z′ − q∗z) = (I −B(
1

2
(q∗z′ + q∗z), z

′))−1(P (q∗z , z
′)− q∗z)

We can take norms:

‖q∗z′ − q∗z‖∞ = ‖(I −B(
1

2
(q∗z′ + q∗z), z

′))−1‖∞‖(P (q∗z , z
′)− q∗z)‖∞

Now we just apply Lemma 10, to obtain that ‖(P (q∗z , z
′)− q∗z)‖∞ ≤ 2‖z′− z‖∞.

⊓⊔

To get parts (i) and (ii) of Theorem 8, we apply Theorem 5. For establishing
(i) of Theorem 8, we need to apply (i) of Theorem 5 to the PPS, x = P (x,1),
with y := q∗z . This gives

‖(I −B(
1

2
(q∗z + q∗

1
),1))−1‖∞ ≤ 210|P | max{2(1− q∗z)

−1
min, 2

|P |}

Now, since in part (i) of Theorem 8, we are given that q∗
1
< 1, we know that

q∗z ≤ q∗
1
≤ 1− 2−4|P |

1, by Theorem 3.12 of [7]. So we have

‖(I −B(
1

2
(q∗z + q∗

1
),1))−1‖∞ ≤ 214|P |+1

Lemma 11 now tells us that:

‖q∗
1
− q∗z‖∞ ≤ 214|P |+2‖1− z‖∞

This finishes the proof of part (i) of Theorem 8.
To prove part (ii) of Theorem 8, first remember that we assume x = P (x,1)

is strongly connected. We use part (ii) of Theorem 5.
By assumption, q∗

1
= 1. We take z = 1

2 (1+ q∗y), giving:

‖(I − B(
1

2
(1+ q∗z),1))

−1‖∞ ≤ 24|P | 2

(1− q∗z)min
(3)

Now

B(
1

2
1,1)(1− q∗z) ≤ B(

1

2
(1+ q∗z),1)(1− q∗z)

= P (1,1)− P (q∗z ,1) (by Lemma 3.3 of [7])

≤ P (1,1)− P (q∗z , z) = 1− q∗z

Now we apply Lemma 6, letting v be 1 − q∗z in the statement of that Lemma,
and considering B(121,1) in place of the B(121) in the statement of the Lemma.

This tells us that
‖1−q∗z‖∞

(1−q∗z)min
≤ 2|P |.

Now, if we substitute this into the equation (3), we get

‖(I −B(
1

2
(1 + q∗z),1))

−1‖∞ ≤ 25|P |+1 1

‖1− q∗z‖∞

Lemma 11 now gives:

‖1− q∗z‖∞ ≤ 2‖(I −B(
1

2
(1+ q∗z),1))

−1‖∞‖1− z‖∞

Inserting our bound for the norm of (I −B(12 (1+ q∗z),1))
−1 gives:

‖1− q∗z‖∞ ≤ 25|P |+2 1

‖1− q∗z‖∞
‖1− z‖∞

re-arranging and taking the square root gives:

‖1− q∗z‖∞ ≤
√

25|P |+2‖1− z‖∞

As long as the encoding size is |P | ≥ 2, which we can clearly assume, we have:

‖1− q∗z‖∞ ≤ 23|P |
√

‖1− z‖∞

For part (iii), the significance of the condition that ρ(B(1,1)) < 1 is that it
implies (I − B(1,1))−1 exists, and (I − B(1,1))−1 ≥ (I − B(12 (1 + q∗z), 1). So,
we use a bound on ‖(I −B(1,1))−1‖∞:

Lemma 11 gives:

‖1− q∗z‖∞ ≤ 2‖(I −B(
1

2
(1+ q∗z),1))

−1‖∞‖1− z‖∞

Now ‖(I−B(12 (1+ q∗z),1))
−1‖∞ ≤ ‖(I−B(1,1))−1‖∞. We can apply Lemma 8

on the PPS x = P (x,1), which yields ‖(I −B(1,1))−1‖∞ ≤ 23|P |. Now we have

‖1− q∗z‖∞ ≤ 23|P |‖1− z‖∞

as required. ⊓⊔

Theorem 9. Suppose x = P (x) is a PPS in SNF form that has critical depth
at most c. Let δ ∈ R, such that 0 ≤ δ ≤ 2−3|P |−1. Suppose that in every bottom-
critical SCC of x = P (x) we reduce a single positive coefficient, p, by setting it to
p′ = p(1−δ), resulting in the PPS x = Pδ(x). Then ‖q∗−q∗δ‖∞ ≤ 214|P |+2δ(1/2

c)

where q∗ and q∗δ are the LFP solutions of x = P (x) and x = Pδ(x), respectively.
Furthermore, ‖(I −Bδ(q

∗
δ))

−1‖∞ ≤ 28|P |+2δ−3.

Proof. If c = 0, we have no critical SCCs, so we don’t change any coefficients,
and q∗ = q∗δ , and the remaining claim about ‖(I −Bδ(q

∗
δ))

−1‖∞ follows directly
from Lemma 7.

So, we can assume c > 0 in the rest of the proof. To establish that q∗ and q∗δ
are close, we will use Theorem 8. For any SCC, S, of a PPS x = P (x), either
q∗S = 1 or q∗S < 1, because every variable in S depends (directly or indirectly)
on every other, so if any of them are < 1, then so are all the others.

Let S be an SCC with q∗S = 1 and with (q∗δ)S < 1. The SCC S necessarily
only depends on SCCs, T , with q∗T = 1, because otherwise we wouldn’t have
q∗S = 1. We want to show that

‖1− (q∗δ)S‖∞ ≤ δ(1/2
cS∪D(S)) · 26|PS∪D(S)|

where cS∪D(S) is the critical depth in xS∪D(S) = PS∪D(S)(xS∪D(S)), and |PS∪D(S)|
denotes the encoding size of the latter PPS. To prove this by induction, we can
assume

‖1− (q∗δ)D(S)‖∞ ≤ δ(1/2
cD(S)) · 26|PD(S)| (4)

The base case is when S is a bottom-critical SCC, that does not depend on any
other critical SCCs. Then even if D(S) is non-empty, q∗D(S) = (q∗δ)D(S). However,

we do change a single coefficient p in S, by setting it to p′ = p(1− δ). Note that
because the PPS is in SNF form, p must appear in a equation xi = P (xS ,1)i
where xi is of type L, and thus the coefficient p appears in a single term pxj . We
wish to consider a new PPS in SNF form, parametrized by the possible values
z ∈ {(1 − δ), 1} that we multiply p by. To do this, we can simply add a new
variable xn+1 (for this particular SCC, S), and we then replace the term pxj by
pxn+1, and we add a new equation xn+1 = zxj to our system of equations. We
denote this new PPS by (xS , xn+1) = QS((xS , xn+1), z). Note that this is indeed
a SNF form PPS for either z ∈ {(1− δ), 1}. Note also that in terms of encoding
size, we have |QS | ≤ 2|PS |.

The LFP solution of (xS , xn+1) = QS((xS , xn+1), 1), in the S coordinates
has q∗S = 1, and the LFP solution of (xS , xn+1) = QS((xS , xn+1), (1 − δ)) in
the S coordinates is (q∗δ)S . Thus, by Theorem 8 (ii), we get ‖1 − (q∗δ)S‖∞ ≤

23|QS|
√
δ ≤ 26|PS |

√
δ. In this case cS∪D(S) = 1 so this is enough to establish the

inductive claim in inequality (4).
Next, suppose that S is a critical SCC that depends on a different critical

SCC. q∗S is the LFP solution of xS = PS(xS , q
∗
D(S)) and (q∗δ)S is the LFP solution

of xS = PS(xS , (q
∗
δ)D(S)). By Theorem 8 (ii), ‖1−(q∗δ)S‖∞ ≤ 23|PS |

√

‖1− (q∗δ)D(S))‖∞.
Substituting using the inductive assumption in inequality (4) gives:

‖1− (q∗δ)S‖∞ ≤ 23|PS|
√

‖1− (q∗δ)D(S)‖∞

≤ 23|PS|
√

δ(1/2
cD(S))26|PD(S)|

= 23|PS|+
6
2 |PD(S)|δ(1/2

cD(S)+1
)

≤ δ(1/2
cS∪D(S))23|PS∪D(S)|

The last inequality holds because cS∪D(S) = cD(S) + 1. This is because S
is itself a critical SCC. Note also that |PS∪D(S)| = |PS | + |PD(S)| since xS =
P (xS , xD(S))S and xD(S) = P (xD(S))D(S) are disjoint subsets of the equations
in x = P (x).

Finally suppose that S is not a critical SCC but does have q∗S = 1 and depends
on some critical SCC. Again q∗S is the LFP solution of xS = PS(xS , q

∗
D(S)) and

(q∗δ)S is the LFP solution of xS = PS(xS , (q
∗
δ)D(S)). By Theorem 8 (iii): ‖1 −

(q∗δ)S‖∞ ≤ 23|PS|‖1 − (q∗δ)D(S))‖∞. Substituting the inductive assumption (4)

gives ‖1−(q∗δ)S‖∞ ≤ 23|PS|+6|PD(S)|δ(1/2
cD(S)) which simplifies to ‖1−(q∗δ)S‖∞ ≤

δ(1/2
cS∪D(S))26|PS∪D(s)|. This is because S itself is non-critical, so cD(S) = cS∪D(S).

Let A (for “always”) denote the set of variables xi for which q∗i = 1, and
let M (for “maybe”) denote the set of variables xi for which 0 < q∗i < 1. A is
non-empty as otherwise we would have no critical SCCs. Every variable xi in A
is part of some SCC S with q∗S = 1. So our induction has already given that

‖1− (q∗δ)A‖∞ ≤ δ1/2
c

26|PA|

If M is empty, this bound on ‖q∗ − q∗δ‖∞ is enough. Otherwise we have to
use Theorem 8 (i). This gives that ‖q∗M − (q∗δ)M‖∞ ≤ 214|PM |+2‖1 − (q∗δ)A‖∞.
Substituting gives ‖q∗M − (q∗δ)M‖∞ ≤ 214|P |+2δ1/2

c

. We have now shown that

‖q∗ − q∗δ‖∞ ≤ 214|P |+2δ1/2
c

The only thing left to complete the proof of Theorem 9 is to get a bound on
‖(I −Bδ(q

∗
δ))

−1‖∞. For this we will use the techniques of the proof of Theorem
7. Call the set of variables for which (q∗δ)i = 1, Aδ and the set of variables
xi for which 0 < (q∗δ)i < 1, Mδ. Since q∗δ ≤ q∗, M ⊆ Mδ and Aδ ⊆ A. It is
worth noting that variables belonging to critical SCCs are in A ∩Mδ. We will
first show that if a variable xi depends (directly or indirectly) on some variable
xj for which we have reduced a coefficient in Pδ(x)j , then (q∗δ)i ≤ 1 − 2−|P |δ.
For any such xi, consider a shortest sequence xl1 , xl2 , . . . , xlm , such that (1):

l1 = j and Pδ(x)j has a reduced coefficient in it, (2): lm = i, and (3): for every
0 ≤ k < m, Pδ(x)lk+1

contains a term with xlk . There is some term pj,hxh in
P (x)j which has been changed to pj,h(1 − δ)xh in Pδ(x)j . Since x = P (x) is a
PPS, P (1)j ≤ 1, but note that Pδ(x)j is not proper, as indeed we must have that
Pδ(1)j ≤ P (1)j − pj,hδ ≤ 1 − pj,hδ. Also note that (q∗δ)j = Pδ(q

∗
δ)j ≤ Pδ(1)j ≤

1 − pj,hδ. For any 0 ≤ k < m, if xlk+1
has type Q, then (q∗δ)lk+1

≤ (q∗δ)lk . If
xlk+1

has type L, then 1 − (q∗δ)lk+1
≥ plk+1,lk(1 − (q∗δ)lk). By an easy induction

1− (q∗δ)i ≥ (
∏

{k|xlk
has Type L} plk+1,lk)(1 − (q∗δ)j). Thus:

1− (q∗δ) ≥ (
∏

{k|xlk
has Type L}

plk+1,lk)pj,hδ

Since this is the shortest sequence satisfying the stated conditions, for any 0 ≤
k < m, Pδ(x)lk has not had any coefficients reduced, and furthermore the xlk ’s
are all distinct variables. So all these coefficients plk+1,lk and pj,h are distinct
coefficients in x = P (x). The encoding size |P | is at least the number of bits
describing these rationals plk+1,lk and pj,h and thus

(q∗δ)i ≤ 1− 2−|P |δ

Next we show that the PPS x = Pδ(x) is non-critical. Suppose, for a contra-
diction that x = Pδ(x) is critical. Then it has some critical SCC S. But then
S must have also been an SCC in the PPS x = P (x), because the dependency
graphs of these PPSs are the same (we never reduce a positive probability to
0). For S to be a critical SCC in x = Pδ(x) , we must have that (q∗δ)S = 1 and
ρ(Bδ(1)S) = 1. However, q∗ ≥ q∗δ and ρ(B(1)S) ≥ ρ(Bδ(1)S) = 1. So q∗S = 1.
Lemma 6.5 of [8] shows that for any strongly connected PPS, x = P (x), with
Jacobian B(x), and with LFP, q∗, if x < q∗, then ρ(B(x)) < 1. Thus, by conti-
nuity of eigenvalues, ρ(B(q∗)) ≤ 1. Applying this to the strongly connected PPS
xS = P (xS ,1)S , since q∗S = 1, we get ρ(B(1)S) ≤ 1. Thus ρ(B(1)S) = 1 i.e. S
is a critical SCC of x = P (x). Either S is a bottom-critical-SCC or it depends
on some bottom-critical-SCC. So every variable xi in S depends on some vari-
able xj for which we have reduced a coefficient in Pδ(x)j . So for every xi in S,
q∗i ≤ 1− 2−|P |δ. But this contradicts our earlier assertion that q∗S = 1.

Bδ(q
∗
δ) has the block decomposition Bδ(q

∗
δ) =

(

Bδ(q
∗
δ)Mδ

Bδ(q
∗
δ)Mδ,Aδ

0 Bδ(q
∗
δ)Aδ

)

.

It is possible that Aδ is empty, in which case the bound we will obtain on
‖(I −Bδ(q

∗
δ)Mδ

)−1‖∞ will be enough to show the theorem. So we suppose here
that Aδ is non-empty. Mδ is non-empty since we assumed that we have at least
one critical SCC.

We need to show that both I − Bδ(q
∗
δ)Mδ

and I − Bδ(q
∗
δ)Aδ

are nonsin-
gular, and we need to get upper bounds on ‖(I − Bδ(q

∗
δ)Mδ

)−1‖∞ and ‖(I −
Bδ(q

∗
δ)Aδ

)−1‖∞. Once we do so, we can then apply Lemma 9 to get a bound on
‖(I −B(q∗δ))

−1‖∞.
First, let us show that I − Bδ(q

∗
δ)Aδ

is non-singular, and also bound ‖(I −
Bδ(q

∗
δ)Aδ

)−1‖∞.

We note that P (x)Aδ
= Pδ(x)Aδ

. We have shown that any variable xi for
which we have reduced a coefficient in Pδ(x)i has q∗i ≤ 1 − 2−|P |δ and so xi is
not in Aδ. Thus the equations in xAδ

= Pδ(xAδ
)Aδ

) are a subset of the equations
x = P (x) and so the encoding size of this PPS is at most |P |. We have also
shown that the PPS x = Pδ(x) is non-critical. So we can apply Lemma 8 to the
PPS xAδ

= Pδ(xAδ
)Aδ

), which gives ‖(I −Bδ(q
∗
δ)Aδ

)−1‖∞ ≤ 23|P |.

Now, let us show that I − Bδ(q
∗
δ)Mδ

is non-singular, and also bound ‖(I −
Bδ(q

∗
δ)Mδ

)−1‖∞.

Consider the PPS, restricted to the variables in Mδ. Note that no variable in
Aδ can depend on these. Thus, restricting the PPS x = Pδ(x) to the variables in
Mδ defines a PPS xMδ

= Pδ(xMδ
,1)Mδ

. Note that the LFP of this is (q∗δ)Mδ
< 1,

by definition of Mδ. To simplify notation in the current argument, we shall
denote this PPS by y = R(y), and we shall use r∗ := (q∗δ)Mδ

to denote its LFP.
Furthermore, let us use BR(y) to denote its Jacobian. We note, firstly, that
BR(r

∗) = Bδ(q
∗
δ)Mδ

. The way to see this is to note that q∗δ = (r∗,1) and so the

entries of both matrices are ∂(Pδ)i
∂xj

(q∗δ) for xi, xj ∈ Mδ.

So, rephrased, we want to show ρ(BR(r
∗)) < 1, and we want to find a bound

on (I − BR(r
∗))−1. To do this, we need to follow the proof of Theorem 5 (i) in

the case y = r∗. (That Theorem was proved in [6].)

We need to use Lemma 3, with A = BR(r
∗) and u = 1− r∗. By Lemma 3.5

of [7], BR(r
∗)(1 − r∗) ≤ 1− r∗. We want to find any β so that condition (I) of

Lemma 3 applies to variables yi such that either yi has type Q or else R(1)i < 1.
Namely for such variables yi, it should be the case that (BR(r

∗)(1 − r∗))i ≤
(1− β)(1− r∗)i.

Let us first note that, for any yi, r
∗
i ≤ 1 − 2|P |δ. We have shown that if a

variable xi depends on some variable xj for which we have reduced a coefficient
in Pδ(x)j , then (q∗δ)i ≤ 1−2−|P |δ. If xi ∈ Mδ depends on no such variables, then
xi ∈ M . But then we have q∗i ≤ 1 − 2−4|P | ≤ 1 − 2−|P |δ because we assumed
that δ ≤ 2−3|P |. So for any xi ∈ Mδ, (q

∗
δ)i ≤ 1− 2−|P |δ.

In the case where yi = R(y)i has form Q, for some yj , yk, R(y)i = yjyk and
so

Br(r
∗)(1− r∗))i = r∗j (1− r∗k) + r∗k(1− r∗j)

= r∗j + r∗k − 2r∗j r
∗
k

= (1− r∗j r
∗
k)− (1 + r∗j r

∗
k − r∗j − r∗k)

= (1− r∗i)− (1− r∗k)(1− r∗j)

= (1− r∗i)−
1

2
((1 − r∗k)(1 − r∗j) + (1− r∗j)(1− r∗k))

≤ (1− r∗i)−
1

2
2−|P |δ((1− r∗j) + (1− r∗k))

≤ (1− r∗i)−
1

2
2−|P |δ((1− r∗j) + (1− r∗k)− (1− r∗j)(1 − r∗k))

= (1− r∗i)−
1

2
2−|P |δ(1− r∗i)

= (1− 1

2
2−|P |δ)(1 − r∗i)

Some variables xi with Pδ(1)i < 1 have P (1)i < 1, in which case P (1)i ≤
1 − 2|P |. If a variable xi has Pδ(1)i < 1 but P (1)i = 1 then we have reduced
some coefficient in Pδ(x)i by multiplying it by 1− δ so we have Pδ(1)i ≤ 2−|P |δ.
So for any yi with R(1)i < 1, R(1)i ≤ 2−|P |δ. So if R(1)i < 1,

(BR(r
∗)(1− r∗))i ≤ (BR(

1

2
(1+ r∗))(1− r∗))i

≤ (R(1))i − (R(r∗))i

≤ (1− 2−|P |δ)− (r∗)i

≤ (1− 2−|P δ)(1− q∗δ)i

So condition (I) of Lemma 3, with β = 2−(|P |+1)δ, applies to variables yi
which either have type Q or have Ri(1) < 1.

It remains to find an α such that condition (II) of Lemma 3 that applies to
yi which either has type L and satisfies R(1)i = 1. (Note that there aren’t any
variables of type T in Mδ, and thus none in y.) We need the following Lemma
from [6]:

Lemma 12. (Lemma C.8 of [6]) For any PPS, x=P(x), with LFP 0 < q∗ < 1,
for any variable xi either

(I) the equation xi = P (x)i is of type Q, or else P (1)i < 1.
(II) xi depends on a variable xj, such that xj = P (x)i is of type Q, or else

P (1)j < 1.

So given yi of type L and with Ri(1) = 1, there is a sequence yll , yl2 , . . . , ylm
with lm = i, with yl1 of type Q or R(1)lm < 1 and for every 0 ≤ k < m, R(y)lk+1

contains a term with ylk . Without loss of generality, we consider the shortest
such sequence. Then for 0 < k ≤ m, ylk does not have type Q so it must have

type L. Also R(1)lk = 1. So R(y)lk contains a term plk,lk−1
yk−1. We have that,

BR(r
∗)lk,lk−1

= plk,lk−1
. Because R(1)lk = 1, this term has not been reduced in

Pδ, so plk,lk−1
is a coefficient in x = P (x). That this is the shortest sequence

implies that each of these is a distinct coefficient in x = P (x). So
∏m−1

k=1 plk+1,lk ≥
2−|P |. Now (BR(r

∗)m−1)i,lm ≥ ∏m−1
k=1 BR(r

∗)lk+1,lk =
∏m−1

k=1 plk+1,lk ≥ 2−|P |.
So condition (II) of Lemma 3 applies to yi of type L with Ri(1) = 1 when

α = 2−|P |.
We can now use Lemma 3 with A = BR(r

∗), u = 1 − r∗, α = 2−|P | and
β = 2−|P |δ, giving

‖(I −BR(r
∗))−1‖∞ ≤ n

(1− r∗)2min2
−|P |2−|P |δ

We have argued that (1 − r∗)min ≥ 2−|P |δ. Using n ≤ 2|P | as a (very)
conservative bound on n, we have:

‖(I −Bδ(q
∗
δ)Mδ

)−1‖∞ ≤ 25|P |δ−3 (5)

If Aδ is empty, then Bδ(q
∗
δ) = Bδ(q

∗
δ)Mδ

and so we are done.
Otherwise we appeal to Lemma 9 with the block decomposition I−Bδ(q

∗
δ) =

(

I −Bδ(q
∗
δ)Mδ

−Bδ(q
∗
δ)Mδ,Aδ

0 I −Bδ(q
∗
δ)Aδ

)

. Letting Z = (I − Bδ(q
∗
δ)Mδ

), applying Lemma

9, we get:

‖(I −Bδ(q
∗
δ))

−1‖∞ ≤ max{‖Z−1‖∞ + ‖Z−1‖∞‖Bδ(q
∗
δ)Mδ ,Aδ

‖∞‖(I −Bδ(q
∗
δ)Aδ

)−1‖∞,

‖(I −Bδ(q
∗
δ)Aδ

)−1‖∞}

and ‖(I − Bδ(q
∗
δ)Aδ

)−1‖∞ ≤ 23|P | and ‖Bδ(q
∗
δ)Mδ,Aδ

‖∞ ≤ 2. Combining with
the bound above in (5), we get:

‖(I −Bδ(q
∗
δ))

−1‖∞ ≤ max{25|P |δ−3 + 25|P |δ−323|P |2, 23|P |}

Or, more simply, ‖(I −Bδ(q
∗
δ))

−1‖∞ ≤ 28|P |+2δ−3. ⊓⊔

We are finally ready to prove Theorem 3, to which this entire section was dedi-
cated.

Theorem 3. For any ǫ > 0, and for any SCFG, G, in SNF form, with qG > 0,
with critical depth c(G), consider the new SCFG, G′, obtained from G by the
following process: for each bottom-critical SCC, S, of x = PG(x), find any rule

r = A
p−→ B of G, such that A and B are both in S (since G is in SNF, such a

rule must exist in every critical SCC). Reduce the probability p, by setting it to

p′ = p(1 − 2−(14|G|+3)2c(G)

ǫ2
c(G)

). Do this for all bottom-critical SCCs. This
defines G′, which is non-critical.

Using G′ instead of G, if we apply R-NM, with parameter h+2 to approximate
the LFP solution qG

′⊗D of the MPS y = PG′⊗D(y), then ‖qG⊗D − x[h+1]‖∞ ≤ ǫ
where h := ⌈log d+ (3 · 2c(G) + 1)(log(1/ǫ) + 14|G|+ 3)⌉.

Thus we can compute the probability qG,D
A =

∑

t∈F qG⊗D
s0At within additive er-

ror δ > 0 in time polynomial in: |G|, |D|, log(1/δ), and 2c(G), in the standard
Turing model of computation.

Proof (of Theorem 3).
Note that for an SCFG, G, and its corresponding PPS, x = PG(x), the

bit encoding size of G is at least as big as that of the PPS. In other words,
we have |G| ≥ |PG|. So, we can apply Theorem 9 to the PPS x = PG(x)

with δ := 2−(14|G|+3)2c(G)

ǫ2
c(G)

, yielding that ‖qG − qG
′‖∞ ≤ ǫ

2 and ‖(I −
BG′(qG

′

))−1‖∞ ≤ 28|G|+2+3(14|G|+3)2cGǫ−3·2c(G)

. Now Lemma 1 and Lemma 2
(vi) allow us to convert this bound on ‖(I − BG′(qG

′

))−1‖∞ to a bound on
‖(I −BG′⊗D(qG

′⊗D))−1‖∞. Namely:

‖(I −BG′⊗D(qG
′⊗D))−1‖∞ ≤ d28|G|+2+3(14|G|+3)2c(G)

ǫ−3·2c(G)

Now Theorem 6 gives that ‖q∗G′⊗D − x[h+1]‖∞ ≤ ǫ
2 since

h ≥ log ‖(I −BG′⊗D(q∗G′⊗D))−1‖∞ + log(1/ ǫ
2). Thus

‖qG⊗D − x[h+1]‖∞ ≤ ‖qG⊗D − qG
′⊗D‖∞ + ‖qG′⊗D − x[h+1]‖∞

≤ ‖qG − qG
′‖∞ + ‖qG′⊗D − x[h+1]‖∞ (by Lemma 1 & Lemma 2(vi))

≤ ǫ

2
+

ǫ

2
= ǫ

⊓⊔

C Proof of Proposition 4

Recall that, for a string α ∈ (V ∪Σ)∗, with n = |V |, κ(α) is the n-vector where,
for A ∈ V , κA(α) is the number of times A appears in α. Recall that we define
C(r, π) to be the number of times the rule r is used in the derivation π, and we
define C(A, π) =

∑

r∈RA
C(r, π). For A ∈ V , define e

A to be the unit n-vector

with (eA)A = 1 and (eA)B = 0 for B 6= A. Define K(π) =
∑

A C(A, π)eA.
Recall that when doing parameter estimation (and EM) we use formula (2)

p(A → γ) :=

∑

π P(π)C(A → γ, π)
∑

π P(π)C(A, π)

to obtain (or update) the probabilities of rules in G.
Recall that P(π) is a probability distribution on the complete derivations of

the grammar that start at a designated start nonterminal, S. Again, equation
(2) only makes sense when the sums

∑

π P(π)C(A, π) are finite and nonzero,
which we assume; we also assume every non-terminal and rule of H appears in
some complete derivation π with P(π) > 0.

Proposition 4. If we use parameter estimation to obtain SCFG G using equa-
tion (2), under the stated assumptions, then G is consistent, i.e. qG = 1, and
furthermore the PPS x = PG(x) is non-critical, i.e., ρ(BG(1)) < 1.

A first step toward establishing Proposition 4 is the following Lemma, from
which we derive a (left) cone vector for BG(1), which ultimately allows us to
show ρ(BG(1)) < 1.

Lemma 13. Let S denote the designated start nonterminal. Then

e
S = (I −BG(1)

T)(
∑

π

P(π)K(π))

Proof. Firstly, we need to relate BG(1) to the probabilities of the rules. Given a
rule A → γ we define BA→γ(x) := BGA→γ

(x) where GA→γ is an SCFG with the

same non-terminals and terminals as G but with only one rule, A
1−→ γ, which

has probability 1. So then BA→γ(1) is zero outside the A row. We allow that G
may or may not be in normal form. We can say that

PG(x)A =
∑

r=(A→γ)∈RA

p(r)
∏

B∈V

x
κB(γ)
B

In terms of the “partial” SCFGs, Gr, associated with each rule r ∈ R, this says
PG(x)A =

∑

r∈RA
p(r)PGr

(x)A. The A row of BG(x) is then
∑

r∈RA
p(r)Br(x)A.

Since BA→γ(xG) is zero outside of the A row, BG(x) =
∑

A

∑

r∈RA
p(r)Br(x).

That is:

BG(x) =
∑

r∈R

p(r)Br(x) (6)

So we can obtain BG(1) from each of the Br(1). BA→γ(1) is zero except in the
A row. For any non-terminal B,

BA→γ(x)A,B = ∂
∂xB

∏

C x
κ(γ)C
C = κB(γ)x

κB(γ)−1
B

∏

C 6=B x
κ(γ)C
C . Evaluated at 1,

this yields:

(BA→γ(1))A,B = κB(γ) (7)

Now we look at what happens to the count of non-terminals in the derivation
π. We have S

π⇒ w for some w ∈ Σ∗. That is, π = r1r2 . . . rk ∈ R∗, and
α0

r1⇒ α1
r2⇒ α2

r2⇒ . . .
rk⇒ αm, for α0 = S, αm = w and some α1, α2, . . . , αm−1 ∈

(V ∪Σ)∗.

Consider αi
ri⇒ αi+1 for some 0 ≤ i ≤ m− 1. The rule ri is Ai → γi for some

non-terminal Ai and some string γi. Replacing Ai by γi affects the counts of the
non-terminals by κ(αi+1)− κ(αi) = κ(γi)− e

Ai . Note that for any nonterminal
A, and rule A → γ, we have BA→γ(1)

T
e
A = κ(γ), by equation (7), so

(I −BA→γ(1)
T)eA = e

A − κ(γ) (8)

Since for any string w ∈ Σ∗, we have κ(w) = 0, we get:

e
S = e

S − κ(w)

=

m−1
∑

i=0

κ(αi)− κ(αi+1)

=
∑

A

∑

(A→γ)∈RA

(C(A → γ, π))(eA − κ(γ))

=
∑

A

∑

(A→γ)∈RA

(C(A → γ, π))(I −BA→γ(1)
T)eA (by (8))

This is true for any complete derivation π, so we can use the probability distri-
bution P(π), which has

∑

π P(π) = 1 to obtain:

e
S =

∑

π

P(π)
∑

A

∑

(A→γ)∈RA

(C(A → γ, π))(I −BA→γ(1)
T)eA

=
∑

A∈V

(
∑

(A→γ)∈RA

∑

π

P(π)(C(A → γ, π))(I −BA→γ(1)
T))eA

=
∑

A

(I −BG(1)
T)(

∑

π

P(π)C(A, π))eA

= (I −BG(1)
T)(

∑

π

P(π)K(π))

⊓⊔
Proof (Proof of Theorem 4). Define v = (

∑

π P(π)K(π)). Then we have that
v = BG(1)

T v + e
S . We want to use Lemma 3 to show that ρ(BG(1)

T) < 1. We
can do this by applying it to the vector u = 1

‖v‖∞
v. We do not need explicit

bounds on α, β and umin, but we need to show that the conditions hold for some
positive α, β and umin. Firstly, we note that v > 0, since every non-terminal in
G appears in some derivation π with P(π) > 0. So u > 0. Since u = 1

‖v‖∞
v,

‖u‖∞ = 1. Note that u = 1
‖v‖∞

(BG(1)
T v + e

S) = BG(1)
Tu + 1

‖v‖∞
e
S. Thus

BG(1)
Tu = u− 1

‖v‖∞
e
S ≤ u. In the S coordinate (and only in the S coordinate),

we have that (BG(1)
Tu)S = uS − 1

‖v‖∞
< uS , so there is some β > 0 for which

(BG(1)
Tu)S ≤ (1− β)uS . For this β, uS satisfies condition (I) of Lemma 3. We

need to find an α for which all non-terminals other than S satisfy condition (II)
of Lemma 3.

Consider a non-terminal A 6= S. A appears in some complete derivation π
with P(π) > 0. There is some sequence of (not necessarily consecutive) rules
ri : Di → γi, i = 1, . . . , k, appearing in that order in π, such that D1 = S,
Di ∈ γi−1 for all 2 ≤ i ≤ k, and A ∈ γk. Without loss of generality k ≤ n, since
otherwise there must be i, j with 2 ≤ i < j ≤ k such that Di = Dj and so the
shorter sequence r1, ..., ri−1, rj , ...rk would have satisfied the above conditions.
For any 1 ≤ i ≤ k−1, (Bri(1))Di,Di+1 = κ(γi)Di+1 ≥ 1, and similarly (Brk(1))Dk,A ≥
1. Now any rj , with 1 ≤ j ≤ k, appears in π which has P(π) > 0. So p(rj) > 0.

But BG(1) ≥ p(rj)Brj (1). So for any 1 ≤ i ≤ k− 1, (BG(1))Di,Di+1 ≥ p(ri) > 0
and similarly BG(1)Dk,A > 0. So (BG(1)

k)S,A > 0. Then ((BG(1)
T)k)A,S =

((BG(1)
k)T)A,S = (BG(1)

k)S,A > 0. We then define αA = ((BG(1)
T)k)A,S . If we

take α = min{A∈V |A 6=S} αA, then α > 0 and all non-terminals A 6= S satisfy con-

dition (II) of Lemma 3: i.e., for each A 6= S, there is a k with ((BG(1)
T)k)A,S ≥

α. We can now apply Lemma 3 which yields that ρ(BG(1)
T) < 1. So ρ(BG(1)) =

ρ(BG(1)
T) < 1. So, G is not critical. Consistency of G, i.e., the fact that qG = 1,

also follows. This holds because, firstly, we can easily see that G is a proper SCFG.
In other words, for any nonterminal A, the sum of the rule probabilities is 1,

because
∑

r∈RA
p(r) =

∑

r∈RA

∑
π P(π)C(r,π)∑
π P(π)C(A,π) = 1.

Thus, G has a PPS, x = PG(x), such that PG(1) = 1, and ρ(BG(1)) < 1.
Lemma 6.3 of [8] tells us that for any vectors 0 ≤ x ≤ y, BG(y)(y − x) ≥
PG(y) − PG(x). Let y = 1, and let x = qG. Then we have BG(1)(1 − qG) ≥
PG(1)− PG(q

G) = 1− qG, since we have argued both 1 and qG are fixed points
of PG. But BG(1) is a non-negative square matrix, and (1− qG) ≥ 0. Theorem
8.3.2 of [10] tells us that for a square matrix M ≥ 0, and vector v ≥ 0, if v 6= 0
and Mv ≥ v, then ρ(M) ≥ 1. We know that BG(1)(1 − qG) ≥ 1 − qG, but
we have already established that ρ(BG(1)) < 1. Thus it must be the case that
(1− qG) = 0. In other words, G is consistent. ⊓⊔

D A bad example for infix probabilities

We now present a family of SCFGs, Gn, of size O(n), and with critical-depth n,
and we give a fixed 3-state DFA, D. We use these to indicate why it is likely to be
difficult to overcome the exponential dependence on critical-depth of the given
SCFG, G, in order to obtain a P-time algorithms for computing the probability
(within desired precision) that an arbitrary G generates a string in L(D).

The DFA D, is depicted in Figure 1. It has only 3 states and the property it
checks is whether aa is an “infix” of the string. In other words, L(D) = {waaw′ |
w ∈ Σ∗ and w′ ∈ Σ∗}. The family of SCFGs Gn is defined by the following
rules:

t1start t2 t3
a

b,c

a

b,c

a.b.c

Fig. 1. Automaton for the infix aa

A0
0.5−−→ A0A0

A0
0.5−−→ A1

A1
0.5−−→ A1A1

A1
0.5−−→ A2

...
An

1−→ caBnac

Bn
1−→ Bn−1Bn−1

Bn−1
1−→ Bn−2Bn−2

...
B0

0.5−−→ ǫ

B0
0.5−−→ b

Proposition 7. qGn = 1. In other words, the probability of termination (gen-
erating a finite string) starting at any nonterminal in Gn is 1.
Furthermore, qGn⊗D

(t1A0t3)
= 1

2 is the probability that this SCFG Gn, starting at A0,

generates a string which has infix aa. On the other hand, qGn⊗D
(t1Ait3)

= 2−2i is the

same probability, starting at Ai.

The proof of this proposition is not at all difficult (using simple induction, and
the formula for solving quadratic equations).

Let us argue why this causes severe difficulties for the approximate computa-
tion of qG⊗D. Note that qGn⊗D

(t1A0t3)
= 1

2 and qGn⊗D
(t1Ant3)

= 2−2n . However, in the prod-

uct MPS y = PG⊗D(y) the variable y(t1A0t3) depends on the variable y(t1Ant3),

and furthermore, if we, for example, “under-approximate” qGn⊗D
(t1Ant3)

= 2−2n , and

instead set y(t1Ant3) := 0, or, what effectively achieves the same result, if we
change the product MPS by setting PG⊗D(y)t1Ant3 ≡ 0, then in the resulting
modified MPS, with new LFP q̃Gn⊗D, we would get q̃Gn⊗D

(t1A0t3)
= 0.

Likewise, one can show that if we “over-approximate” qGn⊗D
(t1Ant3)

, even very

slightly, setting PG⊗D(y)t1Ant3 ≡ 1
2poly

in a consistent way, then we will end up

with a new LFP q̃Gn⊗D, such that q̃Gn⊗D
(t1A0t3)

≈ 1 (in other words, very close to

1).
In both cases, the resulting approximate solution q̃Gn⊗D

(t1A0t3)
is terribly far from

the actual solution 1
2 . (Note that this is irrespective of the algorithm that is used

to compute the other probabilities.)
Furthermore, we can not in any way use the fact that we can detect in P-time

and remove variables xA from the PPS x = PGn
(x) for which qGn

A = 1, because
indeed qG = 1, and yet in the product qG⊗D there are coordinates with wildly
different probabilities that we wish to compute.

	Stochastic Context-Free Grammars, Regular Languages, and Newton's Method

