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We extend to large lattices the work of a previous investigation of the phase diagram of the anisotropic
five-dimensional SU(2) Yang–Mills model using Monte Carlo simulations in the regime where the lattice
spacing in the fifth dimension is larger than in the other four dimensions. We find a first order phase
transition between the confining and deconfining phase at the anisotropic parameter point β4 = 2.60
which was previously claimed to be the critical point at which the order of the transition changes from
first to second. We conclude that large lattices are required to establish the first order nature of this line
of transitions and consequently that the scenario of dimensional reduction of the five-dimensional theory
to a continuum four-dimensional theory via the existence of the so-called “layer phase” is unpromising.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

Since the idea of introducing extra dimensions to give a better
understanding of the hierarchy between weak and Planck scales
was introduced more than a decade ago in [1], many models have
been developed to show how extra dimensional theories might
solve these problems and yet exhibit a connection to the four-
dimensional world that we observe. Well-known models that lead
to dimensional reduction are those of Randall–Sundrum (RS) [2,3],
ADD [1,4,5], Dvali–Shifman mechanism (DS) [6] and compactifica-
tion of the extra dimensions [7–10] and since the work of [11]
they have gained phenomenological interest.

The first three models envisage the four-dimensional world as
layers that exist in the extra dimensions and are decoupled from
each other. All the particles that we currently observe can only
propagate in one layer, with the exception of the graviton that
can interact between the layers. The RS model deals with warped
space–time, while the ADD model (D-brane models) and DS mech-
anism consider the extra dimensions as flat. The compactification
of the extra dimension is based on Kaluza and Klein’s attempt to
unify fundamental forces in the early 20th century [12,13].

Since higher dimensional non-abelian models are non-renorma-
lizable, it is necessary to define an effective theory by defining
parameter values at which there is a separation of scales be-
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tween the cutoff Λ and low energy physics. The first study of
the localization of fields on branes using non-perturbative meth-
ods came from Fu and Nielsen [14]. They propose that, when
there is a D-dimensional lattice, a d-dimensional layer phase (D =
n + d) can be formed if the nearest-neighbour gauge couplings
of the d-dimensional sublattice are different from the other n di-
mensions. Then, particles and gauge fields can travel within the
d-dimensional layer phase, but they exhibit a kind of confinement
when they try to propagate in any of the n extra dimensions. The
existence of the layer phase was shown in the five-dimensional
U(1) gauge theory using Monte Carlo simulations in [15–17].

When the lattice SU(2) Yang–Mills model is considered in five
dimensions, the so-called “layer” phase is believed to exist when
the anisotropy in the lattice couplings is such that the lattice spac-
ing in the extra dimension is larger than the one in the usual four
dimensions, i.e. a5 > a4. In this layer phase one expects a zero
string tension in the usual four-dimensional directions, but a non-
zero string tension along the extra dimension.

The phase diagram of the five-dimensional non-abelian gauge
theory was first studied in 1979 by Creutz [21], who showed a
phase transition between the confined and the deconfined phase
of the model with only isotropic couplings. During the last decade,
the dimensional reduction from the five-dimensional theory to
four dimensions, by implementing the model on a torus, was
investigated on an anisotropic lattice using Monte Carlo tech-
niques [7–10]. These papers show that, when the model is dimen-
sionally reduced via compactification, the phase transition changes
its nature to second order and belongs to the same universality
class as the four-dimensional Ising Model. In [7,8,10] simulations
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were done in the region where a4 > a5, whereas in [9] the simula-
tions were carried out in the anisotropy region which is of interest
in the case of the layer phase, i.e. a4 < a5.

The existence of the layer phase was investigated by mean-field
approximation on an anisotropic lattice with periodic boundary
conditions [18,19] and it was shown that the planes transverse
to the extra dimension were decoupled from each other. An in-
vestigation of the existence of this layer phase using Monte Carlo
techniques was attempted by Farakos et al. [20]. They claim that
the transition between the five-dimensional Coulombic (decon-
fined) phase and the strong-coupling (confined) phase changes its
order from first to second, implying that in the fifth dimension the
layer phase exists. This opens a possibility of defining a continuum
four-dimensional field theory.

The motivation for studying this model further came mostly
from results in [9], which indicate that the lattice volumes used
in the previous Monte Carlo simulations [20], were too small to
show the correct order of the phase transition. In this Letter we
extend this investigation to larger volumes.

This Letter is structured as following: In Section 2 we set up the
lattice model and the observables that were measured. In Section 3
we give details for our simulations and we present our results, and
in Section 4 we give a brief conclusion.

2. The model

2.1. Anisotropic action

We investigate the anisotropic SU(2) Yang–Mills gauge theory
in five dimensions, whose action in the continuum is given by

S E =
∫

d4x

∫
dx5

1

2g2
5

Tr F 2
MN (1)

where M, N = 1 · · ·5 and F MN = ∂M AN − ∂N AM + i[AM , AN ] with
AM = g5 Aa

M T a .
On the lattice the action of the model becomes

S = β4

∑
x

∑
1�μ<ν�4

(
1 − 1

2
Tr Uμν(x)

)

+ β5

∑
x

∑
1�μ�4

(
1 − 1

2
Tr Uμ5(x)

)
μ,ν=1...4

(2)

where Uμν(x) represents the oriented plaquette along space–time
directions given by

Uμν(x) = Uμ(x)Uν(x + μ̂a4)U †
μ(x + ν̂a4)U †

ν(x) (3)

and Uμ5(x) represents the plaquette formed when one of the di-
rections is the extra dimensional one, given by

Uμ5(x) = Uμ(x)U5(x + μ̂a4)U †
μ(x + 5̂a5)U †

5(x) (4)

where Uμ = exp(ig5a4 Aμ) and U5 = exp(ig5a5 A5) are the gauge
links and a4 is the lattice spacing in the temporal and three spatial
directions and a5 is the lattice spacing in the extra direction.

The anisotropy parameter on the lattice is characterized by γ
which is given by

γ =
√

β5

β4
(5)

and at classical level this is given by

γ = a4

a5
(6)
Fig. 1. A sketch of the phase diagram of the anisotropic SU(2) Yang–Mills model. The
dashed blue line denotes the isotropic case γ = 1. The region above this line was
previously investigated in [7,8,10] and the region below in [9,20]. The dashed-dotted
green line appears when the extra dimension is compactified [7,9,10]. When no
compactification is involved, there is a bulk phase transition which is shown in the
figure as a red solid line. It was shown to exist up to β4 = 2.50 in [9]. In this work
we extend the range of this line up to β4 = 2.60 with no evidence that this line
will not continue for larger values of β4. For β4 > 2.60 the idea of the existence of
the layer phase arises. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

Fig. 2. The susceptibility of the plaquette in the extra dimension, P̂5 for V = 165

keeping β4 fixed at 2.60 and varying β5. The critical point is the point at which the
susceptibility gains its maximum value.

2.2. Observables

In order to investigate the phase diagram of the model we use
the following observables:

• Average plaquette in the extra dimension x5, P̂5

〈 P̂5〉 =
〈

1

4V Nc

∑
x

∑
μ

Tr
(
Uμ5(x)

)〉
(7)

and its susceptibility

χ P̂5
= V

(〈
P̂ 2

5

〉 − 〈 P̂5〉2) (8)

where V is lattice volume given by V = LT × L3
S × L5, with LT ,

L S and L5 the size of the temporal, spatial and extra dimen-
sion respectively.

• Temporal Polyakov Loop. This can be measured on the whole
lattice given by
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Fig. 3. The histograms for the plaquette in the extra dimension for V = 204 ×8, fixed β4 = 2.60 and for two different values of β5: β5 = 0.843 (top) and β5 = 0.8445 (bottom)
are shown on the left. We can see that the peak moves towards the right as we go to higher values of β5. The corresponding histograms for the temporal Polyakov loop are
shown on the right. We can see that for β5 = 0.843 it has a zero expectation value whereas for β5 = 0.8445 it shows a two-peak structure.
PolyT = LT

Nc V

∣∣∣∣∣
∑
�x,x5

Tr
(LT −1)a4∏

x1=0

U1(x)

∣∣∣∣∣ (9)

Since, in the layer phase, each layer is uncorrelated, the
Polyakov loop may be measured in one layer and so we also
compute

PolyT (x5) = 1

Nc L3
S

∣∣∣∣∣
∑

�x
Tr

(LT −1)a4∏
x1=0

U1(x)
∣∣
x5

∣∣∣∣∣ (10)

We define the Polyakov loop susceptibilities as

χPolyT
= V

LT

〈(
Poly2

T −〈PolyT 〉2)〉 (11)

χPolyT
(x5) = L3

S

〈(
PolyT (x5)

2 − 〈
PolyT (x5)

〉2)〉
(12)

The expected behaviour of the plaquette for a first order phase
transition is to show hysteresis in the expectation value and a
divergence in the susceptibility at the critical point. The tempo-
ral Polyakov loop is expected to have a zero expectation value in
the strong phase, i.e. to fluctuate around zero and a non-zero ex-
pectation value in the deconfining phase, i.e. to show a two-peak
structure.

3. Results from lattice simulations

Our model was implemented on the lattice, using the Kennedy–
Pendleton Heat-Bath algorithm [22] combined with overrelaxation
updates [23]. Specifically, we took one heat-bath measurement ev-
ery L S/2 overrelaxation steps. The autocorrelation that arises was
taken into account in our analysis. The number of measurements
varied between 100,000 and 200,000 at each set of points in our
parameter space (β4, β5) that were investigated. Measurements
were taken starting from either random SU(2) matrices (hot config-
urations) or by setting all the SU(2) matrices to the identity matrix
(cold configuration). The lattice volumes were 165, 204 × 8 and
244 × 8. The former was the largest investigated by Farakos and
Vrentzos [20] and was included here as a check with their results.
The bigger volumes were used, since [9] showed that there is a
minimum size of the spatial/temporal and the extra direction in
order to see a clear first order phase transition. Since, 165 is below
this minimum size, we simulated bigger volumes to investigate the
order of the phase transition. We reduced the size of the extra di-
mension to L5 = 8 to save compute time, since the lattice spacing
in the extra dimension is much larger for high β4 values than the
lattice spacing in the other directions (as shown in [9]), so the sys-
tem remains five-dimensional.

First, we did a scan in the parameter space (β4, β5) using small
lattices to identify the first order phase transition that was shown
in previous work up to β5 = 2.50. The phase diagram of the model
is shown schematically in Fig. 1. The layer phase was previously
claimed to exist at large β4 and small β5, as shown. Our point of
interest is β4 = 2.60 on the line of transition, which was claimed
to be the critical point at which the transition changes from first to
second order in [20]. The critical point in β5 was found by imple-
menting the model on a lattice of volume 165. At this volume we
were able to do a wide scan by investigating a sufficient number of
different β5 to identify the critical point. Even though it does not
show any clear evidence of first order phase transition in terms of
a two-state signal, by looking at the susceptibility it looks like it
has a divergence at the critical point (Fig. 2). The critical β5 point
was found to be β5 = 0.8437(5) which agrees within error with
the value found in [20].

For the investigation of the phase transition on the larger lat-
tices we focused on the critical region which was estimated to be
between β5 = 0.843 and β5 = 0.8445, based on the critical value
found for the 165 lattice. As can be seen from Fig. 3, the plaque-
tte moves to the right as we go to higher values of β5 and the
temporal Polyakov loop is zero for the point β5 = 0.843, which
is in the confining phase and has a two-peak structure for the
point β5 = 0.8445, which is in the deconfining phase, as expected.
We also checked how the temporal Polyakov loop is distributed
when all the x5-slices are considered independently (Eq. 10) and
we could see that each fluctuates around zero. Also, we confirmed
that the critical point was included in this region by observing
that, for one point that lies in between these values, either a clear
two-state signal or large fluctuations between two values in the
average value of the plaquette were present, as can be seen in
Figs. 4 and 5.

The points that were investigated are β5 = 0.843,0.8435,0.844,

0.8445. For the lattice volume of 204 × 8, we cannot distinguish
the two states, since by starting either from hot or cold configu-
rations, the expectation of the plaquette is the same. However, as
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Fig. 4. Histograms of the average plaquette in the extra dimension, P̂5 starting from
both cold and hot configurations for V = 204 × 8, β4 = 2.60 and β5 = 0.8435. We
can see that since this point is very close to the critical one, the plaquette fluctuates
between the two vacua and thus the distribution is not Gaussian anymore.

Fig. 5. Histograms of the average plaquette in the extra dimension, P̂5 starting from
both cold and hot configurations for V = 244 × 8, β4 = 2.60 and β5 = 0.8435. Here,
we can see that the distributions, starting from either cold or hot, build up as two
Gaussian distributions, one for each vacuum that the system equilibrates to.

shown in Fig. 4, the distribution is not Gaussian. This is the first
hint of the existence of a first order phase transition. The larger
volume of 244 × 8 shows a clear two-state signal as can be seen
from the histogram in Fig. 5. The overlap that appears between
the histograms starting from hot or cold configurations is due to
the fact that the two vacua of the potential energy are not so deep
and thus the system fluctuates between them. For a check, we im-
plemented one single point (β5 = 0.844) on a 324 × 8 lattice and
we can see in Fig. 6 that the two states are now separated by a
wide gap, and there is no evidence of tunnelling from one to the
other, i.e. it stays in the phase in which it first equilibrated, de-
pending on the initial configuration. This is also an indication that
the extrapolation to the thermodynamic limit must be based on
sufficiently large lattices.

We note that the critical point was not estimated precisely, be-
cause reweighting techniques were not trustworthy for the large
volumes and ensemble sizes that were used in this work due to
limited statistics.

The code was written using QDP++ [24] and run on GPUs using
QDP-JIT [25]. An estimate of the compute time required for the in-
vestigation of a single point on an NVIDIA Tesla C2070 Computing
Processor (GPU) for the volumes used in this work for a set of
100,000 measurements with L S/2 overrelaxation steps and a heat-
bath update each time is shown in Table 1. The GPUs were pro-
vided by the Particle Physics Theory Group at the University of
Fig. 6. Histograms of the average plaquette in the extra dimension, P̂5 starting from
both cold and hot configurations for V = 324 × 8, β4 = 2.60 and β5 = 0.844. It is
clear that a first order phase transition is present since starting from different con-
figurations, the system equilibrates in different states with no tunnelling between
them.

Table 1
Estimated compute time required on an NVIDIA Tesla C2070 Com-
puting Processor for 100,000 measurements for a single point in the
parameter space (β4, β5).

Lattice volume Compute time (hours)

16 × 16 × 16 × 16 × 16 190
20 × 20 × 20 × 20 × 8 250
24 × 24 × 24 × 24 × 8 620

Edinburgh and the Edinburgh Compute and Data Facility. The sin-
gle point of V = 324 × 8 would have taken two months on GPUs
and so was simulated using STFCs DiRAC facilities in Edinburgh.

4. Conclusions

In this work, we extended the Monte Carlo investigation of the
phase diagram of the anisotropic SU(2) Yang–Mills model in five
dimensions when the lattice spacing in the extra dimension is
larger than that in the four other dimensions (γ < 1). We showed
that, up to β4 = 2.60, there is no evidence of a second order phase
transition, whereas a clear two-state signal in the average pla-
quette favours a first order phase transition. Based on this result,
we can claim that the bulk first order phase transition between
the confining and the deconfining phase continues at least up to
β4 = 2.60 with no trace of a layer phase. This implies that up
to this point the continuum limit cannot be taken and thus the
possibility of a dimensionally reduced five-dimensional effective
field theory remains open. Even though, based on the work of this
Letter, we cannot exclude a second order transition at higher β4,
nothing in our study suggests that continuing this investigation on
even bigger lattices would be worthwhile.
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