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Abstract

Introduction: Wnt signalling has been implicated in stem cell regulation however its role in breast cancer stem cell
regulation remains unclear.

Methods: We used a panel of normal and breast cancer cell lines to assess Wnt pathway gene and protein expression, and
for the investigation of Wnt signalling within stem cell-enriched populations, mRNA and protein expression was analysed
after the selection of anoikis-resistant cells. Finally, cell lines and patient-derived samples were used to investigate Wnt
pathway effects on stem cell activity in vitro.

Results: Wnt pathway signalling increased in cancer compared to normal breast and in both cell lines and patient samples,
expression of Wnt pathway genes correlated with estrogen receptor (ER) expression. Furthermore, specific Wnt pathway
genes were predictive for recurrence within subtypes of breast cancer. Canonical Wnt pathway genes were increased in
breast cancer stem cell-enriched populations in comparison to normal breast stem cell-enriched populations. Furthermore
in cell lines, the ligand Wnt3a increased whilst the inhibitor DKK1 reduced mammosphere formation with the greatest
inhibitory effects observed in ER+ve breast cancer cell lines. In patient-derived metastatic breast cancer samples, only ER-ve
mammospheres were responsive to the ligand Wnt3a. However, the inhibitor DKK1 efficiently inhibited both ER+ve and ER-
ve breast cancer but not normal mammosphere formation, suggesting that the Wnt pathway is aberrantly activated in
breast cancer mammospheres.

Conclusions: Collectively, these data highlight differential Wnt signalling in breast cancer subtypes and activity in patient-
derived metastatic cancer stem-like cells indicating a potential for Wnt-targeted treatment in breast cancers.
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Introduction

WNT proteins are a family of secreted, glycosylated, and

palmitoylated peptides which function in diverse processes such as

embryonic induction, generation of cell polarity, and cell fate

specification [1]. Aberrant activation of Wnt signaling has been

described in a number of human cancers including colorectal

cancer, ovarian cancer and breast cancer [2,3,4,5,6,7]. b-catenin

expression has been associated with poor prognosis in breast

cancer patients in a number of studies [8,9] and is enriched in

basal-like breast cancer [6]. Furthermore loss of negative pathway

regulators such as the extracellular inhibitor of WNT signaling,

secreted Frizzled-related protein 1 (sFRP1), is found in many

breast tumors and is associated with poor prognosis [3,10]. Down

regulation of the inhibitor Dickkopf 1 (DKK1) in a lung metastases

derived MCF7-LM cell line demonstrates the importance of Wnt

regulation in the metastatic process in breast cancer [11].

Collectively these data suggest that WNT pathway de-regulation

within the breast contributes to cancer formation and metastasis.

Recent studies suggest breast cancer initiation and recurrence

may be regulated by a small population of cells within the tumor,

either stem cells or cells that exhibit stem-like properties [12].

Transplantation experiments using immunocomprimised mice,

showed that as few as 100 human breast cancer cells with the cell

surface markers CD44+CD242/low were tumorigenic and could be

serially passaged to generate new tumours [13].

Cells isolated from human breast cancers marked by

CD44+CD242/low lineage are anoikis-resistant and capable of

self-renewal as mammosphere (MS) colonies providing a link

between MS and cell surface markers that enrich for tumorgenic

cells [14,15].

Expression of Wnt1 in human mammary epithelial cells

increases stem cell self renewal, resistance to apoptosis and failure

to senesce [16]. More recent work using the MMTV-WNT-1

mouse model has identified an expanded mammary stem cell (SC)

pool from a population of committed luminal progenitors

indicating that Wnt-1 activation induces the appearance of
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aberrant progenitor cells, and suggest that both mammary stem

and progenitor cells can serve as the cellular targets of WNT-1-

induced tumorigenesis [17].

WNT pathway activation increases radio resistance of progen-

itor cells in the mouse mammary gland and human breast cancer

cell lines [18,19], which implicates the WNT pathway in resistance

to current anti-cancer therapies, potentially through the regulation

of stem and progenitor cell populations.

In this study we investigated the WNT pathway both in whole

cell populations and stem-like cells of breast cell lines and patient-

derived metastatic breast cancer samples. WNT pathway gene

expression correlates with estrogen receptor (ER) expression and

molecular sub-type, and some genes predict prognosis. WNT

signalling was found to be activated in breast cancer stem-like cells

compared to normal stem-like cells. Finally, we show that WNT

pathway inhibition preferentially reduces stem-like cell activity in

patient-derived metastatic breast cancer compared to normal cells.

Collectively, these data suggest potential of the WNT-targeted

therapeutics in breast cancer.

Methods

Cell Lines
Six normal breast (HB4A, MRSV4.4, MRSV1.7, MCF10A,

MCF10F, 226L-U19), six ER+ve breast cancer (BT474, MCF7,

MCF7-HER2-18, MDA-MB361, T47D and ZR75-1) and five

ER-ve cancer (BT20, Hs578T, MDA-MB231, MDA-MB468 and

SKBR3) cell lines were used in this study.

Primary Normal Human Breast Cells
Histologically confirmed normal breast tissue was obtained from

3 premenopausal patients undergoing fibroadenoma excision or

breast reduction surgery (n = 3; mean age 38). Normal breast tissue

was prepared and purified as previously described [20]. Briefly,

tissue samples were dissected into 3- to 5-mm cubes and digested

for 16–18 hours at 37uC in serum-free Dulbecco’s modified Eagle

Medium (DMEM; Gibco) containing 200 U/mL type 3 collage-

nase (Worthington Biochemical Corporation), 5 mg/ml pronase

(Roche) and 10x antibiotic/antimycotic (Invitrogen). The cells

were then washed, collected by centrifugation at 1000 g and

filtered to obtain a single-cell suspension, which was verified

microscopically. CD45 positive cells were removed using anti-

CD45 magnetic beads (Miltenyi). CD45 negative cells were then

collected and resuspended in mammosphere culture medium.

Patient-derived Metastatic Breast Cancer Cells
Samples were collected from patients (ER+ve n = 3 and ER-ve

n = 3) with metastatic breast cancer (Table 1). Tumour samples

were prepared and purified as previously described [15]. Briefly,

metastatic fluid was collected and centrifuged at 2000 g from 5

minutes and responded in PBS. Blood cells were removed by

centrifugation through Lymphoprep solution (Axis Shield),

followed by removal of CD45 positive cells using anti-CD45

magnetic beads (Miltenyi). CD45 negative cells were then collected

and resuspended in mammosphere culture medium.

Ethics Statement
Any experimental research reported in the manuscript has been

performed with the approval of an appropriate ethics committee

and in compliance with the Helsinki Declaration. All samples were

collected with informed written consent. Normal breast tissue was

collected with approval from South Manchester Research Ethics

Committee (COREC#05/1403/159). Patient derived metastatic

breast cancer cells were collected with approval from Tameside

and Glossop Local Research Ethics Committee (COREC # 05/

Q1402/25).

Mammosphere Culture
A single cell suspension was created from cell lines grown in

monolayer culture using enzymatic digestion (Trypsin EDTA)

followed by manual disaggregation (25 Gauge needle). Patient-

derived breast cells did not require the addition of trypsin, a single

cell suspension was created using manual disaggregation alone.

Single cells from cell lines and patient derived cells were plated at a

density of 500 cells/cm2 in non-adherent conditions, in culture

flasks coated with (2-hydroxyethylmethacrylate) (poly-HEMA

[Sigma]). Culture of cells in these conditions allows the survival

of stem-like cells and subsequent spheroid growth from a single cell

using both cell lines and primary tissue samples. Mammospheres

grow at a similar rate when plated as single cells or at higher

densities indicating that mammospheres are truly clonal structures

and not formed through aggregation [21,22].

Anoikis resistant cells. were collected after 12 hrs (RNA) or

24 hrs (protein) in non-adherent, mammosphere culture. As

described above, single cell suspensions were obtained and

cultured in non-adherent conditions at a density of 500 cells/

cm2. Anoikis resistant cells were then collected by centrifugation at

1800 rpm for 2 minutes. Prior to RNA/protein extraction cells

were incubated with 100 ul of Dead cell Removal micro-beads

and dead cells removed using an MS column and MACS

Seperator (Miltenyi Biotech). Mammospheres (MS) were

counted after culture for 7 days in MS medium (DMEM: F12

medium supplemented with B27 without vitamin A [diluted 1: 50;

Gibco]) and mammary epithelial growth medium aliquot of

gentamicin/amphotericin-B and recombinant human epidermal

growth factor (EGF), (SingleQuot) (Lorne Laboratories). Spheres

over 50 mM were counted and the percentage of cells plated which

formed spheres was calculated and is referred to as the percentage

mammosphere formation units (%MFU). All cells were main-

tained in a humidified incubator at 37uC at an atmospheric

pressure in 5% (v/v) carbon dioxide/air.

Wnt pathway inhibition. MCF10a, MCF7, MDA-MB-231,

primary human normal breast cells and primary human invasive

breast cancer cells were plated into MS culture and treated with a

single dose of human recombinant DKK1 (R and D systems) at

increasing concentrations (0–100ng/ml).

Wnt pathway activation. MCF10a, MCF7, MDA-MB-231,

Patient-derived normal and metastatic breast cancer cells were

plated into MS culture and treated with a single dose of mouse

Table 1. Primary metastatic breast cancer samples.

Sample ID Histology Source Grade ER PgR Her2

BB3RC30 IDC PE 2 Pos Pos UN

BB3RC33 ILC AS 2 Pos Pos Pos

BB3RC36 IDC PE 2 Pos Pos UN

BB3RC37 IDC PE UN Neg Neg Neg

BB3RC38 IDC AS 3 Neg Neg Neg

BB3RC39 IDC PE 3 Neg Neg Neg

Details of primary breast cancer samples used in this study. UN unknown, PE
pleural effusion, AS Ascites sample IDC invasive ductal carcinoma, ILC invasive
lobular carcinoma, ER oestrogen receptor alpha, PgR progesterone receptor,
Neg negative, Pos positive.
doi:10.1371/journal.pone.0067811.t001
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recombinant WNT3A (R and D systems) at increasing concen-

trations (0–50 ng/ml).

RNA Extraction and Real-time Quantitative PCR Assays of
Breast Cell Lines

Total RNA was extracted from the sixteen cell lines harvested at

log phase, using the RNeasyH Plus (Qiagen) kit following the

manufacturer’s protocol. For real-time quantitative PCR (qPCR),

mRNA was reverse-transcribed into cDNA using an ABI RT kit

(Applied Biosystems). qPCR primers and probes were designed

using Roche Probe Finder Design Software (Roche Applied

Sciences) and reactions performed using the ABI PRISM 7900

Sequence Detection System instrument and software (Applied

Biosystems). The reactions were incubated in a 384-well optical

plate at 95uC for 10 min, followed by 40 cycles of 95uC for 15 s

and 60uC for 10 min. Experiments were performed in triplicate

for each sample. Gene expression was normalized to internal

control SDHA (succinate dehydrogenase), YWHAZ (tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein,

zeta polypeptide).

RNA Extraction of Monolayer and AR Breast Cells
Cells were collected from 226L-U19, HB4a, MCF10a, MCF7,

T47D and SKBR3 cell lines cultured in monolayer (pre-incubated

with MS media for 12 hrs) and from viable AR cells. RNA was

extracted using the RNeasyH Plus Mini (Qiagen) following the

manufacturers protocol. In addition to the gDNA eliminator spin

column provided in the RNeasy kit, an on-column DNase

digestion was performed (RNase-Free DNase Set; Qiagen) to

ensure maximum removal of DNA. RNA was eluted and the

concentration measured using a GeneQuant machine (Amersham

Biosciences). RNA integrity was assessed by microanalysis (Agilent

Bioanalyser) and amplified using the WT-OvationTM Pico RNA

Amplification System (NuGEN) following the manufacturers

protocol which employs SPITM amplification (linear isothermal

DNA amplification process) to amplify the RNA about 15,000-

fold.

Custom Gene Expression Microarray Analysis of
Monolayer and AR Breast Cells

Custom microarray chips were designed using Agilent technol-

ogy. cDNA was fluorescently labelled using the FL-OvationTM

cDNA Fluorescent Module kit (NuGEN) with a single tag (CyTM3)

which incorporates into the cDNA. The fluorescently tagged

cDNA was loaded onto a microarray slides and the Agilent

microarray chips attached. Slides were incubated at 65uC for 40

hours in a hybridisation oven to allow hybridisation to occur. The

chips were then washed and scanned using an Agilent scanner.

Primary Breast Cancer Microarray
Affymetrix gene expression data representing a total of 1107

primary breast tumors from six previously published microarray

studies [23,24,25,26,27,28] were integrated as described previous-

ly using ComBat [29] to remove batch effects [30]. Centroid

prediction [31] was used to assign the tumors from each dataset to

the five Norway/Stanford subtypes (Basal, Luminal A, Luminal B,

ERBB2 and Normal-like [32].

Gene Expression Analysis
Centred average linkage clustering of cell lines, monolayer/

anoikis resistant cells and integrated tumour datasets was

performed using Cluster [33] and heatmaps generated using

TreeView programs as described previously [34].

Accession Numbers
Genbank accession numbers from NCBI, of genes used in

microarray are provided below. [Genbank: NM_004655,

NM_001904, NM_012242, NM_000125, NM_012193,

NM_003507, NM_003508, NM_002093, NM_030915,

NM_001130713, NM_002335, NM_002336, NM_003012,

NM_003013, NM_003014, NM_005985, NM_001083962,

NM_001204869, NM_003881, NM_005430, NM_025216,

NM_003394, NM_030761, NM_001256105, NM_030775].

Protein Analysis
Western blotting was carried out as previously described [35].

Antibodies used in this study were anti unphoshorylated B-catenin

(Upstate, Millipore) AXIN2 (Cell signalling) LEF1 (Cell signalling)

and DKK1 (abcam) and B-ACTIN (abcam).

Statistical Analyses
Normally distributed data was analysed using analysis of

variance (ANOVA) to determine significant differences of

DKK1 treatment followed by individual comparisons to control

(0 ng/ml) using the independent T-test. Data which deviated from

the normal distribution was analysed using Kruskall-wallis

followed by individual comparisons to control (0 ng/ml) using

the Mann Whitney U test. Gene expression: data was analysed using

two tailed students’t-tests.

Results

Activation of Wnt Signalling in Breast Cancer Cell Lines
Comprehensive analysis of WNT pathway mRNA expression

across a large panel of breast cell lines was performed, which

revealed cell type specific gene expression within the cell lines

tested (Figure 1A). Well established downstream targets, AXIN2

and LEF1 (Figure 1A) showed higher expression in breast cancer

cell lines suggesting activation of canonical WNT signalling.

Consistent with its gene expression level, LEF1 protein was higher

in five breast cancer cell lines compared to two normal cell lines

(MCF10A and 226LU19), providing further evidence that WNT

signalling is active in breast cancer cell lines (Figure 1B).

Interestingly, we observed high levels of LEF1 in the HER2

expressing cell line BT474. HER2 is known to activate b-catenin

activity which may account for this increase in the downstream

target LEF1 [36]. A WNT receptor and a WNT ligand were also

dysregulated in breast cancer cell lines, FZD4 showed higher

expression in breast cancer cell lines whilst WNT10A expression

was decreased. The expression pattern of WNT pathway genes

largely clustered the cell lines by estrogen receptor-a (ER) status;

ER+ve cell lines predominately expressed the downstream target

LEF1 whilst ER-ve cell lines express another downstream gene

AXIN2 (Figure 1A). As reported by others, WNT5A, LBH, WISP1

and TCF4 were expressed at lower levels in ER+ cell lines

compared to ER-ve cancer but also compared to immortalised

normal breast cell lines (Figure 1A), perhaps reflecting their ER-ve

status. Independent of ER status, overall WNT pathway signalling

assessed by the canonical downstream target genes AXIN2 and

LEF1 is higher in breast cancer cell lines compared to normal

breast cell lines.

Prognostic Value of WNT Expression in Breast Cancer
To assess the clinical importance of WNT pathway genes, we

performed analysis of a large cohort of breast cancer tumours

comprising six publically available gene expression data set [30].

Analysis of WNT signalling gene expression within defined

subtypes of breast cancer showed variation in gene expression

Wnt Pathway in Breast Cancer and Stem-Like Cells
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across the subgroups. Confirming the results observed using cell

lines (Figure 1) we observed higher expression of LEF1, suggesting

WNT activation in Luminal, ER+ve breast cancer patients

(Figure 2A). A number of genes were differentially expressed

between Luminal and Basal/ErbB2 breast cancer, such as

WNT5B, WNT10B and DKK1. A number of genes were highly

expressed specifically within the basal subtype of breast cancer,

LRP5, LRP6, and sFRP1 (Figure 2A). Analysis of these genes

showed significant associations to recurrence free survival within

breast cancer patients. The most significant association was with

sFRP1, where decreased expression predicts early recurrence in

ER+ve breast cancer, most likely due to lack of Wnt inhibition.

Lower levels of Lef1 were also predictive of recurrence in breast

cancer within the ER+ve subgroup. It might be expected that

higher levels of Lef1 would correlate with recurrence, however

lower Lef1 expression may identify a subgroup of ER+ve tumours

that have a basal-type phenotype, based upon their Wnt gene

expression. This subgroup within ER+ve tumours can also be

observed with analysis of Wnt5b, where high expression predicts

early recurrence, and where high expression is a marker of the

basal-type phenotype. LRP5 and LRP6 although demonstrating a

very similar expression profile within breast tumours have very

different effects on recurrence. Low expression of LRP6 in ER+ve

tumours was predictive of early recurrence, whilst low levels of

LRP5 was predictive of early recurrence in ER-ve breast cancer

(Figure 2B). LRP5/6 are co-receptors for WNT ligands, previously

thought to act similarly to activate downstream signalling. Recent

research suggests that they may actually function differently,

dependant upon physiological conditions and the type and

availability of WNT ligand [37,38]. Further investigations will

be needed to determine their precise roles in breast cancer.

Wnt Pathway Activation in Breast Cancer Stem-like Cells
Numerous reports implicate Wnt signalling in breast stem cell

activity [19,39,40]. To investigate this further, we employed the

mammosphere culture technique to enrich for cells with stem-like

activity, breast cancer stem-like cells (BCSCs). Anoikis resistant

(AR) cells are enriched for stem-like activity and have increased

tumour forming capacity in mice [15]. Comparison of MCF7 AR

cells to adherent monolayer cells showed an increase in active

WNT signalling in AR cells was confirmed by increased expression

of activated beta-catenin protein, both downstream targets

AXIN2, LEF1, and decreased expression of DKK1 protein

(Figure 3A and Figure S2).

Wnt Signalling is Suppressed in Normal Breast Stem-like
Cells

We next investigated WNT signalling gene expression using a

custom Agilent microarray using AR-derived and monolayer

cultured populations from 3 immortalised normal and three breast

cancer cell lines. AR-derived populations contain stem-like cells,

which has been validated by in vivo tumour initiation [15;Ablett

et al submitted]. Gene expression analysis confirmed results in

Figure 1 that there are higher levels of WNT signalling in breast

cancer cell lines compared to normal breast cell lines when grown

in either monolayer or AR culture (Figure S1). Fold change

differences between monolayer and AR cells (enriched for BCSCs)

for each cell line were calculated and displayed as a heatmap

(Figure 3B). Importantly, analysis of the change in gene expression

between monolayer cultured and AR cells (enriched for BCSCs)

showed differences between breast cancer and normal cell lines

(Figure 3B). WNT ligands WNT1, WNT10a and WNT4 were

expressed at higher levels in normal AR cells compared to

monolayer cells, however in the breast cancer cell lines, their

expression was lower in the AR cells compared to monolayer cells.

sFRP1 and b-catenin were highly expressed in BCSCs from ER+ve

breast cancer cell lines (MCF7 and T47D). No increase in

expression was observed in the ER-ve breast cancer cell line tested

(SK3RB) suggesting that canonical WNT signalling in BCSCs may

correlate with ER (Figure 3B). Most importantly, we found higher

levels of the WNT signalling gene LEF1 in BCSCs compared to

monolayer cells, irrespective of ER expression, while normal

breast stem cell populations showed lower levels compared to

normal monolayer cells (Figure 3B). The data demonstrates

specific upregulation of WNT pathway signalling in a population

enriched for BCSCs.

Modulation of Wnt Pathway Signalling Affects Stem Cell-
like Activity

To test the potential of targeting the WNT pathway we

investigated the effects of WNT pathway modulation in cell lines.

Cells were cultured as mammospheres (MS) with increasing

concentrations of either DKK1 to inhibit or WNT3A to activate

the WNT pathway. Recombinant WNT3A treatment significantly

increased the number of MS in both normal (MCF10A) and breast

cancer (MCF7 and MDA-MB-231) cell lines (Figure 4A–C).

DKK1 treatment significantly decreased the number of MS in all

cell lines tested with the most significant decrease observed using

the highest concentration (100 ng/ml) of DKK1 (Figure 4D–F).

Using patient-derived cell samples from both ER+ve (n = 3) and

ER-ve (n = 3) breast cancer and normal breast tissue (n = 3) we

found that WNT3A caused a significant increase in MS only in the

ER-ve sample (Figure 5C). Inhibition of WNT signalling using

DDK1 showed that low dose (5 ng/ml) treatment was sufficient to

decrease mammosphere formation in primary breast cancer cells

whilst leaving the normal cells of the breast unaffected. Only high

concentrations (100 ng/ml) of DKK1 were sufficient to inhibit MS

formation in normal primary breast cells (Figure 5D–F).

Discussion

Our results are consistent with existing data [16,41] which

suggest activation of WNT signalling in breast cancer through the

increased expression of key signalling components and down-

stream target such as LEF1 at both the mRNA and protein level.

We observed higher levels of WNT signalling in breast cancer cell

lines correlating with ER expression. Although both classical

downstream targets AXIN2 and LEF1 were on average expressed

at higher levels in breast cancer cell lines, ER-ve cell lines

expressed the highest levels of AXIN2 whereas the major

downstream target activated in ER+ve cell lines was LEF1

demonstrating the subtle differences in WNT signalling that can

occur.

Figure 1. Wnt signalling in normal breast cell lines (N), ER-ve (T2) and ER+ve (T+) breast cancer cell lines. A) mRNA expression was
normalised to house keeper genes. Cluster analysis was performed and data displayed in a heatmap: decreased (green) or increased (red) expression
compared to the mean mRNA expression. (Red) qq Indicates significant increased expression (,0.05) (red) q indicates a trend towards increased
expression. (Green) QQ Indicates significant increased expression (,0.05) (green) Q indicated a trend towards increased expression. B) Protein
expression of Lef 1 and B-actin (housekeeper) in normal breast cell lines (N), ER-ve (T2) and ER+ve (T+) breast cancer cell lines.
doi:10.1371/journal.pone.0067811.g001

Wnt Pathway in Breast Cancer and Stem-Like Cells
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Figure 2. Analysis of mRNA expression in primary human breast cancer samples. Expression data was combined from multiple studies into
a combined cohort of ERBB2 (n = 194) Basal (172) Luminal A (n = 336) and Luminal B (161) and normal-like (n = 244) subtypes of breast cancer. A)
mRNA expression data was displayed in a heatmap: decreased (green) or increased (red) expression compared to the mean mRNA expression. % of
samples with high gene expression are detailed and denoted as green when expression is decreased and red when expression is increased. B) Kaplan
Meier plots Wnt gene expression show the years of recurrence free survival, where red indicates lower gene expression and blue indicates higher
gene expression. * Red #upper quartile: Blue .upper quartile ** Red #lower quartile: Blue .lower quartile. P values were generated and significant
results were highlighted in red.
doi:10.1371/journal.pone.0067811.g002
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We also observed a lack of expression of a subset of genes

including WNT5A mRNA in ER+ve breast cancer cell lines.

Recent studies suggest that WNT5A plays a critical role in

malignant progression although loss of WNT5A protein has been

linked with poor prognosis in breast cancer and correlated with the

loss of ER expression [42]. This is contradictory to our

observations of higher WNT5A mRNA expression in ER-ve cell

lines but reported data suggests an inverse relationship between

mRNA levels and expression of WNT5A protein [43,44,45].

Other genes that were inversely correlated with ER expression

included LBH, WISP1, and TCF4. LBH is a newly identified target

of the WNT/b-CATENIN signalling pathway expressed at

abnormally high levels in poorly differentiated, basal-subtype,

ER-ve [46]. WISP1 is overexpressed in breast cancer and was

associated with advanced clinical features [47]. TCF4 has been

reported to interact with ER signalling [48].

We next examined Wnt pathway gene expression in 1107

primary breast cancer tumours and found differences across

subtypes of breast cancer. Many were associated with both basal

and ERBB2 sub-types such as WNT5B and others specifically in

basal cancers such as LRP5/6 and sFRP1. Lower levels of sFRP1 or

LRP6 predict an early recurrence in ER+ve breast cancer whilst

higher levels of WNT5B expression predict early recurrence. LRP5

was the only gene that was predictive in ER-ve breast cancer

where low levels predict early recurrence. The downstream target

LEF1, which was upregulated in ER+ve cell lines, was also

increased in Luminal sub-type patient samples and lower levels

predicted recurrence in ER+ve patients. These analyses demon-

strate the importance of Wnt signalling in breast cancer, and

highlight a subgroup of ER+ve patients with a basal-type

phenotype based upon their Wnt expression and decreased

recurrence free survival.

Our data has shown that the WNT pathway activation is

significantly higher in populations enriched for BCSCs, while

populations enriched for normal stem-like cells have lower levels of

WNT signalling. Furthermore, our data suggests that normal

breast cancer stem cells express different WNT ligands (WNT4

and WNT10) than BCSCs when compared to their monolayer

populations. Little is known about the role of WNT10A in breast

cancer but Wnt4 is essential for normal progesterone induced

mammary gland development [49]. A subset of genes such as

sFRP1 and b-CATENIN, despite being lower in ER+ compared to

ER-ve cell lines, was higher in BCSCs of ER+ve cells. This

suggests that BCSCs from ER+ve cell lines share a similar

expression profile to cells from an ER2ve cell line supporting the

growing hypothesis of a cell hierarchy in which stem cells in

ER+ve tumours are ER-ve [50]. Finally we established that the

WNT pathway regulates MS formation. WNT3A treatment

caused a significant increase in MS in the MCF7 and MDA-

MB-231 cancer cell lines while MCF10a immortalised normal

breast cells were less sensitive.

To demonstrate biologically the clinical relevance of WNT

modulation, we used patient-derived breast samples from both

normal and cancerous tissue and compared them to cell lines.

Patient-derived samples responded less sensitively to WNT

modulation and only ER2ve patient-derived breast cancer cells

Figure 3. Gene expression analysis of Wnt signalling in
monolayer (Mono) and anoikis resistant (AR) cells of normal
breast cell lines (N), ER-ve and ER+ve breast cancer cell lines. A)
Protein expression of activated B-catenin (unphosphorylated), Lef1,
Axin2, DKK1 and B-actin (housekeeper) in MCF7 monolayer and AR cells.
B) Cluster analysis was performed using the fold change in expression

between Mono and AR cells. Data is displayed in a heatmap
represented by either decreased (green) or increased (red) expression
compared to the mean mRNA expression. (Red) qq Indicates
significant increased expression (,0.05) (red) q indicates a trend
towards increased expression. (Green) QQ Indicates significant
increased expression (,0.05) (green) Q indicated a trend towards
increased expression.
doi:10.1371/journal.pone.0067811.g003
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responded to WNT activation. Treatment with the WNT inhibitor

DKK1 successfully decreased MS in both ER+ve and ER-ve

patient-derived samples with most significant reduction in ER+ve

cells. The data suggest that moderate DKK1 concentrations were

sufficient to inhibit MS and therefore stem cell-like activity in both

ER+ve and ER2ve tumours whilst not affecting the activity within

normal breast tissue. This agrees with the recent in vivo studies of

Gurney et al (2012), who show that a therapeutic antibody to the

FZD receptor can prevent cancer stem cell activity without toxicity

in normal stem cells [51].

Conclusions
In conclusion, we indentified a number of novel WNT signalling

components in BCSC signalling. LEF1 has shown the most

consistent activation in breast cancer cell lines and increased

expression in BCSCs in both ER2ve and ER+ve patient breast

cancer samples. Finally, we show that WNT pathway inhibition

Figure 4. Modulation of Wnt signalling in normal and breast cancer cell lines. Single cells were plated in non-adherent conditions and
treated with increasing concentrations of either Wnt3a (0–50 ng/ml) or DKK1 (0–100 ng/ml) and cultured for 7 days and number of mammospheres
counted. Wnt3a treatments are displayed in the left panel and DKK1 treatments in the right panel. Light grey bars represent untreated control A)
MCF10a cells (Wnt3a) B) MCF7 cells (Wnt3a) C) MDA-MB-231 cells (Wnt3a) D) MCF10a cells (DKK1) E) MCF7 cells (DKK1) F) MDA-MB-231 cells (DKK1).
Data is expressed as % mammosphere formation units. P values were generated by ANOVA. Asterisks mark individual comparisons which reached
statistical significance * ,0.01 ** ,0.001 generated by a T-test. G) Image of a MCF10a mammosphere H) Image of an MCF7 mammosphere I) Image
of an MDA-MB-231 mammosphere. Scale bar represents 50 mM.
doi:10.1371/journal.pone.0067811.g004
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preferentially reduces stem-like cell activity in patient-derived

metastatic breast cancer compared to normal cells. Collectively,

these data suggest potential of the WNT-targeted therapeutics in

breast cancer.

Supporting Information

Figure S1 Gene expression analysis of Wnt signalling in

monolayer (MO) and anoikis resistant (AR) cells of normal breast

cell lines (N), ER positive (ER+) and ER negative (ER2) breast

cancer cell lines. B) Cluster analysis was performed using gene

expression data of cells in MO and AR. Data is displayed in a

heatmap represented by either decreased (green) or increased (red)

expression compared to the mean mRNA expression. (Red) qq

Indicates significant increased expression (,0.05), (red) q

indicates a trend towards increased expression. (Green) QQ
Indicates significant increased expression (,0.05), (green) Q
indicated a trend towards increased expression.

(TIF)

Figure S2 Full membranes used to detect Wnt signalling protein

expression. Protein was quantified and gel loading volumes

Figure 5. Modulation of Wnt signalling in normal and primary breast cancer samples (Normal n = 3; ER+ve n = 3; ER-ve n = 3). Single
cells were plated in non-adherent conditions and treated with increasing concentrations of either Wnt3a (0–50 ng/ml) or DKK1 (0–100 ng/ml) and
cultured for 7 days and number of mammospheres counted. Wnt3a treatments are displayed in the left panel and DKK1 treatments in the right panel.
Light grey bars represent untreated control A) primary normal breast cells (Wnt3a) B) ER+ve primary breast cancer cells (Wnt3a) C) ER-ve primary
breast cancer cells (Wnt3a) D) primary normal breast cells (DKK1) E) ER+ve primary breast cancer cells (DKK1) F) ER2ve primary breast cancer cells
(DKK1). Data is expressed as % mammosphere formation units. P values were generated by ANOVA. Asterisks mark individual comparisons which
reached statistical significance * .0.01 ** .0.001 generated by a T-test. G) Image of a normal primary mammosphere H) Image of an ER positive
primary tumour mammosphere I) Image of an ER negative primary tumour mammosphere. Scale bar represents 50 mM.
doi:10.1371/journal.pone.0067811.g005
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determined to achieve equal loading of 50 ug. Multiple gels were

loaded concurrently with protein and probed for activated B-

catenin (unphosphorylated), Lef1, Axin2, DKK1 and B-actin

(housekeeper) in MCF7 monolayer (Day1 mono) and AR cells

(Day 1 MS). B-actin was probed using Gel 1. * marks the band

that represents the protein of interest.

(TIF)
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