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Abstract   19 

The female germline comprises a reserve population of primordial (non-growing) 20 

follicles containing diplotene oocytes arrested in the first meiotic prophase. By 21 

convention the reserve is established when all individual oocytes are enclosed by 22 

granulosa cells. This commonly occurs prior to or around birth, according to species. 23 
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Histologically the “reserve” is the number of primordial follicles in the ovary at any 24 

given age and is ultimately depleted by degeneration and progression through 25 

folliculogenesis until exhausted. How and when the reserve reaches its peak number of 26 

follicles is determined by ovarian morphogenesis and germ cell dynamics involving  i) 27 

oogonial proliferation and entry into meiosis producing an oversupply of oocytes, and ii) 28 

large-scale germ cell death resulting in markedly reduced numbers surviving as the 29 

primordial follicle reserve. Our understanding of the processes maintaining the reserve 30 

come primarily from genetically engineered mouse models, experimental activation or 31 

destruction of oocytes, and quantitative histological analysis. As the source of ovulated 32 

oocytes in postnatal life, the primordial follicle reserve requires regulation of i) its 33 

survival or maintenance, ii) suppression of development (dormancy) and iii) activation 34 

for growth and entry into folliculogenesis. The mechanisms influencing these alternate 35 

and complex inter-related phenomena remain to be fully elucidated. Drawing upon direct 36 

and indirect evidence, we discuss the controversial concept of postnatal oogenesis. This 37 

posits a rare population of oogonial stem cells that contribute new oocytes to partially 38 

compensate for the age-related decline in the primordial follicle reserve. 39 

 40 

Introduction 41 

The concept of a non-renewable primordial follicle pool, assembled around the time of 42 

birth in rodents and during gestation in humans, underpins a finite reproductive lifespan 43 

and is central to current understanding of ovarian biology. Consideration of the dynamics 44 

of the primordial follicle reserve raises more questions than there are answers, however, 45 

as although key pathways are emerging, their overall regulation and integration is poorly 46 



 3 

understood. The main concepts include i) how the reserve is established, ii) processes 47 

causing elimination, iii) regulation of follicle-oocyte dormancy or activation into a 48 

growth phase, and iv) possibility of renewal accompanying the age-dependent decline. 49 

The significance of the dynamics of the reserve is no more apparent than during ovarian 50 

morphogenesis and germ cell development in prenatal life in humans, and perinatally in 51 

the mouse and rat. In these growth periods germ cells are produced in large numbers but 52 

many are subsequently eliminated, the outcome of which establishes the traditionally-53 

defined primordial reserve.  Mechanisms must exist to ensure that the majority of 54 

follicles are held intact and remain poised to participate in follicle growth, which in the 55 

human is preserved for decades. The reserve faces yet other challenges to its survival 56 

from exogenous agents that pose a risk of damage to the oocyte genome with 57 

accompanying DNA mutations, or more subtle epigenetic changes. How healthy or faulty 58 

oocytes within the reserve are recognized and respectively either preserved or destroyed 59 

is a key element impacting the dynamics of the primordial follicles. A reassessment of 60 

‘topping up’ the reserve by the addition of new primordial follicles from ovarian 61 

germline stem cells has emerged in the past ten years. Although this concept has 62 

generated a lively debate and a resolution is far from complete, it introduces another 63 

factor that potentially affects the dynamics of the reserve. In summary, from the events 64 

that shape the establishment of the reserve in prenatal or neonatal ovaries up to the point 65 

of its functional exhaustion in adult life, we revisit the concepts of primordial follicle 66 

dynamics in the light of recent evidence influencing its stability, depletion or 67 

supplementation. 68 

Establishing the primordial follicle reserve 69 
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The human fetal ovary  70 

 71 

The developing fetal ovary supports the proliferation and maturation of germ cells and 72 

their development into primordial follicles. Studies by Block (Block 1951, Block 1952, 73 

Block 1953) of fetal, neonatal and adult human ovaries (n=53) using quantitative 74 

histological methods provided the first credible estimates of the number of primordial 75 

follicles. At 7-9 months gestation (n=10) he reported a range of 350,000 – 1.1 million 76 

primordial follicles per pair of ovaries, the average being about 700,000. In postnatal life 77 

from 6-9 years (n=5), the average was 500,000 declining to 8,000 between 40-44 years 78 

(n=7; (Block 1952)). The age-related fall in follicle supply was not discussed in Block’s 79 

studies. Within a decade this oversight was corrected when in 1963 a landmark paper by 80 

Baker estimated the numbers of all germ cell types (normal and atretic) in human fetal 81 

ovaries (n=14). He calculated up to 6.8 million germ cells per pair of ovaries at 5 months 82 

gestation declining to about 2 million at the time of birth. The scale of germ cell loss was 83 

comparable to the germ cell attrition reported for the rat ovary (Holmes & Mandl 1962, 84 

Beaumont & Mandl 1963) suggesting common regulatory mechanisms governing the 85 

perinatal supply of primordial follicles. Recent analyses using more accurate 86 

stereological methods have expanded on the rate and extent of germ cell proliferation up 87 

to 19 weeks gestation (Mamsen et al. 2011), reaching nearly 5 million germ cells per 88 

ovary at that time, although no distinction is made between stages of development of the 89 

germ cells and the extent of inclusion within primordial follicles. Primordial follicles are 90 

formed from about 15 weeks gestation in the human fetal ovary (Fig. 1) based on the 91 

association of diplotene oocytes with pregranulosa cells (Baker 1963, Forabosco & 92 
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Sforza 2007). Their number steadily rises during the second trimester, and plateaus in the 93 

third trimester with approximately 350,000-400,000 per ovary at birth. From about 22 94 

weeks, some primordial follicles activate to form the first growing or primary follicles 95 

(Maheshwari & Fowler 2008). As far as we know, the second trimester period of 96 

human fetal ovarian development is the only phase in the history of the dynamics of 97 

the reserve where it is increasing in overall number by the addition of oocytes surviving 98 

to reach diplotene arrest of meiosis I.  99 

 100 

Little is known about the factors responsible for producing this excess of germ cells in 101 

the fetal ovary.  Array-based studies have described the transcriptome in human fetal 102 

ovaries (Fowler et al. 2009), potentially allowing identification of regulatory pathways. A 103 

network of interacting oocyte transcription factors crucial for oocyte survival and 104 

development around the time of follicle formation has been described in the mouse using 105 

knock-out models (Dong et al. 1996, Rajkovic et al. 2004, Pangas et al. 2006), with 106 

some, such as FIGLA, demonstrated to have comparable expression in the human ovary 107 

(Huntriss et al. 2002, Bayne et al. 2004).  Limited functional studies of human fetal 108 

ovaries have identified activin A (Martins da Silva et al. 2004, Coutts et al. 2008, Childs 109 

& Anderson 2009) and neurotrophin pathways (Anderson et al. 2002, Spears et al. 2003, 110 

Childs et al. 2010a) as likely key determinants of oogonial survival and proliferation and 111 

follicle formation (Fig.2).  Activin βA is expressed by germ cells in nests and in vitro 112 

exposure to activin A promotes germ cell survival (Martins da Silva et al. 2004).  Activin 113 

βA expression is lost immediately prior to nest breakdown and follicle formation (Coutts 114 

et al. 2008), and it is thought that this might act as switch allowing follicle formation 115 
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involving the de-repression of kit ligand expression (Childs & Anderson 2009).  In the 116 

mouse, activin A administration in utero increased primordial follicle number after birth, 117 

although this difference was lost later in life (Bristol-Gould et al. 2006a). The BMPs have 118 

been suggested to positively regulate oogonial proliferation and survival in the mouse 119 

(Pesce et al. 2002), but in contrast experimental human data suggests that BMP4 120 

increases germ cell apoptosis (Childs et al. 2010b), possibly explained by differences in 121 

experimental methodology (i.e. isolated germ cells in the mouse vs in their physiological 122 

niche in human whole ovary studies).  123 

The neurotrophins BDNF and NT4 are expressed by ovarian somatic cells within the cell 124 

nests (i.e. presumed precursors to granulosa cells: Fig.2) with both ligands expressed in 125 

human but only NT4 in mouse.  Mouse knock-out models of the TrkB receptor, targeted 126 

by both BDNF and NT4, have resulted in phenotypes including loss of oocytes at the 127 

time of follicle formation (Spears et al. 2003)  and loss of initiation of follicle growth 128 

(Paredes et al. 2004). Oocyte-derived activin βA regulates BDNF expression in human  129 

ovarian somatic cells, and NT4 expression in mouse (Childs et al. 2010a), exemplifying a 130 

pathway by which the oocyte regulates the surrounding somatic environment, and also 131 

demonstrating a conserved pathway between species although involving diverse 132 

mediators. Prostaglandin E2 acting on oocytes may also contribute to the regulation of 133 

expression of activin βA and BNDF (Bayne et al. 2009), and there are undoubtedly other 134 

pathways involved.  These interactions, derived from experimental human tissue studies, 135 

are illustrated in Figure 2. 136 

More is known about the circumstances of oocyte death. We use the term ‘circumstances’ 137 

because of the limited opportunities available for analysis of human material (and no 138 
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prospects for in vivo experimentation) with most of our knowledge derived from the 139 

mouse. Although there are numerous descriptions of specific germ cell types and the 140 

timing of their demise in the human fetal ovary that impact on the dynamics of the 141 

reserve, the mechanisms responsible remain largely unknown (Maheshwari & Fowler 142 

2008, Hartshorne et al. 2009). Much attention has focused on apoptosis (Vaskivuo et al. 143 

2001, Fulton et al. 2005, Poljicanin et al. 2012), although emerging evidence also 144 

suggests that the mode of germ cell elimination, especially in meiosis, may be ovary-145 

specific and occurs by several mechanisms not limited to the classic apoptotic pathways 146 

(Abir et al. 2002). Efforts to identify and quantitate the characteristics of apoptosis as a 147 

principal or coherent explanation for oocyte depletion in the human fetal ovary often 148 

demonstrate the difficulties and inconsistencies in interpretation of cause and effect, 149 

probably due to differential gene expression among cell populations that may be at rest, 150 

proliferating, maturing, dying or phagocytosing (Kurilo 1981, De Pol et al. 1997, 151 

Vaskivuo et al. 2001, Abir et al. 2002, Hartley et al. 2002, Fulton et al. 2005, Stoop et al. 152 

2005, Albamonte et al. 2008, Jaaskelainen et al.2010, Boumela et al.2011, Poljicanin et 153 

al. 2012). Nevertheless, these and other studies demonstrate that the Bcl-2 gene family is 154 

an important regulator (among other factors) of the balance between survival or death of  155 

oocytes prior to primordial follicle formation.  156 

The embryonic and neonatal mouse ovary 157 

Germ cells of the embryonic mouse ovary follow a similar pattern of development as in 158 

the human except that it is only after birth that oocytes are fully assembled into the 159 

primordial follicle reserve, usually within 2-3 days (Fig 3). In common with the human 160 

fetal ovary there is a significant oversupply of oocytes entering meiosis prior to birth, 161 
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which is markedly reduced in the perinatal period of development (Fig 4; (Peters et al. 162 

1978, McClellan et al. 2003, Kerr et al. 2006, Pepling 2006, Pepling et al.2010). With the 163 

advantage of experimental interventions such as the ability to modify gene expression, 164 

much of our knowledge regarding female germ cell death mechanisms has been 165 

generated in the mouse.  166 

 167 

Because primordial follicle formation is associated with significant germ cell attrition 168 

(Kezele et al. 2002, Pepling 2006), investigations into the associated death mechanisms 169 

have been topical and numerous laboratories, using both in vivo and in vitro techniques 170 

have concluded that apoptosis (Coucouvanis et al. 1993, De Pol et al. 1997, Pepling & 171 

Spradling 2001, De Felici et al. 2008, Xu et al.2011) autophagy (Lobascio et al. 2007, De 172 

Felici et al. 2008, Rodrigues et al. 2009), and direct extrusion from the ovaries 173 

(Rodrigues et al. 2009) are all contributory mechanisms of pre- and neonatal oocyte 174 

demise. Apoptosis, the most favoured of the three, has been demonstrated not only in 175 

mouse models directly targeting Bcl-2 and caspase genes  (Bergeron et al. 1998, Perez et 176 

al. 1999, Rucker et al. 2000, Flaws et al. 2001, Flaws et al. 2006, Alton & Taketo 2007, 177 

Ghafari et al. 2007, Greenfeld et al. 2007, Gursoy et al. 2008, Ghafari et al. 2009) but 178 

also because of the findings from several gene knockout (or overexpressor) models 179 

belonging to the TNF pathway (Marcinkiewicz et al. 2002, Greenfeld et al. 2007) , PAR 180 

family (Wen et al. 2009), and TGFβ family (Kimura et al. 2011), all of which actively 181 

participate in oocyte loss by regulating apoptosis. 182 

  183 

What controls oocyte death to establish the reserve? 184 
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For oogonia and oocytes the mechanism of cell death implemented may be related to the 185 

signal to die. Most studies of oocyte dynamics in the neonatal mouse ovary point to 186 

apoptosis as the mode of death (Ghafari et al. 2009, Boumela et al. 2011, Hu et al 2011.) 187 

Therefore, the primordial follicle reserve is presumably established by a balance between 188 

the availability of a large number of germ cells and subsequent programmed cell death. 189 

Why so many oocytes are produced only to be eliminated remains a mystery, but some 190 

possibilities are i) failure of mitosis/meiosis involving defective chromosome spindle 191 

functions, ii) unrepaired DNA damage, iii) insufficient pregranulosa cells, and iv) 192 

degeneration of oocytes during restructuring of oocyte cysts or nests into primordial 193 

follicles.  The first clues that one member of the p53 gene network had a significant role 194 

in controlling oocyte fate came from studies showing that p63, specifically the TAp63α 195 

isoform, is expressed uniquely in mouse oocytes and is responsible for their elimination if 196 

for example their DNA is damaged (Suh et al. 2006). Thus p63 has a role in regulating 197 

oocyte survival to establish the primordial follicle reserve. Its expression in late prophase 198 

I oocytes but not in early meiotic oocytes or oogonia in fetal ovaries (both mouse and 199 

human), suggests a universal role for p63 in protection of the female germline 200 

represented by the primordial reserve (Livera et al. 2008). In the early postnatal mouse 201 

ovary p63 controls oocyte supply by transcriptional induction of BH3-only proteins 202 

PUMA or PUMA and NOXA combined (Kerr et al. 2012b). These pro-apoptotic Bcl-2 203 

members can initiate oocyte apoptosis either by direct or indirect activation of BAX and 204 

BAK. Deletion of Puma or Puma and Noxa together results in an oversupply of 205 

primordial follicles in postnatal day 10 mouse ovaries, and deletion of other BH3-only 206 

genes, Bmf or Bim also amplifies the reserve with up to triple the numbers of oocytes 207 
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compared with age-matched controls (Fig. 5). The role if any of the other BH3-only 208 

proteins remains unknown. Given that ‘overstocking’ of the primordial reserve in the 209 

mouse ovary is wholly or partly the net result of a balance between pro- and anti-210 

apoptotic events, it remains to be shown at what time and which germ cell types (i.e. 211 

oogonia and/or oocytes) are affected.  212 

While these studies confirm that apoptotic regulatory mechanisms are key factors in 213 

altering the dynamics of the primordial reserve, they do not exclude the possibility of 214 

alternate or complementary processes for adjusting the oocyte population. Other studies 215 

of the developing human or mouse ovary have demonstrated that the apoptotic paradigm 216 

does not satisfactorily account for all aspects of germ cell death (Vaskivuo et al. 2001, 217 

Abir et al. 2002, Alton & Taketo 2007, De Felici et al. 2008, Rodrigues et al. 2009, 218 

Gawriluk et al.2011). Alternative modes of cell death that may participate in oogonial-219 

oocyte elimination include autophagy (Guillon-Munos et al. 2006, Rubinstein & Kimchi 220 

2012), mitotic arrest (Wartenberg et al. 2001) or necroptosis (Vandenabeele et al.2010, 221 

Christofferson & Yuan 2010).  222 

 223 

 224 

Dynamics of the postnatal primordial follicle reserve and consequences for 225 

reproductive lifespan 226 

 227 

Analogous to a stockpile of a precious resource, most oocytes of the primordial reserve 228 

are retained as quiescent follicles to support future ovulations throughout the 229 

reproductive lifespan. A poorly stocked initial reserve or one in which primordial 230 
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follicles are precociously depleted, will result in infertility and in the human, a shortened 231 

reproductive lifespan and early menopause (Nelson et al. 2013). Current concepts involve 232 

progressive loss of human female fertility expressed through subfertility, sterility and the 233 

menopause at approximately 10 year intervals (Broekmans et al. 2009) .  Thus a 234 

menopause at age 40 (the traditional definition of the upper limit of ‘premature’) implies 235 

a loss of fertility at 30 and falling fertility from the early 20s. Mathematical analyses of 236 

the age-related decline of the non-growing follicle (NGF) reserve (ie. primordial follicles) 237 

in human ovaries predicts that if at birth one ovary had 35,000 NGFs, menopause would 238 

occur at around  40 years of age but would be delayed to 60 years if the ovary began with 239 

2.5million NGFs (Wallace & Kelsey 2010, Kelsey et al. 2012). The number and types of 240 

molecules believed to maintain the balance between quiescence and activation of the 241 

primordial follicle reserve continue to be discovered chiefly from the study of transgenic 242 

mouse models (Reddy et al. 2010, Kim 2012, Monget et al. 2012, Pangas 2012, Adhikari 243 

et al. 2013). A key pathway implicated in this is the PI3K pathway, which may have a 244 

crucial integrative role linking many of the factors associated with the balance between 245 

follicle growth suppression, activation, and the maintenance of healthy quiescence (Fig. 246 

6). Molecules in this pathway include the tuberous sclerosis complex 1 (TSC1) which 247 

interacts with phosphatase and tensin homolog deleted on chromosome 10 (PTEN) to 248 

maintain quiescence, and the mammalian target of rapamycin (mTORC) which is an 249 

activator, and negatively regulated by TSC1 (Zheng et al. 2012).  Both the oocyte and its 250 

pre-granulosa cells are the source and probably the targets for these factors that 251 

physiologically exert both stimulatory and inhibitory actions upon the primordial follicle 252 

reserve. In addition to intracrine (factors produced and acting within a cell) and/or 253 
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paracrine inhibition of the recruitment of primordial follicles, an additional ‘brake’ 254 

maintaining their quiescence and perhaps regulating the rate of recruitment may be 255 

applied by the growing follicle pool (Barnett et al. 2006, Moniruzzaman & Miyano 2010, 256 

Reddy et al. 2010, Monget et al. 2012). Mathematical modeling of histomorphometric 257 

data has shown age-dependent differential rates of NGF recruitment in the postnatal 258 

human ovary (Wallace & Kelsey 2010) with the great majority of follicles lost in the 259 

younger years. Implicit for these observations is the concept that in the early phases of 260 

postnatal life including and beyond puberty, some intra-ovarian mechanism limits the 261 

decline of the primordial reserve to conserve its stockpile of follicles. In the postnatal 262 

mouse ovary it has been suggested that the preservation of a set range of follicle number 263 

in the primordial reserve is consistent with a ‘quorum-sensing’ model (Bristol-Gould et 264 

al. 2006b, Tingen et al. 2009). In this model the ovary can eliminate excess primordial 265 

follicles perhaps via a Bcl-2 cell death mechanism but on current evidence cannot add 266 

primordial follicles to an otherwise abnormally insufficient reserve. While biochemical 267 

pathways that seem to be involved in the maintenance of primordial follicle health 268 

have been proposed based on knock-out models (eg Pdk1 and Rps6: (Reddy et al. 269 

2009), how (or indeed whether) primordial follicle health is monitored 270 

physiologically is an important but unclear question. 271 

What is the evidence for a ‘brake’ applied (at least temporarily) to the disappearance, by 272 

growth initiation or direct atresia, of primordial follicles from the reserve? In the Bl/6 273 

mouse strain, following the precipitous decline during the neonatal period, the depletion 274 

of primordial follicles per ovary is minimal, losing on average less than 1 follicle per day 275 

for up to 14 weeks (Kerr et al. 2006, Rodrigues et al. 2009) but thereafter declines 276 
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significantly up to 300 days (Kerr et al. 2012a). Using cell lineage-tracing Lei & 277 

Spradling {Lei, 2013 #1764} showed that the primordial follicle population is highly 278 

stable in the postnatal mouse ovary. With an estimated half-life of 10 months in 279 

adult life, the supply of primordial follicles established in the neonatal ovary is 280 

sufficient to sustain adult folliculogenesis (and fertility) without a source of renewal 281 

({Lei, 2013 #1764}). When growth-initiated i.e. primary follicles are counted, these 282 

decline significantly losing about 2.5 follicles on average per day (unpublished data). 283 

Could the growing primary follicles and their successors the secondary/antral follicles 284 

play a role in restraining recruitment from the primordial reserve? The preferential 285 

location of the reserve to the ovarian cortex with growing follicles mostly confined to the 286 

medulla (Da Silva-Buttkus et al. 2009) suggests a follicle-derived gradient of inhibitory 287 

and stimulatory signals that reflects this arrangement. Spatial analysis of primordial 288 

follicles has led to the proposal that these follicles inhibit each other by producing as yet 289 

unidentified paracrine factors that prevent their activation into primary follicles (Da 290 

Silva-Buttkus et al. 2009). Perhaps growing follicles influence the rate of entry of 291 

primordial follicles into the growth phase, and the phenotype of the AMH knock-out 292 

mouse suggests that AMH may contribute to this (Durlinger et al. 1999). Analysis of 293 

AMH concentrations in relation to NGF number and recruitment across life indicate 294 

changing relationships during puberty and early adult life (Fleming et al. 2012) in 295 

keeping with this factor also playing a significant role in the human. The signal for 296 

activation of a reserve follicle may also be based on the origin of the pregranulosa cells 297 

and timing of follicle formation, with a separate medullary population formed 298 

immediately after birth distinct from the cortical population that supports adult fertility 299 
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(Mork et al. 2012). This interpretation, based on mouse experimental data, appears to 300 

differ from a recent reanalysis of bovine ovarian development (Hummitzsch et al. 2013), 301 

which indicates that all pregranulosa cells arise early from precursor cells first 302 

identifiable within the ovarian surface epithelium.   303 

Thus in the mouse, particularly during the early phase of reproductive life, oocytes 304 

destined for ovulation may in theory be supplied mainly from the diminishing primary 305 

follicle population. As time passes this temporary stock of growing follicles can by itself 306 

no longer sustain the folliculogenic production line and the dwindling size of the early 307 

growing follicle population becomes insufficient to exert an inhibitory affect or restraint 308 

over the primordial reserve. At that point some of the previously dormant primordial 309 

follicles are activated, and the reserve is mobilized. Accessing primordial follicles stored 310 

in the reserve will lead ultimately to its depletion whereupon folliculogenesis is curtailed 311 

and ovulation ceases.  Such detailed information is not available from human studies, 312 

which can only be based on cross-sectional analysis of limited data sets. While an 313 

increase in the rate of follicle depletion with age is often cited and holds true when 314 

expressed as a proportion of remaining follicles, a recent mathematical analysis of the 315 

number of follicles leaving the non-growing pool shows that this increases through 316 

childhood, peaking at approximately 900 follicles per month at age 14 (with an average 317 

follicle endowment), then falling to 600 per month at age 25 and 200 per month at age 35 318 

(Kelsey et al. 2012).  319 

 320 

 321 

The primordial follicle reserve: is it renewable?  322 
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In 2004 Johnson et al proposed that in the mouse ovary, the incidence of ongoing, age-323 

related follicle elimination by atresia outstripped the contemporaneous supply available 324 

in the primordial follicle reserve. This imbalance was predictive of exhaustion of the 325 

reserve within a few weeks beyond puberty (Johnson et al. 2004), yet mice may remain 326 

fertile for up to 12 months (Gosden et al. 1983). To offset the proposed loss of primordial 327 

follicles evidence was presented for the existence of ovarian germline stem cells (GSC) 328 

capable of proliferation and meiotic maturation into newly-minted oocytes (Johnson et al. 329 

2004). Candidate cells were identified in the ovarian surface epithelium leading to the 330 

opinion that GSC had been discovered in the mouse (Spradling 2004). Later the notion 331 

that GSC arise from the surface epithelium was revised because the small number 332 

(6±3) estimated to be present in the postnatal day 40 ovary was insufficient to 333 

generate new oocytes to offset normal follicle loss  (Johnson et al. 2005). Other studies 334 

of the superficial ovarian cortex reported a mixed population of oocytes, primordial 335 

follicles, oogonial-type cells and unidentified cells in mitosis (Kerr et al. 2006). In 336 

seeking an alternative source of GSC external to the ovaries, an origin from bone 337 

marrow and blood was next proposed with GSC seeding the mouse ovary to replenish the 338 

natural decline in the primordial reserve oocytes (Johnson et al. 2005). This study also 339 

reported that in ovaries of mice exposed to the cytotoxins doxyrubicin (DXR) or 340 

histone deacetylase inhibitor trichostatin A (TSA), resulted within 24-36hrs in respective 341 

‘spontaneous regeneration’ of lost primordial follicles or doubling of their numbers by 342 

‘de novo oocyte production’.  Together these results were said to reinforce the concept 343 

that oogenesis and folliculogenesis could occur in the adult ovary (Johnson et al. 2005). 344 

However other studies of the effects of DXR or TSA on mouse ovaries have shown 345 
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depletion of the primordial follicle reserve with no evidence for regeneration (Kujjo 346 

et al. 2011, Kerr et al. 2012a). The contrasting outcomes of gain or loss of primordial 347 

follicles reported in different studies adds to the debate on the renewability of germ 348 

cells/oocytes in the postnatal ovary, and it remains the case that even if there is some 349 

physiological follicular renewal it too is finite (the incontrovertible existence of the 350 

menopause), whether as a result of limiting supply of germ cells, required associated 351 

somatic cells or both.  A parabiosis model (Eggan et al. 2006) did not provide 352 

supportive evidence for a bone marrow or blood-borne source for ovulated  mouse 353 

oocytes, but the presence or absence in the ovaries, of marrow- or blood-derived 354 

GSC or new follicles was not investigated. When bone marrow obtained from 355 

transgenic mice expressing germline-specific green fluorescent protein (GFP) was 356 

transplanted into wild-type recipients, GFP-positive germ cells/oocytes were 357 

detected in recipient ovaries albeit at a low frequency of 1.4±0.6% of the total 358 

immature follicle pool but none developed into ovulated oocytes (Lee et al. 2007).  359 

Further studies of the identification and developmental potential of GSC or oogonial stem 360 

cells (OSC) in the mouse and human ovary are now available 361 

(Zou et al. 2009, Pacchiarotti et al. 2010, White et al. 2012, Zhang et al. 2012) but the 362 

interpretation of the results continues to generate controversy (Oatley & Hunt 2012, 363 

Woods et al. 2013).  The human data thus far available (White et al. 2012) indicate the 364 

existence of a small number of cells within the ovary that can be extracted, proliferate in 365 

vitro, and after labeling and injection into isolated human ovarian cortex tissue, formed 366 

primordial follicles containing labeled oocytes.  In the mouse, injection of these cells into 367 

adult ovary resulted in the ovulation of fertilizable oocytes and livebirths (Zou et al. 368 
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2009, White et al. 2012).  This work requires further corroboration, and while potentially 369 

of considerable scientific and medical interest, provides no evidence that these cells 370 

contribute to physiological ovarian function, including fertility.   371 

If OSC conform to stem cell kinetics they must proliferate by mitosis to preserve their 372 

‘stemness’. Genomic analysis in mice of the number of preceding mitotic divisions for 373 

antral follicle oocytes revealed how many germ cell divisions have occurred since the 374 

zygote stage, this being referred to as oocyte ‘depth’ (Reizel et al. 2012). This study 375 

found that oocyte depth increases with age; 13 divisions on average in oocytes sampled at 376 

day 30 but 20 divisions in oocytes obtained at 350 days. Do these divisions occur only 377 

during embryonic development or throughout all of life?  378 

The first possibility is consistent with the ‘production-line’ hypothesis (Henderson & 379 

Edwards 1968) i.e. the order in which oocytes ovulate postnatally follows the order in 380 

which oogonia entered meiosis (and cannot re-enter mitosis) in the embryonic ovary. 381 

Meiotic entry is not an ‘all-or-none’ event but a gradual process occurring from e13.5-382 

e18.5 (Peters et al. 1962, Ghafari et al. 2007, Ghafari et al. 2009) and progressing in the 383 

ovary in a cranial-caudal direction (Bullejos & Koopman 2004). Many oogonia in the 384 

fetal mouse (and human) ovary continue mitosis whilst others enter meiotic prophase 385 

(Evans 1982, Fulton et al. 2005) and therefore oogonia with fewer or greater numbers of 386 

mitotic divisions would respectively transition early or later into meiosis. Medullary 387 

oocytes become early-activated primordial follicles but cortex-resident oocytes are 388 

delayed in their assembly as primordial follicles (Fig. 3B). This pattern of germ cell 389 

distribution and subsequent dynamics is initiated in the mouse ovary at e13.5 (Byskov et 390 

al. 1997).  391 
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(Woods et al. 2012) favour the alternative possibility whereby additional mitoses of OSC 392 

during postnatal life produce oocytes of greater ‘depth’ consistent with measured genetic 393 

signatures. Cells with OSC-type properties have been found among primordial follicles in 394 

or subjacent to the surface epithelium of the neonatal mouse ovary (Zou et al. 2009) and 395 

although cells with similar characteristics have been observed (Kerr et al. 2006) their 396 

identity, function and fate remain to be confirmed. Bristol-Gould et al (Bristol-Gould et 397 

al. 2006a) and Tingen et al (Tingen et al. 2009) reported that 5% of germ cells in the 398 

neonatal mouse ovary are ‘residual’ oogonia, which did not enter meiosis between e13.5-399 

e18.5. If bypassing oocyte nest formation and encapsulation to form primordial follicles, 400 

do these orphan oogonia represent the OSC, being rare, unrecognized with routine 401 

histology (not being primordial follicles) and problematic to characterize using 402 

established stem cell or germline cell markers?  Further investigations may reveal if these 403 

reputed OSC co-exist with the conventional primordial follicle reserve and represent a 404 

hitherto unknown population of germ cells with the potential of development given 405 

special opportunity.   406 

 407 

Conclusions 408 

From the time of its formation and development within the fetal or neonatal ovary, and 409 

throughout the postnatal reproductive lifespan, the primordial follicle reserve is subject to 410 

constant change. The remarkable increase then substantial loss of germ cells in the fetal 411 

ovary impacts the dynamics of the reserve to the extent of providing oocytes for assembly 412 

into primordial follicles. The maximum supply of primordial follicles is the net result of 413 

the addition to the reserve of suitably developed oocytes, counterbalanced by depletion 414 
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through germ cell death, and depending on species, activation of follicles into a growth 415 

phase. Mechanisms controlling germ cell proliferation are not fully understood but 416 

evidence is emerging for regulation by interactions between a variety of transcription and 417 

growth factors. Elimination of germ cells is likely due to several processes particularly 418 

via apoptosis but with increasing evidence for non-apoptotic cell death, such as 419 

autophagy, acting alone or in combination with apoptosis and dependant on the type and 420 

biological status of the germ cells necessitating their removal. Although in postnatal life 421 

many primordial follicles in humans may be preserved for decades in a state of 422 

dormancy, the dynamic nature of the primordial follicle reserve is again evident, chiefly 423 

through depletion as follicles activate and enter folliculogenesis, and possibly by direct 424 

elimination/atresia of those follicles sustaining genomic impairment. Theoretically, 425 

manipulation of the rate of activation of primordial follicle pool could be of clinical 426 

value. Temporary increased activation could be of value to women requiring 427 

assisted conception later in life to increase the number of oocytes that could be 428 

recovered, and conversely slowed activation could be of value to delay the 429 

menopause and possibly prolong natural fertility if a reduced pool (and hence 430 

increased risk of early menopause) was identified.  These possibilities remain remote 431 

and, as with all manipulations of the germ line, raise very serious safety 432 

considerations.  Recent reports of the existence of a rare population of germline stem 433 

cells in mouse and human ovaries have led to suggestions that these cells may partially 434 

replenish the reserve as its primordial follicle supply is diminished. If further work 435 

confirms recent studies showing that isolated GSC can form follicles with fertilizable 436 
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oocytes and viable embryos, this may usher in a new paradigm: an ancillary germ cell 437 

population coexisting with the primordial follicle pool, the ‘reserve’ of the reserve. 438 
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Figure 1. Estimates of germ cell populations of the human fetal ovary based on 450 

histomorphometric analysis reported by Baker (1963) and Forabosco & Sforza (2007).  451 

Germ cells are always dying, the numbers of atretic germ cells (which include all oogonia 452 

and oocytes) being equal to or exceeding the numbers of individual diplotene oocytes or 453 

those forming primordial follicles. Primordial follicles begin to form at 15 weeks 454 

gestation and at birth the fetal ovary on average contains approximately 400,000 455 

primordial follicles. This represents only 12% of the total germ cell number (healthy and 456 

atretic) present at 22 weeks gestation. 457 

Figure 2. Human ovarian development and primordial follicle formation.  Illustrative 458 

immunohistochemical images to demonstrate (A) proliferative oogonia (mitotic cells 459 
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identified by arrows) and oocytes (Oo) within germ cell nests with intermixed NT4-460 

expressing (brown) pregranulosa cells, with the somatic cells (sc) of the stromal regions 461 

not expressing NT4 13 weeks gestation. (B) NT4 expression (brown) is also confined to 462 

pregranulosa cells within oocyte (Oo) nests and the granulosa cells of newly-formed 463 

primordial follicles, with no expression in stromal cells (sc): 21 weeks gestation. (C) 464 

Activin βA is expressed by some nests of oocytes (Oo) (green; red nuclear counterstain) 465 

but with much weaker expression in others (arrow), indicating synchronous development 466 

of oocytes within a nest; 19 weeks gestation.  (D) Schematic representation of 467 

experimentally-derived interactions between growth factors expressed by 468 

oogonia/oocytes of the human fetal ovary and the adjacent pregranulosa cells. 469 

Stimulatory (+) and inhibitory (-) regulation as indicated. Scale bar A-C, 20µm. 470 

Figure 3. Development of oocytes and primordial follicles. (A) Pachytene oocytes in e17 471 

mouse ovary showing their arrangement into nests in which individual oocytes are not 472 

enclosed by somatic cells that will later become pregranulosa cells of primordial follicles. 473 

Scale bar 15µm. (B) Postnatal day 1 mouse ovary showing oocyte nests in the cortex 474 

region to the right, and larger individual primordial follicles (pf) in the medulla. Pyknotic 475 

structures (example at arrowhead) represent degenerative oocytes. Scale bar 20µm. 476 

 477 

Figure 4. Schematic diagram illustrating the general trends of endowment of oocytes and 478 

primordial follicles based on stereological analysis in the Bl/6 mouse ovary over 479 

indicated ages. Dashed line: is not data based but an estimation of germ cell increase; 480 

solid line: mostly based on published data. Oocyte number increases markedly towards 481 
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the end of fetal life but many are lost as they assemble to form primordial follicles in the 482 

first days after birth. For up to two weeks postnatally primordial follicles decline 483 

significantly then enter a period of very slow follicle loss for up to several months 484 

followed again by renewed depletion until near or total exhaustion around 12 months of 485 

age. Data based in part on Myers et al. 2004, Kerr et al. 2006, 2012a, Rodrigues et al . 486 

2009, Lei & Spradling 2013. 487 

 488 

Figure 5. Gene regulation of the primordial follicle reserve in the mouse ovary.  489 

Comparison of primordial follicle supply in postnatal day 10 mouse ovaries in wild-type, 490 

p53 -/- and various BH3 member knockout models. Based on data from Kerr et al 2012b. 491 

 492 

Figure 6. Schematic diagram illustrating the options available for primordial follicles 493 

leaving the arrested reserve (growth/suppression of growth; maintenance of health; 494 

elimination and possibly renewal) and representative proteins or genes identified as 495 

regulators of these various pathways.  496 
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