
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Querying regular graph patterns

Citation for published version:
Barcelo, P, Libkin, L & Reutter, J 2014, 'Querying regular graph patterns' Journal of the ACM, vol. 61, no. 1,
8. DOI: 10.1145/2559905

Digital Object Identifier (DOI):
10.1145/2559905

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of the ACM

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2559905
https://www.research.ed.ac.uk/portal/en/publications/querying-regular-graph-patterns(fb6014c1-73a9-4adc-8f03-9c7b84931eae).html


A

Querying Regular Graph Patterns

PABLO BARCELÓ, Department of Computer Science, Universidad de Chile

LEONID LIBKIN, School of Informatics, University of Edinburgh

JUAN L. REUTTER, School of Informatics, University of Edinburgh and Department of Computer

Science, PUC Chile

Graph data appears in a variety of application domains, and many uses of it, such as querying, matching,
and transforming data, naturally result in incompletely specified graph data, i.e., graph patterns. While
queries need to be posed against such data, techniques for querying patterns are generally lacking, and
properties of such queries are not well understood.

Our goal is to study the basics of querying graph patterns. The key features of patterns we consider
here are node and label variables and edges specified by regular expressions. We provide a classification of
patterns, and study standard graph queries on graph patterns. We give precise characterizations of both
data and combined complexity for each class of patterns. If complexity is high, we do further analysis of
features that lead to intractability, as well as lower-complexity restrictions. Since our patterns are based on
regular expressions, query answering for them can be captured by a new automata model. These automata
have two modes of acceptance: one captures queries returning nodes, and the other queries returning paths.
We study properties of such automata, and the key computational tasks associated with them. Finally, we
provide additional restrictions for tractability, and show that some intractable cases can be naturally cast
as instances of constraint satisfaction problems.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Data Models; H.2.1
[Logical Design]: Data Models; F.1.1 [Models of Computation]: Automata

General Terms: Theory, Languages, Algorithms

Additional Key Words and Phrases: Graph databases, graph patterns, query languages, complexity, au-
tomata, constraint satisfaction.
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1. INTRODUCTION

Querying and mining graph-structured data has received much attention lately, due to
numerous applications in areas such as biological networks [Leser 2005; Milo et al. 2002;
Olken 2003], social networks [Ronen and Shmueli 2009; San Mart́ın and Gutierrez 2009],
and the semantic Web [Gutierrez et al. 2011; Pérez et al. 2009]. In such applications, the
underlying data is naturally modeled as graphs, in which nodes are objects, and edge labels
define relationships between those objects [Angles and Gutierrez 2008].

A standard way of querying graph data is to look for reachability patterns. Such patterns
specify that paths satisfying certain conditions should exist between nodes. Initially pro-
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Fig. 1. Examples of (1) node variables, (2) label variables, and (3) regular expressions

posed in a simple form in [Cruz et al. 1987; Consens and Mendelzon 1990], pattern languages
have been developed over time and used in a variety of applications, such as biology, study-
ing network traffic, crime detection, modeling object-oriented data, querying and searching
RDF data, etc. [Fan et al. 2010; Fan et al. 2010; Gutierrez et al. 2011; Gyssens et al. 1994;
Leser 2005; Milo et al. 2002; Natarajan 2000; Pérez et al. 2009; Ronen and Shmueli 2009;
San Mart́ın and Gutierrez 2009; Tong et al. 2007; Weikum et al. 2009]; see also the survey
[Angles and Gutierrez 2008]. In their simplest form, patterns are just graphs, whose occur-
rences in large graphs are of interest. Already in this simple form, they are very important
in biological applications, where search for network motifs [Milo et al. 2002] is a common
task. But for applications such as, for example, crime detection or RDF data, more complex
patterns are needed, as one can look for connections between elements in a network that
involve complex paths via some intermediaries.

The notions of finding matches for complex patterns also evolved with time, from tra-
ditional NP-complete subgraph isomorphism (used, nonetheless, in practical applications,
e.g., in [Cheng et al. 2008; Tong et al. 2007]) to notions based on graph homeomorphisms
(i.e., mapping edges to paths) and simulation relations between patterns and graphs [Bune-
man et al. 1996; Fan et al. 2010; Fan et al. 2010]. Outputs of matching queries are patterns
themselves: their nodes are those that are involved in the simulation relation, and relation-
ships between them are those specified in the pattern. For example, in a crime detection
scenario, a query may output a set of individuals who might be involved in a crime network,
together with descriptions of paths specifying their relationships. Similar scenarios arise in
querying semistructured data as well, where it is sometimes natural to output incomplete
query results [Kanza et al. 2002]. When such matching and query results require extracting
additional information from them, one ends up querying patterns rather than graphs.

There are other scenarios where the need for querying patterns naturally arises. A pattern
represents partial information about graph-structured data. Querying partial information is
commonly present in integrating and exchanging (or translating) data [Arenas et al. 2010;
Fagin et al. 2005; Lenzerini 2002]. In such applications, one queries the result of applying
some schema mapping rules to source data, which yields a partially specified database.
Partial databases – whether relational or XML – are typically viewed as patterns [Imielinski
and Lipski 1984; Barceló et al. 2010; Björklund et al. 2007]. For graph data, the study of
schema mappings and transformations for data exchange an integration has started recently
[Calvanese et al. 2011; San Mart́ın and Gutierrez 2009], but techniques for querying resulting
partially specified graphs are currently lacking.

Motivated by these considerations, we study querying partially defined graph data, i.e.,
graph patterns. As for other data models [Arenas et al. 2010; Barceló et al. 2010; Fagin
et al. 2005; Imielinski and Lipski 1984; Lenzerini 2002], one is looking for answers that are
independent of the way in which the missing parts of patterns are interpreted, i.e., certain
answers.

Based on the examples arising in querying and transforming graph data, we now analyze
types of features that need to be addressed in the study of querying graph patterns. Recall
that in the relational case, one deals with variables in place of missing data values [Imielinski
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and Lipski 1984]. In the case of XML, one may also have missing structural information
[Barceló et al. 2010]. For graph databases, partiality of specifications mainly arises in the
following three ways.

Node variables. Similarly to values missing in relational or XML data, identities of some
nodes can be missing in graph data. For example, in transforming a social network that has
different types of relationship edges, we can split an edge (Name1, father-in-law, Name2)
into two edges (Name1, father, x) and (x, spouse, Name2), with an unknown identity x.
This is illustrated in Fig. 1 (a). Variables can also be used to model blank nodes in RDF
[Pérez et al. 2009].

Label variables. We may also miss the precise relationships between nodes. But even
if we do not know them, we may still know that some of the relationships are the same.
Taking an example from social networks, consider transforming a network where we have
two ‘celebrities’ A and B who have ‘followers’ A1, . . . , An and B1, . . . , Bm (like on the
Twitter network). Suppose we know the relationship between A and B (e.g., they like, or
dislike each other). We may wish to record this as a relationship between their followers: for
instance, if A hates B and Ai follows A, we may deduce something about how Ai relates
to B. At the time of transforming a network we may not know the exact nature of such a
relationship, but we know there exists one, and it should be the same for all the followers of
A. Likewise, all the followers of B will be in some relationship with A (but not necessarily
the same as the followers of A with B). So we add edges

(A1, X,B),. . . ,(An, X,B), (B1, Y, A),. . . ,(Bm, Y, A)

where X and Y are edge labels: we do not yet know what the relationship will be, but want
to record that it is the same among all the followers. This is illustrated in Fig. 1 (b).

Regular languages. Returning to the example with crime detection in a network of
people, the result of a matching may contain facts like “there is a path between x and
the boss that goes via at least two intermediaries”, which will be expressed by a regular
expression Σ∗ · sub · Σ∗ · sub · Σ∗, where sub indicates subordinacy in the hierarchy, and Σ
is the set of all labels. This is illustrated in Fig. 1 (c). In general, the situation where only
regular paths between nodes can be deduced from a matching is very common [Fan et al.
2011]. Thus, when we do not have an exact path between two nodes, we attempt to replace
it by an edge (A, e,B), where e is a regular expression.

These are the key features that we add to patterns. Note that replacing known data
by variables is common to all models of incomplete information. One new element that is
specific to graph patterns is adding regular expressions to label edges. Thus, essentially we
look at patterns whose key features are captured by variables and regular languages.

Once we have these features added to patterns, we need to define a query language for
them. Most commonly used query languages for graph databases specify the existence of
paths between nodes, with the restriction that the labels of such path belong to regular
languages [Abiteboul et al. 1999; Cruz et al. 1987; Consens and Mendelzon 1990; Gyssens
et al. 1994; Calvanese et al. 2002]. The simplest such queries are known as regular path
queries, or RPQs [Cruz et al. 1987]; those select nodes connected by a path that belongs to
a regular language. Conjunctive RPQs, or CRPQs, extend them by allowing intermediate
nodes in paths. Dealing with incomplete data, we often have duality between data and
queries. For example, relational naive tables are tableaux of conjunctive queries, and in
XML, typical query languages are based on tree patterns, i.e., incomplete descriptions of
documents. We shall see that queries such as RPQs and CRPQs arise as special cases of
graph patterns, continuing the analogy with the well studied cases.

To sum up, our main goal is to define classes of regular graph patterns, study their
properties, and query answering over them. Our main contributions are as follows.
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(1) We define classes of graph patterns that have the key features listed above – node
variables, label variables, and edges labeled with regular expressions – and provide a
complete classification of their expressiveness.

(2) We study the complexity of query answering (i.e., the problem of finding certain answers
to queries over graph patterns). We fully analyze it for CRPQs, both for data complexity
(which ranges from NLogspace to coNP) and for combined complexity (which ranges
from NP to Expspace). For classes of high complexity, we do an in-depth analysis,
showing which features lead to intractability. We also show that upper bounds for
CRPQs extend to more expressive queries.

(3) We provide an automaton model for query answering. Specifically, we define a class
of automata, called incomplete automata, that naturally give rise to two acceptance
notions that precisely capture certain answers: one of them corresponds to queries that
return nodes, and the other to queries that return paths. In the latter case, answers to
queries are represented by NFAs. We analyze the complexity of incomplete automata,
and prove lower bounds on the sizes of NFAs representing query answers.

(4) Returning to the intractable cases for query answering, we look at two ways of reducing
complexity: by imposing structural restrictions, and by reducing to problems for which
many efficient heuristics are known. Along these lines, we prove that for several classes
of graph patterns, the bounded treewidth restriction guarantees tractability. We also
show how to cast finding certain answers as a constraint satisfaction problem, which
allows us to use algorithmic techniques from that field.

Remarks: graph patterns in other areas The motivations of this paper come from
dealing with graph databases, as is reflected in the word “querying” in the title. While the
models based on variables and regular expressions that we use, and particular results we
show, are specifically tailored to handling patterns as a model of incompleteness in graph
databases, this is not the only possible application area of graph patterns. Indeed, a graph
pattern π is just a compact representation of a (potentially infinite) set of graphs. As such,
querying them can be seen as solving the validity problem. Indeed, suppose φπ is a formula,
in some logical formalism, describing the set of graphs given by π. If a query ψ is issued
over the pattern, then evaluating it amounts to checking validity of the implication φπ → ψ,
saying that every graph represented by π satisfies ψ.

Logical formalisms capable of describing infinite families of graphs and having decidable
validity problem have appeared in other areas, notably verification and desciption logics. In
verification, the standard formalisms typically do not distinguish graphs up to bisimilation.
However, up to bisimulation, several of them, for instance, the µ-calculus, can describe
arbitrary finite graphs, as well as regular properties of paths. Validity problem for the
µ-calculus and several of its extension that add power in a way relevant for potential appli-
cations in graph databases [Bonatti et al. 2008] are Exptime-complete; with our formalisms
the complexity generally jumps one exponent in most fragments. A slightly different take
on incompleteness is present in the work on module checking [Kupferman et al. 2001] which
introduces a form of open-world assumption, similar to the semantics that we are using.
While such results and those in our paper are completely independent, it is worth mention-
ing them as another way of specifying sets of graphs and solving the validity problem over
them.

Description logics is yet another area where satisfiability and validity are central problems,
and reasonable-complexity algorithms are of great interest. Some of the formalism come
very close to the µ-calculus and can describe finite graphs as well as some of the features
of patterns. For instance, [De Giacomo and Lenzerini 1997] gives a description logic that
is extended with fixed points, thus gaining a lot of expressivity while remaining decidable,
also in exponential time.
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Thus, describing sets of graphs by means of incomplete descriptions and solving the
validity problem for formulas over such sets is by no means unique to the area of graph
databases; but specific models considered here are, as well as results about them that we
show.

Organization In Section 2 we define graph databases and queries over them. In Section
3 we define graph patterns and in Section 4 we study their classifications and structural
properties. In Section 5 we analyze both data and combined complexity of query answering.
In Section 6 we deal with incomplete automata, and relate them to answering queries over
graph patterns. In Section 7 we look at tractability restrictions and reduction to constraint
satisfaction.

2. GRAPH DATABASES, RPQS AND CRPQS

Graph databases. A graph database [Angles and Gutierrez 2008; Calvanese et al. 2002;
Cruz et al. 1987] is just a finite edge-labeled graph. Let Σ be a finite alphabet, and N a
countably infinite set of node ids. Then a graph database over Σ is a pair G = (N,E), where
N is the set of nodes (a finite subset of N ), and E is the set of edges, i.e., E ⊆ N ×Σ×N .
That is, we view each edge as a triple (n, a, n′), whose interpretation, of course, is an a-
labeled edge from n to n′. When Σ is clear from the context, we shall simply speak of a
graph database.

A path ρ from n0 to nm in G is a sequence (n0, a0, n1), (n1, a1, n2), · · · , (nm−1, am−1, nm),
for some m ≥ 0, where each (ni, ai, ni+1), for i < m, is an edge in E. In particular, all the
ni’s are nodes in N and all the aj ’s are letters in Σ. The label of ρ, denoted by λ(ρ), is the
word a0 · · · am−1 ∈ Σ∗. We also define the empty path as (n, ǫ, n) for each n ∈ N ; the label
of such path is the empty word ǫ.

Regular path queries. The basic querying mechanism for graph databases is provided
by means of regular path queries, or RPQs [Abiteboul et al. 1999; Cruz et al. 1987; Calvanese
et al. 2002]. They retrieve pairs of nodes in a graph database connected by a path whose
label belongs to a given regular language. Formally, an RPQ Q is an expression of the form
(x, L, y) where L ⊆ Σ∗ is a regular language. We shall assume that syntactically L is given
as a regular expression. Given a graph database G = (N,E) and an RPQ Q, both over Σ,
the answer Q(G), is the set of all pairs (n, n′) ∈ N such that there is path ρ between them
whose label λ(ρ) is in L.

It has been argued (see, e.g., [Abiteboul et al. 1999; Cruz et al. 1987; Consens and
Mendelzon 1990; Calvanese et al. 2000b]) that analogs of conjunctive queries whose atoms
are RPQs are much more useful in practice than simple RPQs. In such queries, multiple
RPQs can be combined, and some variables can be existentially quantified. Formally, a
conjunctive regular path query, or CRPQ Q over a finite alphabet Σ is an expression of the
form:

Ans(z̄) ←
∧

1≤i≤m

(xi, Li, yi), (1)

such that m > 0, each (xi, Li, yi) is an RPQ, and z̄ is a tuple of variables among x̄ and ȳ.
The atom Ans(z̄) is the head of the query, the expression on the right of the ← is its body.
A query with the head Ans() (i.e., no variables in the output) is called a Boolean query.

Intuitively, such a query Q selects tuples z̄ for which there exist values of the remaining
node variables from x̄ and ȳ such that each RPQ in the body is satisfied. Formally, given
Q of the form (1) and a graph G = (N,E), a valuation is a map σ :

⋃

1≤i≤m{xi, yi} → N .

We write (G, σ) |= Q if (σ(xi), σ(yi)) is in the answer to RPQ (xi.Li, yi) in G, i.e., if there
is a path ρi in G from σ(xi) to σ(yi) with λ(ρi) ∈ Li. Then Q(G) is the set of all tuples
σ(z̄) such that (G, σ) |= Q. If Q is Boolean, we let Q(G) be true if (G, σ) |= Q for some σ
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(that is, as usual, the singleton set with the empty tuple models true, and the empty set
models false).

In what follows, we also adopt a view of RPQs as potentially having some variables
existentially quantified. That is, RPQs will be of the form Ans(z̄) ← (x, L, y), where z̄
contains variables from {x, y}. For example, Ans() ← (x, L, y) is a Boolean RPQ checking
whether there is a path whose label is in L.

3. GRAPH PATTERNS

As in the case of tree-structured data, e.g. XML, where the ability to find binding of variables
that match a tree pattern is crucial for the basic querying mechanisms [Lakshmanan et al.
2004], our goal in this section is to define a class of graph patterns that can be considered
the core of each query language that provides enough expressive power to express relevant
graph properties [Abiteboul et al. 1999].

As explained in the introduction, the key new features of graph patterns are the ability
to use the following (in addition to nodes and edge labels of graph databases):

— node variables, i.e., marked nulls for graph nodes;
— label variables, i.e., marked nulls for edge labels;
— regular expressions as labels for edges.

Thus, we shall define graph patterns as graph databases over constant nodes and node
variables, whose edges will be labeled with regular expressions that may use label variables.
To do this, we shall use the following (countably infinite) sets:

— Vnode of node variables (normally denoted by lower-case letters), and
— Vlab of label variables (normally denoted by upper-case letters).

If Γ is an arbitrary (finite or infinite) set of symbols, we write REG(Γ) to denote the set
of nonempty regular languages over Γ (if Γ is infinite, then each L ∈ REG(Γ) only uses
finitely many symbols from Γ). Recall that a graph database over a labeling alphabet Σ was
defined as a labeled graph, (N,E), where N ⊆ N is the set of nodes and E ⊆ N × Σ×N
is the set of labeled edges. We are now in a position to define graph patterns formally.

Definition 3.1 (Graph Patterns). A graph pattern over finite alphabet Σ is a pair π =
(N,E) where

—N ⊆ N ∪ Vnode is the finite set of nodes, and
—E ⊆ N ×REG(Σ ∪ Vlab)×N is the set of edges. ✷

Semantics. In complete analogy with relational naive tables or incomplete XML docu-
ments, the semantics is defined via homomorphisms. To define those, we need extensions of
partial functions f : Γ → Γ to languages L ∈ REG(Γ) defined as f(L) = {f(w) | w ∈ L},
where f(w) is obtained by replacing each symbol a of a word w on which f is defined by
f(a), and leaving symbols b on which f is not defined intact.

Since variables can occur at the level of both nodes and edge labels, homomorphisms will
be in fact pairs of mappings. Given a graph databaseG = (N,E) and a pattern π = (N ′, E′),
a homomorphism h : π → G is a pair h = (h1, h2) of mappings h1 : N ′ → N and h2 that
maps label variables used in π to labels used in G such that:

(1) h1(n) = n for every node id n ∈ N ; and
(2) for every edge (p, L, p′) ∈ E′, there is path between h1(p) and h1(p

′) in G whose label
is in h2(L).

We now write G |= π if there is a homomorphism h : π → G. The semantics is defined
with respect to a labeling alphabet Σ:

JπKΣ = {G over Σ | G |= π}.
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Fig. 2. A homomorphism h : π → G

Most often Σ is clear from the context and we write simply JπK then.

Example 3.2. An illustration is given in Fig. 2: a homomorphism is defined by letting
label variable X be b, and by mapping both node variables x and y into n3. The edge
(n1, (a|b)(a|b), x) is then mapped into the path (n1, a, n4), (n4, b, n3) with label ab. The edge
(n1, (ab)

∗, y) is mapped into the same path, since ab belongs to regular languages denoted
by both (a|b)(a|b) and (ab)∗. The edge (y, a∗X,n2) is mapped into (n3, b, n2), since b is in
the language denoted by a∗b. ✷

Certain answers. Consider queries Q that take graph databases as input and return
sets of tuples of their nodes. For example, RPQs and CRPQs are such queries. For them,
we can define their certain answers on graph patterns in the standard way:

certainΣ(Q, π) =
⋂

{Q(G) | G ∈ JπKΣ}.

Again, if Σ is clear from the context, we write simply certain(Q, π).

Example 3.3. The labeling alphabet can make a difference in finding certain answers.
Consider a pattern with edges (n1, a, n2), (n2, X, n3), (n3, b, n4), where X is a label variable.
Let Q be the Boolean RPQ Ans() ← (x, ab, y). Then certain{a,b}(Q, π) = true: whether
X is a or b, there is a path labeled ab. However, certain{a,b,c}(Q, π) = false (by setting
X = c). ✷

Graph patterns as queries Graph patterns can naturally be viewed as queries – again in
complete analogy with relational databases (where naive tables are a natural representation
of conjunctive queries, i.e., tableaux) and XML documents (where tree patterns form the
basis of tree conjunctive queries [Björklund et al. 2007; Gottlob et al. 2006]). This view has
also been explored in [Cohen and Sagiv 2005].

We adopt the convention that patterns used as queries are denoted by ξ, and patterns
used as data are denoted by π. A graph query is a pair Q = (ξ, x̄), where ξ = (N,E) is
a graph pattern, and x̄ is a tuple of elements from N . For example, a CRPQ Ans(z̄) ←
∧

i≤m(xi, Li, yi), can be viewed as a graph query (ξ, z̄), where ξ simply contains the edges

(xi, Li, yi) for i ≤ m.
We now define the semantics of a graph query on graph databases (later, we shall extend

it to graph patterns). Given a graph database G = (N,E) with N ⊂ N , and a graph query
Q = (ξ, x̄) with |x̄| = k, the answer to Q on G is:

Q(G) = {v̄ ∈ Nk | G |= ξ[v̄/x̄]}.

Here ξ[v̄/x̄] is the result of substituting v̄ for x̄ in the pattern ξ.
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It is easy to see that when Q is a CRPQ viewed as a graph query, the result Q(G)
coincides with the standard semantics of CRPQs.

Example 3.4. Consider again the example in Fig. 2 and the homomorphism described
in Example 3.2. Let ξ be the pattern obtained from π by changing X to b, and replacing n1

and n2 with variables z1 and z2. The resulting pattern can be viewed as a CRPQ (ξ, x, y):

Ans(x, y) ← (z1, (a|b)(a|b), x), (z1, (ab)
∗, y),

(y, a∗b, z2), (z2, b, z1)

If it is evaluated in graph G shown in Fig. 2, one tuple in the output will be (n3, n3), since
G |= ξ[n3/x, n3/y], as witnessed by homomorphism h shown in the figure. ✷

4. CLASSIFICATION AND BASIC PROPERTIES

The three key features of graph patterns – node variables, label variables, and regular
expressions – provide a natural classification of patterns. We shall refer to classes of patterns
as P

σ, where σ enumerates the present features. We use ‘nv’ for node variables, ‘lv’ for
label variables, and ‘re’ for regular expressions. This gives us 8 classes, from P (none of the

features is present) to P
nv,lv,re (all are present).

Of course P is the class of graph databases (N,E) with N ⊆ N and E ⊆ N × Σ × N ,

and P
nv,lv,re is the class of all graph patterns as in Definition 3.1 with N ⊆ N ∪Vnode and

E ⊆ N ×REG(Σ ∪ Vlab)×N . We now examine some others.

— P
nv is the class of graphs where nodes could be either constants, or node variables; all

edges are labeled with alphabet letters, i.e. N ⊆ N ∪ Vnode and E ⊆ N × Σ×N . These
patterns can be represented by relational naive tables.

— P
nv,re is the class of patterns where nodes could be either constants or node variables,

and edges are labeled with regular expressions over Σ. That is, N ⊆ N ∪ Vnode and
E ⊆ N ×REG(Σ)×N .
These are essentially CRPQs, which are graph queries (ξ, x̄) where ξ is from P

nv,re and
uses only node variables (without this restriction we have the class of CRPQs that can
mention constants).

— P
nv,lv is the class of patterns where nodes could be either constants or node variables,

and edges are labeled with letters or variables. That is, N ⊆ N ∪ Vnode and E ⊆ N ×
(Σ ∪ Vlab)×N . The class P

lv is its restriction when N ⊆ N .

Since patterns from P
nv can be represented by relational naive tables, this suggests that

naive query evaluation [Imielinski and Lipski 1984] will work for them, and we shall see that
this is indeed true. However, this will turn out to be the largest class for which such naive
evaluation works.

Given multiple features of graph patterns, it is natural to ask whether all are necessary,
or some are expressible with others. We now show that all three are essential.

— We write P
σ � P

σ′

if P
σ′

is at least as expressive as P
σ. That is, for every pattern

π ∈ P
σ, there is a pattern π′ ∈ P

σ′

so that JπK = Jπ′K (i.e., JπKΣ = Jπ′KΣ for each Σ
containing the labels used in π).

— We write P
σ ∼ P

σ′

if P
σ and P

σ′

are equally expressive (i.e., P
σ � P

σ′

and P
σ′

� P
σ).

— Finally, P
σ ≺ P

σ′

means that P
σ′

is strictly more expressive than P
σ: that is, P

σ �

P
σ′

, but they are not equally expressive.

Theorem 4.1. Adding each new feature to graph patterns strictly increases their ex-

pressiveness: in other words, P
σ ≺ P

σ′

if and only if σ ( σ′, and P
σ ∼ P

σ′

if and only if
σ = σ′.
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Proof. In order to prove the first part of the theorem we make use of the following
lemma:

Lemma 4.2. The following holds:

(1 ) There exists a pattern π in P
nv over alphabet Σ = {a}, such that JπKΣ 6= Jπ′KΣ for all

patterns π′ in P
lv,re over the same alphabet.

(2 ) There exists a pattern π in P
re over alphabet Σ = {a}, such that JπKΣ 6= Jπ′KΣ for all

patterns π′ in P
nv,lv over the same alphabet.

(3 ) There exists a pattern π in P
lv over alphabet Σ = {a, b}, such that JπKΣ 6= Jπ′KΣ for

all patterns π′ in P
nv,re over the same alphabet.

Indeed, we show next, using Lemma 4.2, that P
σ ≺ P

σ′

if and only if σ ( σ′.

(⇐): From the definition, it is clear that σ ( σ′ implies P
σ � P

σ′

. Assume for the sake

of contradiction that σ ( σ′, but P
σ ∼ P

σ′

. Since σ ( σ′, there is an element of {nv, lv, re}
that belongs to σ′, but not to σ. It follows from statements (1, 2 and 3) of Lemma 4.2 that

there is a pattern π′ in P
σ′

over some alphabet Σ, such that Jπ′KΣ 6= JπKΣ, for all patterns
π ∈ P

σ over Σ. This is a contradiction.
(⇒): To prove that P

σ ≺ P
σ′

implies σ ( σ′, assume for the sake of contradiction that

for some σ, σ′ it is the case that P
σ ≺ P

σ′

, but it is not the case that σ ( σ′. Then

the only possibility is that σ 6⊆ σ′. (Indeed, if σ = σ′ then clearly P
σ′

� P
σ, which is a

contradiction). Then there exists an element of {nv, lv, re} that belongs to σ but not to σ′.
It follows again from statements (1, 2 and 3) in Lemma 4.2 that it is not the the case that

P
σ � P

σ′

, which is a contradiction.

Thus, in order to prove the first part of Theorem 4.1, we only have to prove Lemma 4.2.
This is what we do next.

Proof of Lemma 4.2: We begin by proving statement (1). Consider a pattern π = (N,E)
over alphabet Σ = {a}, where N consists of the node variables x and y, and E consists
of the edge (x, a, y). Clearly, π belongs to P

nv. We now prove that there is no pattern

π′ in P
lv,re such that JπKΣ = Jπ′KΣ. The idea is as follows. First, notice that the set

⋂

{NG | G = (NG, EG) and G ∈ JπKΣ} containing the node id’s that appear in all graphs in
JπKΣ is equal to the empty set (this can be easily proved using the fact that we only enforce
homomorphisms to be the identity on constants). Second, it is easy to see that no pattern
without edges over Σ can represent exactly the graphs in JπKΣ, since all graphs in JπKΣ must

have at least one edge. Thus, all that we need to prove is that no pattern π′ in P
lv,re over Σ,

with at least one edge, satisfies the following:
⋂

{NG | G = (NG, EG) and G ∈ Jπ′KΣ} 6= ∅.
That is, all the graphs in Jπ′KΣ must have at least one node in common. But this is quite

obvious since every pattern π′ in P
lv,re, with at least one edge, contains at least one constant,

and such a constant must belong to every graph G in JπKΣ.

Now we prove statement (2); namely, that there exists a pattern π in P
re over alphabet

Σ = {a}, such that there is no pattern π′ in P
nv,lv over the same alphabet that satisfies

JπKΣ = Jπ′KΣ. Define π = (N,E) over alphabet {a} as follows: The set N of nodes consists
of node ids {n1, n2}, and E consists of the edge (n1, aa

∗, n2).

Assume, for the sake of contradiction, that there is a pattern π′ ∈ P
nv,lv over Σ, such

that JπKΣ = Jπ′KΣ. It is clear then that the only node ids that appear in pattern π′ are n1

and n2. We distinguish two cases, depending on the structure of π′:

— The node n2 is not reachable from node n1 in π′. It is then easy to construct a graph
G ∈ Jπ′KΣ such that n2 is not reachable from n1: It suffices to replace every node
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variable in π′ to a fresh node constant, and every label variable with the symbol a. This
is a contradiction, since every graph in JπKΣ must satisfy that nodes n1 and n2 are in
the same connected component.

— Node n2 is reachable from n1 in π′. Let ρ ≥ 0 be the longest simple path between n1

and n2 in π′. We prove below the following property, which immediately yields to a
contradiction: For every graph G ∈ Jπ′KΣ, there is a path in G from n1 to n2, and the
length of the shortest such path is at most |ρ|. On the other hand, it is easy to construct
a graph in JπKΣ such that n1 and n2 are not connected by any path of size ρ or less.
This is a contradiction.
Clearly, every graph G ∈ Jπ′KΣ contains a path from n1 to n2, since these node ids
are in the same connected component of π′. Assume now, for the sake of contradiction,
that there is a graph G ∈ Jπ′KΣ such that G has no path of size ≤ |ρ| from n1 to
n2. Furthermore, assume that ρ in π′ is of form n1, x1, . . . , x|ρ|−1, n2, where each xi,
1 ≤ i ≤ |ρ|−1, is a node variable. Since G ∈ Jπ′KΣ, there is a homomorphism h = (h1, h2)
from π′ to G. Further, h(n1) and h(x1)) must be connected in G with a path of size
1, and the same is true for (h(x|ρ|−1 and h(n2)) and for h(xi) and h(xi+1)), for each

1 ≤ i ≤ |ρ| − 2. (Indeed, since π′ ∈ P
nv,lv, the regular expressions in the edges of π′ can

only be label variables or letters from the alphabet). We have just constructed a path
from n1 to n2 in G of size at most |ρ|. This proves the claim.

This concludes the proof of the second statement of the Lemma.

For statement (3), we prove that there exists a pattern π in P
lv over alphabet Σ = {a, b},

such that JπKΣ 6= Jπ′KΣ for all patterns π′ in P
nv,re over Σ. We use the following claim:

Claim 1. Let π be a pattern in P
nv,re over alphabet {a, b} such that the nodes

n1, n2, n3, n4 are the only node ids of π, and assume that the graph databases G and G′

belong to JπKΣ, where G consists of edges e12 = (n1, a, n2) and e34 = (n3, a, n4), and G′

consists of edges e′12 = (n1, b, n2) and e′34 = (n3, b, n4). Then the graph G′′ that consists of
edges e12 and e′34 also belongs to JπKΣ.

Proof. Let h = (h1, h2) and h′ = (h′1, h
′
2) be homomorphisms from π into G and G′,

respectively. Notice that since π belongs to P
nv,re, we are only interested in the mappings

h1 and h′1 that map nodes of π into nodes of G.
Define, from h1, a mapping h′′1 from the nodes of π into the nodes of G′′ as follows:

— h′′1 (n) = n, if n is a node id;
— h′′1 (x) = n1, if h1(x) = h′1(x) = n1;
— h′′1 (x) = n2, if h1(x) = h′1(x) = n2;
— h1(x) = n3 if h1(x) = n3 or h′1(x) = n3; and
— h1(x) = n4 if h1(x) = n4 or h′1(x) = n4.
— h1(x) = n1 otherwise.

We claim that h′′1 is a homomorphism from π into G′′. It is clear that h′′1 maps nods of
π into nodes of G′′ and it is the identity on constants. Thus, we only need to prove that
for every edge of form (p,R, q) in π, there exists a path in G′′ from h′′1 (p) into h′′1(q) that is
labeled with a word from R.

Let e = (p,R, q) be an arbitrary edge of π. Notice that, since h1 and h′1 are homo-
morphisms, the fact that h1(p) = n1 implies that h1(q) = n2, and h1(p) = n3 implies
h1(q) = n4. This is due to the properties of homomorphisms and the fact that the only edge
in G starting from n1 is (n1, a, n2), and the only edge in G starting with n3 is (n3, a, n4).
Same argument holds for the case of h′1, namely that h′1(p) = n1 implies that h′1(q) = n2,
and h′1(p) = n3 implies h′1(q) = n4. We consider all possible cases, depending on the values
of h1(p) and h′1(p).
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— Suppose first that h1(p) = h′1(p) = n1. Then, as we mentioned above, it must be the
case that h1(q) = h′1(q) = n2, and thus h′′1(p) = n1 and h′′1 (q) = n2. Since h1 is a
homomorphism from π to G, there must be a path from h1(p) to h1(q) in G labeled with
a word in L(R); it follows that a belongs to L(R). Then, it is clear that there is path in
G′′ from h′′1(p) to h′′1 (q) that is labeled with a word in L(R) (namely, the word a).

— Suppose that h1(p) = n1, but h′1(p) = n3. Then, we have that h1(q) = n2 and h′1(q) = n4,
and thus h′′1(p) = n3, h

′′
1 (q) = n4. Since h′1 is a homomorphism, there must be a path

from h′1(p) to h′1(q) in G′ labeled with a word in L(R); it follows that b belongs to L(R).
Then, it is clear that there is path in G′′ from h′′1(p) to h′′1(q) that is labeled with a word
in L(R) (namely, the word b).

— Suppose that h1(p) = n3, but h′1(p) = n1. Then, we have that h1(q) = n4 and h′1(q) = n2,
and thus h′′1 (p) = n3 and h′′1(q) = n4. Since h′1 is a homomorphism, there must be a path
from h′1(p) to h′1(q) in G′ labeled with a word in L(R); it follows that b belongs to L(R).
Then, it is clear that there is path in G′′ from h′′1(p) to h′′1(q) that is labeled with a word
in L(R) (namely, the word b).

— Suppose that h1(p) = h′1(p) = n3. Then h1(q) = h′1(q) = n4, and thus h′′1(p) = n3 and
h′′1(q) = n4. Since h′1 is a homomorphism, there must be a path from h′1(p) to h′1(q) in
G′ labeled with a word in L(R); it follows that b belongs to L(R). Then, it is clear that
there is path in G′′ from h′′1(p) to h′′1 (q) that is labeled with a word in L(R) (namely,
the word b).

— Suppose that h1(p) /∈ {n1, n3}. This is not possible due to the fact that h1 is a ho-
momorphism from π to G, and there are no edges in G that start from nodes n2 or
n4.

— Suppose finally that h′1(p) /∈ {n1, n3}. This is also not possible due to the fact that h′1 is
a homomorphism from π to G′, and there are no edges in G′ that start from nodes n2

or n4.

To prove the statement, construct the following pattern π in P
lv: It contain nodes

{n1, n2, n3, n4}, and edges (n1, X, n2) and (n3, X, n4), where X is a label variable. Clearly,
the graphs G and G′, as defined in the statement of Claim 1, belong to JπKΣ. On the other
hand, it is straightforward to prove that G′′ /∈ JπKΣ. Notice that if π′ is a pattern in P

nv,re

that is equivalent to π over Σ, then the set of node ids of π′ must be exactly {n1, n2, n3, n4}.
It follows from Claim 1 that there is no pattern π′ in P

nv,re over Σ, such that JπKΣ = Jπ′KΣ.
This finishes the proof of the Lemma. ✷

The proof of the second part of the theorem (that P
σ ∼ P

σ′

if and only if σ = σ′) uses
essentially the same arguments and is omitted.

The relationships mentioned in Theorem 4.1 are summarized in Figure 3.

In both relational and XML patterns it is common to consider a restriction in which
variables cannot be repeated. In relations, these are Codd tables [Imielinski and Lipski
1984] that model SQL’s nulls. We say that a graph pattern is a Codd pattern if every
variable – node or label – occurs at most once in it. In other words, Codd patterns do not
allow us to express equality between unknown entities.

If σ contains nv or lv, we shall write P
σ
Codd for the Codd patterns in P

σ. We next show
that Codd patterns are strictly weaker than the usual patterns, and describe classes of
patterns for which adding variables under Codd interpretation increases expressiveness.

Proposition 4.3.

— Codd patterns are strictly less expressive: P
σ
Codd ≺ P

σ when σ contains nv or lv.
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Fig. 3. Relationships between classes of graph patterns

— Adding variables under Codd interpretation makes patterns more expressive except adding
label variables to regular expressions. That is, if σ′ ( σ and σ− σ′ contains either nv or

lv, then P
σ′

≺ P
σ
Codd except one case: P

re ∼ P
lv,re
Codd.

Proof. We begin with the last part of the second statement, namely that P
re ∼ P

lv,re
Codd.

Clearly, every pattern π in P
re is also in P

lv,re
Codd. Then, we only need to prove that for every

pattern π in P
lv,re
Codd over alphabet Σ there exists a pattern π′ in P

re over Σ such that
JπKΣ = Jπ′KΣ.

Let π = (N,E) be an arbitrary pattern in P
lv,re
Codd over alphabet Σ. We define a pattern

π′ = (N ′, E′) over Σ as follows:

—N ′ = N ;
—E′ contains all edges in E of the form (p,R, q), where R does not use label variables;

and
— For each edge in E of the form (p,R, q) such that R uses label variables X1, . . . , Xn,

let R[X1 → a1, . . . , Xn → an], for a1, . . . , an ∈ Σ, be the regular expression resulting of
replacing each label variable Xi in R with the symbol ai, for 1 ≤ i ≤ n, and define

R′ =
⋃

a1,...,an∈Σ

R[X1 → a1, . . . , Xn → an].

Then, E′ contains the triple (p,R′, q).

We first prove that JπKΣ ⊆ Jπ′KΣ. Assume that the graph database G over Σ belongs to
JπKΣ, and let h = (h1, h2) be a homomorphism from π into G. We claim that h = (h1, h2)
is also a homomorphism from π′ into G. (Notice that π′ does not use label variables, so we
may disregard h2 in order to show that h is a homomorphism from π′ into G). Clearly, h1

sends nodes of π′ into nodes of G, and is the identity on node ids. Thus, we only need to
show that for every edge (p,R′, q) in π′, there is a path ρ in G from h1(p) to h1(q) such
that λ(ρ) belongs to L(R′). Let (p,R, q) be an arbitrary edge in π′. We have to consider
two cases:

— There exists an edge of form (p,R, q) in π, in which case the proof is trivial.
— For some edge (p,R′, q) in π, such that R′ uses label variables X1, . . . , Xn, it is the case

that R =
⋃

a1,...,an∈ΣR
′[X1 → a1, . . . , Xn → an]. Then, we know that there is a path ρ

from n1 to n2 in G such that h1(p) = n1, h1(q) = n2 and λ(ρ) belongs to h2(R
′). But,

clearly, h2(R) is of the form R′[X1 → a1, . . . , Xn → an], for some a1, . . . , an ∈ Σ. This

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:13

implies that there is a path ρ in G from h1(p) = n1 to h1(q) = n2 in G such that λ(ρ)
belongs to L(R).

Next, we show that Jπ′KΣ ⊆ JπKΣ. Assume that G belongs to Jπ′KΣ, and let h = (h1, h2)
be a homomorphism from π′ into G. (Notice that π′ does not use label variables, so we
are only interested in the function h1 that maps nodes of π′ into nodes of G). Let W be
the set of label variables mentioned in π. We construct a mapping h′2 : W → Σ such that
h′ = (h1, h

′
2) is a homomorphism from π into G.

Define h′2 :W → Σ as follows. For each edge e = (p,R, q) in π do the following: Assume
that X1, . . . , Xn are the label variables mentioned in R. Since h = (h1, h2) is a homo-
morphism from π′ into G, there is a path ρe in G from h1(p) to h1(q) such that λ(ρe)
belongs to R′ =

⋃

a1,...,an∈ΣR[X1 → a1, . . . , Xn → an]. This means that λ(ρe) belongs to

R[X1 → ae
1, . . . , Xn → ae

n], for some ae
1, . . . , a

e
n ∈ Σ. We then define h′2(Xi) to be ae

i , for
each 1 ≤ i ≤ n. Notice that h′2 defined in this way is indeed a mapping from W into Σ, as
each variable X mentioned in π appears in exactly one edge of π. (This is because π belongs

to P
lv,re
Codd).

We now show that h′ = (h1, h
′
2) is a homomorphism from π into G. Clearly, h1 sends

nodes of π into nodes of G, and is the identity on node ids. Thus, we only need to show
that for every edge (p,R, q) in π, there is a path ρ in G from h1(p) to h1(q) such that λ(ρ)
belongs to L(R). Let e = (p,R, q) be an arbitrary edge in π. Once again, we have to consider
two cases:

— Regular expression R does not use label variables, in which case the proof is trivial since
π′ also contains the edge (p,R, q).

— Regular expression R uses label variables X1, . . . , Xn. But then the path ρe in G goes
from h1(p) to h1(q), and satisfies that λ(ρe) belongs to R[X1 → ae

1, . . . , Xn → ae
n]. But,

by definition, we have that R[X1 → ae
1, . . . , Xn → ae

n] = h′2(R), and thus ρe is a path
from h1(p) to h1(q) such that λ(ρe) belongs to h′2(R).

We conclude that h′ = (h1, h
′
2) is a homomorphism from π into G, and hence that G belongs

to JπKΣ.

Next we prove that for all the remaining cases in which σ′ ( σ and σ−σ′ contains either

nv or lv, it is the case that P
σ′

≺ P
σ
Codd.

Let σ and σ′ as stated. By definition, P
σ′

� P
σ
Codd. Thus, we only need to show that

P
σ′

and P
σ
Codd are not equally expressive. This follows easily from the following cases:

(1) There exists a pattern π in P
nv
Codd over Σ = {a}, such that JπKΣ 6= Jπ′KΣ for all patterns

π′ in P
lv,re over Σ.

(2) There exists a pattern π in P
lv
Codd over Σ = {a, b}, such that JπKΣ 6= Jπ′KΣ for all

patterns π′ in P
nv over Σ.

In particular, from case (1) we obtain that P
σ′

≺ P
σ
Codd, for every σ ⊆ {nv, lv, re} and

σ′ ⊆ {lv, re} such that σ′ ⊆ σ and σ− σ′ contains nv. On the other hand, from case (2) we

obtain that P
σ′

≺ P
σ
Codd, for each σ ⊆ {nv, lv} and σ′ ⊆ {nv} such that σ′ ⊆ σ and σ− σ′

contains lv.
Case (1) follows directly from the proof of the first statement of Lemma 4.2, as the proof

only uses patterns in P
nv
Codd. To prove case (2), we use the following fact: Let π be a pattern

in P
nv over an alphabet Σ such that π contains at least one edge. Then there is a symbol

a ∈ Σ such that the certain answer to the Boolean RPQ Q = Ans() ← (x, a, y) over π is
true. Indeed, since π belongs to P

nv, the edges of π are labeled only by symbols from Σ.
Take an arbitrary edge in π, and assume that it is of the form (p, a, q), for a ∈ Σ. It is now

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14

easy to see that every graph G in JπKΣ will contain an edge labeled with the symbol a. This
proves that the certain answer to Q = Ans()← (x, a, y) over π is true.

We now continue with the proof of case (2). Let π = (N,E) be the following pattern

in P
lv
Codd over alphabet Σ = {a, b}: N contains two node ids n1 and n2, and E contains

the edge (n1, X, n2), where X is a label variable. Notice then that JπKΣ contains the graph
database G0 that consists only of the edge (n1, a, n2), as well as the graph database G1 that
consists only of the edge (n1, b, n2). Thus, it is easy to see that the certain answer to Q0 and
Q1 over π is false, where Q0 = Ans()← (x, a, y) and Q1 = Ans()← (x, b, y). Furthermore,
notice that each graph database in π contain at least one edge, so every pattern π′ over
Σ such that JπKΣ = Jπ′KΣ must also contain at least one edge. The proof then follows, by
contradiction, from the fact we proved above that for every pattern π in P

nv over Σ, such
that π contains at least one edge, the certain answer to either the RPQ Q0 or to the RPQ
Q1 over π must be true.

We prove next the first statement of the proposition, namely that P
σ
Codd ≺ P

σ when σ
contains nv or lv. Again, by definition, it is the case that P

σ
Codd � P

σ. Thus, we only need
to prove that P

σ
Codd and P

σ are not equally expressive.
Assume first that σ contains lv, but not nv: that is, σ is {lv} or {lv, re}, and assume

for the sake of contradiction that it holds that P
σ
Codd ∼ P

σ. Using the same construction
as in the proof for the second statement of this proposition, it is possible to show that

P
σ
Codd � P

re (since, in particular, we have shown that P
lv,re
Codd ∼ P

re). We then obtain
that P

σ � P
re, and then either P

σ ≺ P
re, or P

σ ∼ P
re. However, any of these two facts

contradicts Theorem 4.1.
Next, assume that σ contains nv. To prove that P

σ
Codd is not equally expressive as P

σ

we shall prove a more general statement: There exists a pattern π in P
nv over alphabet

Σ = {a}, such that JπKΣ 6= Jπ′KΣ for all π′ in P
nv,lv,re
Codd over Σ.

Let π be the pattern over alphabet {a} that consists of the single edge (x, a, x), where x
is a node variable. Then notice that all database graphs G ∈ JπKΣ must contain at least one
edge that forms a self-loop with a node of G. Assume now, for the sake of contradiction,

that there is a pattern π′ in P
nv,lv,re
Codd over Σ, such that JπKΣ = Jπ′KΣ. Then it is clear

that π′ contains no node ids (since homomorphisms are enforced to be the identity on
constants). We now prove the following fact that implies that JπKΣ 6= Jπ′KΣ, which is the

desired contradiction: Let π = (N,E) be a pattern in P
nv,lv,re
Codd over alphabet {a} such that

N does not contain node ids. Then there exists a graph G ∈ JπKΣ that does not contain
any self loops.

Indeed, consider the graph database G resulting of replacing each node variable x in π
with a fresh constant nx, and each edge e = (x, L, y) of π with a path ρe of fresh node
ids from nx to ny, such that λ(ρ) satisfies the regular expression L′ that is obtained by
replacing each label variable in L with letter a. (Notice that paths of the form ρe are node
and edge disjoint; that is, only start and end nodes can be shared between them). Clearly,
G belongs to JπKΣ and contains no self-loops.

This finishes the proof of Proposition 4.3.

5. QUERY ANSWERING

The goal of this section is to study the complexity – both data and combined – of query
answering over graph patterns. Recall that for queries Q returning tuples of nodes, we want
to find certain answers defined as certain(Q, π) =

⋂

{Q(G) | G ∈ JπK}. More precisely, one
needs to find certainΣ(Q, π), with G ranging over graph databases with edges labeled in
Σ; it will be clear from the proofs, however, that the complexity of query answering does
not depend on the labeling alphabet.
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Since each class of patterns gives rise to a class of graph queries Q = (ξ, x̄), one could
potentially ask for the exact bounds on combined and data complexity for all these classes
of queries on all the classes of patterns. Of course we are not going to consider all the
resulting 128 cases. Instead, we do the following.

As our benchmark language we use CRPQs, and provide exact complexity bounds for
CRPQs over all classes of patterns. Recall that CRPQs can be viewed as graph queries
(ξ, x̄) with ξ ∈ P

nv,re. We then show that the upper bounds for CRPQs extend to the

most expressive patterns from P
nv,lv,re. After that, we delve further into intractable cases,

and analyze what really causes intractability. In such cases, we consider restricted classes
of queries based on simpler graph patterns.

Certain answers as pattern implication. It is a standard and yet useful observation
that the problem of computing certain answers can be cast as the problem of implication of
patterns. Recall that pattern implication is defined as follows: if π1 and π2 are two patterns,
then we say that π1 implies π2, and write π1 |= π2 if Jπ1K ⊆ Jπ2K. In other words, π1 |= π2

if G |= π entails G |= π2 for every graph database G. The following is now immediate from
the definitions.

Lemma 5.1. Given a graph pattern π = (N,E) and a graph query Q = (ξ, x̄) with
|x̄| = k,

certain(Q, π) = {v̄ ∈ Nk | π |= ξ[v̄/x̄]}.

For Boolean graph queries Q = (ξ, ()) with the empty tuple of output variables (i.e.,
true/false queries), Lemma 5.1 states that certain(Q, π) = true if and only if π |= ξ.
This simple connection with the implication problem will let us use known results on con-
tainment of CRPQs [Calvanese et al. 2000b] to obtain some of the bounds for the combined
complexity of query answering.

Remark: using naive evaluation Some classes of patterns can be represented as naive
tables, perhaps with constraints. For example, patterns from P

nv can be stored as naive
tables, and patterns without regular expressions (from P

nv,lv) are represented as relational
naive tables with an additional constraint that the interpretation for label variables must
come from the labeling alphabet Σ. This can easily be coded as an inclusion constraint.

Since CRPQs can be expressed in datalog, such a representation gives us good tractable
bounds for data complexity for P

nv patterns. But for combined complexity, and for data
complexity for other classes, we cannot use known results to get tight bounds. For example,
even evaluating conjunctive queries over naive tables with inclusion constraints is known
to be Pspace-hard [Johnson and Klug 1984], and we shall see better bounds obtained for

CRPQs over P
nv,lv patterns.

5.1. Combined complexity

The problem we are dealing with is as follows:

Input: A pattern π = (N,E),
a graph query Q = (ξ, x̄) with |x̄| = k,
a tuple v̄ ∈ Nk.

Question: Is v̄ ∈ certain(Q, π) ?

Checking v̄ ∈ certain(Q, π) amounts to checking π |= ξ[v̄/x̄], and the problem is known
to be Expspace-complete when both π and ξ are in P

nv,re [Calvanese et al. 2000b]. We
now provide a complete analysis of the complexity.
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P: NP-c.

P
nv: NP-c. P

lv:Πp
2-c. P

re: Expspace-c.

P
nv,lv:Πp

2-c. P
nv,re:Expspace-c. P

lv,re: Expspace-c.

P
nv,lv,re: Expspace-c.

Fig. 4. Combined complexity for CRPQs over graph patterns

Theorem 5.2. The combined complexity of answering CRPQs over classes of graph
patterns is as shown in Figure 4 (The abbreviation ‘-c.’ in the figure means, of course,
complete for the class).

Proof. The Expspace upper bound for P
nv,lv,re follows from Proposition 5.3 below.

The Expspace-hardness for patterns in P
re follows by easily adapting the proof of Theorem

6 in [Calvanese et al. 2000b], which proves that containment of CRPQs is Expspace-
complete. Indeed, it immediately follows from such result that combined complexity of
CRPQs over patterns in P

nv,re is Expspace-hard. By slightly adapting the reduction one
can also show that the problem remains Expspace-hard over the class of patterns in P

re.

For patterns in P and P
nv, notice that the certain answers of a CRPQ Q over a pattern

π in P
nv can be obtained by näıve evaluation of Q over π; that is, by directly evaluating

Q over π, treating node variables as if they were ordinary node ids. This can be simply
explained by the following facts: (i) CRPQs are preserved under homomorphisms, and (ii)
patterns in P

nv can be represented as relational näıve tables [Libkin 2011]. The problem
of evaluating a CRPQ over a graph database G is in NP [Barceló et al. 2010], and hence
performing a näıve evaluation (and, therefore, computing certain answers) of a CRPQ over
a pattern in P

nv is in NP. The problem is clearly also NP-hard, even over P, as it contains
as a subinstance the problem of conjunctive query evaluation over graphs.

Next we prove the Πp
2-completeness for the classes P

lv and P
nv,lv. First we show that Πp

2

is an upper bound for the problem over patterns in P
nv,lv. Let π be a graph pattern in P

nv,lv

and Q a CRPQ, both over alphabet Σ. Assume, without loss of generality, that Q is Boolean
and thatW is the set of label variables mentioned in π. Then clearly certain(Q, π) = false

if and only for some mapping ν :W → Σ it is the case that certain(Q, πν) = false, where
πν is the graph pattern in P

nv that is obtained from π by simultaneously replacing each label
variable X ∈ W with ν(X). Then a Σp

2 algorithm that checks whether certain(Q, π) =
false does the following: It first guesses a polynomial size mapping ν : W → Σ, where
W is the set of label variables mentioned in π. Then it constructs in polynomial time the
pattern πν in P

nv, and checks that certain(Q, πν) = false. As we mentioned above, the
latter can be solved in coNP.

The proof of Πp
2-hardness for the class P

lv is rather technical, and can be found in the
appendix.
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Theorem 5.2 tells us that the combined complexity of CRPQs on usual graph databases is
the same as the combined complexity of conjunctive queries over usual relational databases,
i.e., NP-complete. Thus, adding node variables comes with no cost, while adding both node
and label variables carries a small cost in terms of combined complexity (jumping up one
level in the polynomial hierarchy). Adding regular expressions comes at a significant cost
(jumping up an exponential).

Using essentially the same techniques as in [Calvanese et al. 2000b], we can prove that
the previous upper bound extends beyond CRPQs.

Proposition 5.3. The combined complexity of arbitrary graph queries on arbitrary
patterns is in Expspace.

Proof. The containment problem for CRPQs is known to be in Expspace [Calvanese
et al. 2000b]. The Expspace algorithm proposed in [Calvanese et al. 2000b] does the fol-
lowing: Given two CRPQs, Q1 and Q2, the algorithm first constructs in Expspace an NFA
A1, of exponential size, that accepts precisely the “codifications” of the graph databases
that satisfy Q1, and then constructs in Expspace an NFA A2, of double-exponential size,
that accepts precisely the “codifications” of the graph databases that do not satisfy Q2.
Then it is possible to prove that Q1 6⊆ Q2 if and only the language accepted by A1 ∩A2 is
nonempty. The latter can be done in Expspace by using a standard “on-the-fly” verification
algorithm. We use this idea to show that the implication problem (that is, the containment

problem) between arbitrary graph patterns in P
nv,lv,re can also be solved in Expspace.

Allowing constants in CRPQs comes at no cost, and esentially the same construction shows
that containment of CRPQs with constants (and, thus, implication of patterns in P

nv,re)
can be solved in Expspace.

Let π be a graph pattern P
nv,lv,re, and let Q be a graph query such that its underlying

graph pattern ξ also belongs to P
nv,lv,re. Suppose that both patterns are defined over

alphabet Σ and that the set of label variables used in π or ξ is W . We assume without loss
of generality that Q is Boolean. (Indeed, since patterns in P

nv,lv,re are allowed to make use
of node ids, this is not a restriction, at least in terms of the complexity analysis). Then
clearly, certain(Q, π) = false if and only if for some assignment ν :W → Σ it is the case
that certain(Q, πν) = false, where πν is the pattern in P

nv,re that is obtained from π by
replacing each occurrence of the label variable X with ν(X). Notice that πν is a pattern in
P

nv,re.
First we show that for each valuation ν : W → Σ, the problem of checking whether

certain(Q, πν) = false can be solved in Expspace. Clearly, certain(Q, πν) = false if
and only if there is a graph database G ∈ JπνK such that for each mapping ν′ :W → Σ it is
the case that G 6∈ Jξν′K. (Notice that ξν′ belongs to P

nv,re, for each mapping ν′ :W → Σ).
First, construct in Expspace an automaton Aν

π, of exponential size, that accepts precisely
the “codifications” of the graph databases that belong to JπνK – as done in [Calvanese et al.
2000b] and explained at the beginning of the proof. Then, for each valuation ν′ : W → Σ,

construct in Expspace an automatonAν′

ξ , of double-exponential size, that accepts precisely

the “codifications” of the graph databases that do not belong to Jξν′K – as done in [Calvanese
et al. 2000b] and explained at the beginning of the proof. Then certain(Q, πν) = false if

and only the language accepted by the NFA B = Aν
π ∩

⋂

ν′:W→ΣA
ν′

ξ is nonempty. Notice
that the size of B is double-exponential on the size of the input, and, further, that checking
whether B accepts some word can be done in Expspace using a standard “on-the-fly”
verification algorithm.

Thus, an Expspace procedure that checks whether certain(Q, π) = false does the
following: For each ν : W → Σ, the procedure first constructs πν and then checks whether
certain(Q, πν) = false using the algorithm described in the previous paragraph. If
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certain(Q, πν) = false, for some ν : W → Σ, then we declare certain(Q, π) = false.
Otherwise, we declare certain(Q, π) = true. Clearly, the whole procedure can be per-
formed in exponential space.

The next question is whether we can lower the Expspace bound for patterns in P
re.

There are two natural ways of looking for better behaved subclasses: by restricting queries,
or restricting patterns. Restrictions on queries by means of simplifying regular languages
were studied in [Deutsch and Tannen 2001]. For example, it showed that for regular lan-
guages built with concatenation and the Kleene star, the combined complexity drops to
Πp

2-complete. Another possibility is to restrict to RPQs; then, using techniques similar to
[Calvanese et al. 2000b], we can prove a Pspace bound, matching the combined complexity
of relational calculus. It also follows from [Calvanese et al. 2000b] that restricting the class
of patterns does not help lower the combined complexity.

Proposition 5.4.

— The combined complexity of answering CRPQs on patterns π ∈ P
re is Expspace-hard

even for patterns π that contain a single edge.
— The combined complexity of answering RPQs on graph patterns from P

nv,lv,re is Pspace-
complete. The problem remains Pspace-hard even for answering RPQs on patterns π ∈
P

re that contain a single edge.

Proof. The first part follows directly from the proof of Theorem 6 in [Calvanese et al.
2000b]. Next we prove the second part.

It follows from the proof of Theorem 5 in [Calvanese et al. 2000b], that the problem
of checking whether a CRPQ Q1 is contained in CRPQ Q2 can be solved in Pspace, if
we assume the number of variables used in Q2 to be fixed. It immediately follows that
checking whether a CRPQ is contained in an RPQ is in Pspace. Again, allowing constants
in CRPQs comes at no cost, and esentially the same construction shows that containment of
a CRPQ with constants into an RPQ (and, thus, combined complexity of answering RPQs
on patterns in P

nv,re) can be solved in Expspace. Next we use this fact to construct a

Pspace procedure that checks, for a given pattern π ∈ P
nv,lv,re and a RPQ Q, whether

certain(Q, π) = true.

Let π be an arbitrary graph pattern in P
nv,lv,re and Q an arbitrary RPQ. Again, we

can assume without loss of generality, that Q is Boolean. Assume that both π and Q are
defined over alphabet Σ and that W is the set of label variables used in π. Then it is clear
that certain(Q, π) = false if and only if for some mapping ν : W → Σ it is the case
that certain(Q, πν) = false, where πν is the pattern in P

nv,re that is obtained from π by
replacing each label variable X ∈ W with ν(X). Notice that each pattern of the form πν ,
for ν a mapping from W to Σ, is a CRPQ.

It is clear that checking whether certain(Q, πν) = false can be done in Pspace. Indeed,
this is equivalent to checking whether the pattern πν in P

nv,re is contained in the RPQ Q,
which by the observations provided above can be solved in polynomial space. Now, define
a procedure that does the following: For each mapping ν : W → Σ, first construct πν and
then compute certain(Q, πν). If certain(Q, πν) = false, for some ν : W → Σ, then we
declare certain(Q, π) = false. Otherwise, we declare certain(Q, π) = true. Clearly, the
whole procedure can be performed in polynomial space.

The Pspace-hardness for RPQs over patterns in P
re that contain a single edge follows

from the following reduction from the problem of containment of regular expressions, which
is known to be Pspace-hard. Assume that L and L′ are two regular expressions over al-
phabet Σ. Let a and a′ be two distinct symbols that do not belong to Σ. Define πL to be
the following graph pattern in P

re: (n, aLa′, n′). Notice that πL is defined over alphabet
Σ∪{a, a′} and has a single edge. Further, define RPQ QL′ to be Ans()← (x, aL′a′, y). Then
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P :NLogspace-c.

P
nv:NLogspace-c. P

lv:coNP-c. P
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P
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nv,re:coNP-c. P
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P
nv,lv,re:coNP-c.

Fig. 5. Data complexity for CRPQs over graph patterns

it can be easily proved that certain(QL′ , πL) = true if and only if L ⊆ L′. Further, πL

and QL′ can be constructed in polynomial time from L and L′. This finishes our proof.

5.2. Data complexity

We now turn to data complexity, i.e. the complexity of query answering when the query is
fixed. In what follows, Q refers to a graph query (ξ, x̄) with |x̄| = k.

Problem: Data complexity(Q)
Input: a pattern π = (N,E), a tuple v̄ ∈ Nk.
Question: Is v̄ ∈ certain(Q, π) ?

Notice that this can also be viewed as a pattern-implication problem π |= ξ[v̄/x̄], but for a
fixed pattern ξ.

As already mentioned, some cases are simple: for example, patterns in P are graphs,
and thus due to the monotonicity of CRPQs, computing certain answers is the same as
evaluating CRPQs on graphs, i.e., NLogspace-complete. Similarly, since P

nv patterns can
be represented as näıve tables, and since CRPQ certain answers can be obtained by näıve
evaluation over näıve tables, we retain an NLogspace bound. For other cases, as it turns
out, the complexity is intractable.

Theorem 5.5. The data complexity of answering CRPQs over classes of graph patterns
is as shown in Figure 5.

Proof Sketch. We have already explained how to obtain the NLogspace upper bounds,
and we shall prove a stronger coNP upper bound in Proposition 5.6. We now present a
simple hardness proof for P

re. It will be tightened significantly (and extended to P
lv) in

the remainder of the section.
For P

re, we use reduction to non-3-colorability. Assume we have an arbitrary undirected
graph G; we represent it as a labeled graph where between two nodes n1 and n2 connected
by an edge we have two edges labeled a, i.e., (n1, a, n2) and (n2, a, n1). Now we turn it
into a P

re pattern πG over the alphabet {a, r, g, b} by adding edges (n, rr|gg|bb, n) for each
node n. That is, in every graph represented by this pattern, associated with each node n
there is a node n′ and edges (n, ℓ, n′), (n′, ℓ, n) where ℓ is one of r, g, b. It is now easy to see
that the certain answer to the Boolean RPQ Ans()← (x, rar|gag|bab, y) over πG is true if
and only if G is not 3-colorable. ✷
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The upper bound again extends to arbitrary queries. In order to prove this, we apply
similar techniques to those used in [Calvanese et al. 2000a] to show that the data complexity
of the problem of answering RPQs using views is in coNP.

Proposition 5.6. Data complexity of arbitrary graph queries over arbitrary graph pat-
terns is in coNP.

Proof. Before starting the proof, we need to introduce the notion of a canonical graph
database for a graph pattern π, which will be useful for the rest of the proof. Let σ be an
assignment from the nodes of π into N such that (1) σ is the identity map on node ids, and
(2) σ assigns a fresh node id nx to each node variable x mentioned in π. (In particular, nx

does not appear in π). Then we say that σ is canonical for π.
Let π be a graph pattern over Σ. Assume that π consists of the edges {(pi, Li, qi) | 1 ≤

i ≤ m}, where each pi and qi is either a node variable or a node id and each Li belongs
to REG(Σ ∪ Vlab) (1 ≤ i ≤ m). Further, let σ be a canonical assignment for π. Then the
graph database G over Σ is σ-canonical for π if and only if there is a mapping ν : Vlab → Σ
such that the following holds:

—G consists of m simple paths, one for each edge in π, which are node and edge disjoint,
i.e. only the start and end nodes can be shared between different paths; and

— for each 1 ≤ i ≤ m, if ρi is the path associated with the edge (pi, Li, qi) then ρi starts in
the node id σ(pi) and ends in the node id σ(qi), and λ(ρi) ∈ ν(Li).

From now on, whenever G is σ-canonical for π, for some canonical assignment σ, then we
simply say that it is canonical for π. Clearly, if G is canonical for π then G |= π.

Using essentially the same techniques as in [Calvanese et al. 2000b] it is possible to prove
the following semantic characterization:

Claim 2. For each graph query Q and tuple n̄ of node ids in π, it is the case that
n̄ 6∈ certain(Q, π) if and only if there is a a graph database G over Σ that is canonical for
π and such that n̄ 6∈ Q(G).

Now we have the appropriate tools to prove the proposition. Let Q be a fixed graph query
over the fixed alphabet Σ. We assume without loss of generality that Q is Boolean (indeed,
since queries are allowed to make use of node ids this is not a restriction). We first prove
the following small model property: There is a polynomial p(x) such that for every graph
pattern π over Σ, if

(1) there is a graph database G ∈ JπK such that Q(G) = false, and
(2) every node id that is mentioned in Q is also mentioned in π,

then there is a canonical graph database G′ for π such that (1) Q(G′) = false, and (2) the
length of each path in G′ that is associated with an edge of π is bounded by p(|π|), where
|π| is the size of π. (Notice that this immediately implies that G′ is of size polynomial on
|π|). We prove this by applying usual cutting techniques.

Let π be a graph pattern over Σ. Assume that every node id that is mentioned in Q
also appears in π. Further, assume that there is a graph database G ∈ JπK such that
Q(G) = false. Then we can also assume, without loss of generality, that G is σ-canonical
for π via some mapping ν : Vlab → Σ, for some canonical assignment σ (Claim 2). The
problem is that some paths in G may be too long, and, thus, not necessarily every path in
G that is associated with some edge of π is of polynomial size. Next we show how to prune
the long paths in G without changing its semantics with respect to π and Q.

Consider the query Q′ defined as
∨

{ν|ν:Vlab→Σ}Qν, where Qν is the graph query obtained

from Q by simultaneously replacing each label variable X mentioned in Q with ν(X).
Clearly, Q′ is a finite disjunction of graph queries whose underlying graph pattern belongs
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to P
nv,re. We assume the semantics of disjunctions of graph queries to be defined in the

standard way from the semantics of graph queries. Then it is not hard to see that Q(G) =
false if and only if Q′(G) = false.

Further, Q′ is a CRPQ with constants, and hence it can be expressed as a sentence
φ in monadic second-order logic (MSO) – which is the extension of first-order logic with
quantification over sets – with the help of constants for the node ids that appear in Q. The
vocabulary of φ consists of binary relation symbols Ea, for each a ∈ Σ. A graph database
G over Σ can be interpreted in the standard way as a first-order structure SG over this
vocabulary: The interpretation of symbol Ea in this structure contains all pairs (n, n′) of
node ids in G such that there is an edge labeled a from n to n′ in G. Then one can construct
φ in such a way that G |= Q′ ⇔ SG |= φ, for each graph database G.

Assume that the quantifier depth of φ is k ≥ 0. Notice that k depends only on φ. It is
well-known that there is a finite number of different rank-k MSO types (c.f., [Libkin 2004])
of words over vocabulary Σ with one distinguished element. Assume that such a number is
K ≥ 0. Again, K only depends on k, and thus, on φ.

Also, with each regular language of the form ν(L), where L is a regular language in
REG(Σ ∪ Vlab) that appears in π, we associate an NFA Aν(L) that recognizes ν(L). Since
each regular language can be converted into an equivalent NFA of polynomial size, we can
assume that there is a polynomial p′(x) such that the number of states of each NFA of the
form Aν(L) is bounded by p′(|L|), and hence by p′(|π|).

Let ρ = n0a0n1 · · ·aℓ−1nℓaℓnℓ+1 be an arbitrary path in G, such that both n0 and nℓ+1

are mentioned in π, but none of the node ids n1, . . . , nℓ is mentioned in π. Recall that G is
σ-canonical for π, and, thus, ρ is associated with some edge (p, L, q) in π. That is, σ(p) = n0,
σ(q) = nℓ+1 and a0a1 · · · aℓ belongs to ν(L). With each node ni, 1 ≤ i ≤ ℓ, we associate a
pair (αi

1, α
i
2) such that:

— αi
1 is the rank-k type of the word λ(ρi

→), where ρi
→ = niaini+1 · · ·aℓnℓ+1; and

— αi
2 is the rank-k type of the word λ(ρi

←), where ρi
← = n0a0 · · · ai−2ni−1ai−1.

Then it is clear that if ℓ ≥ p′(|π|)·K+3 there must be two nodes ni and nj (2 ≤ i < j ≤ ℓ)

such that (1) αi
1 = αj

1 and αi
2 = αj

2, and (2) there is an accepting run of Aν(L) over
a0a1 · · ·aℓ such that the state assigned by this run to position i− 1 is the same than the
one assigned to position j − 1. Thus, the word a0a1 · · · ai−1aj · · ·aℓ belongs to ν(L), and
further, if G′ is the graph database that is obtained from G by replacing path ρ by path
ρ′ = n0a0n1 · · ·ai−1niajnj+1 . . . nℓaℓnℓ+1, then G′ |= π.

We need to show now that the semantics of Q is invariant with respect to G and G′.
First, assume that n̄ is the tuple of all distinct node ids mentioned in π. Then G contains
each node id n mentioned in n̄, and so does G′ (because we only cut internal node ids of
paths in G that are associated to edges in π, and those nodes – since G is canonical for
π – do not appear in π). Further, let (G, n̄) and (G′, n̄) be the first-order structures that
extend the standard first-order interpretations of G and G′ over vocabulary {Ea | a ∈ Σ}
with distinguished tuple n̄. By using a standard Ehrenfeucht-Fräıssè game argument for
MSO, it is possible to prove that (G, n̄) and (G′, n̄) are indistinguishable by MSO sentences

of quantifier rank ≤ k. (This is due to the facts that (1) αi
1 = αj

1 and αi
2 = αj

2 implies
that the rank-k types of λ(ρ) and λ(ρ′) are the same, and (2) there are no two different
paths in G that share internal nodes from ρ). We conclude that (G, n̄) |= φ if and only if
(G′, n̄) |= φ (since every node id that is mentioned in φ is among those in n̄), and, thus,
Q′(G) = false iff Q′(G′) = false. Therefore, Q(G) = false iff Q(G′) = false.

By recursively applying the cutting technique one can show that if there is a graph
database G ∈ JπK such that n̄ 6∈ Q(G), then there is a graph database G′ that is canonical
for π, Q(G′) = false, and the length of each path in G′ that is associated with an edge of
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π is bounded by the polynomial p′(|π|) ·K + 4. This finishes the proof of our small model
property. Next we continue with the proof of the Proposition.

In order to do this, we design an NP algorithm that verifies certain(Q, π) = false. Let
π be a graph pattern over Σ. If Q contains some node id that does not appear in π then
clearly certain(Q, π) = false. If this is not the case then we can use our small model
property.

The algorithm first guesses an assignment ν from the label variables mentioned in π into
alphabet Σ. Then it guesses a canonical graph G for π via assignment ν, such that the
length of each path in G that is associated to some edge in π is bounded by p′(|π|) ·K + 4.
Clearly, both ν and G are polynomial size witnesses. Finally, the algorithm checks that
Q′(G) = false, which can be done in polynomial time [Consens and Mendelzon 1990].

Looking at Figure 5, we see that there are two features that cause coNP-hardness:
label variables, and regular expressions. We now analyze their role in causing the high
complexity of query answering. In both cases, we need to investigate two ways of lowering
the complexity: by restricting queries, and by restricting their inputs.

The role of label variables For restrictions on queries, we shall look at simple RPQs.
To define restrictions on inputs, we use the notion of the underlying graph Gπ of a
pattern π = (N,E): this is simply the graph obtained by erasing labels on edges, i.e.
Gπ = (N, {(v1, v2) | (v1, L, v2) ∈ E).

We now show that the coNP-hardness result is very robust. Recall that P
σ
Codd stands

for class of Codd patterns in P
σ, i.e., patterns that use each variable once.

Theorem 5.7.

— There is a Boolean RPQ Q such that Data complexity(Q) is coNP-hard even over

input patterns in P
lv whose underlying graph is a path. Moreover, the regular language

in Q is built using only concatenation and the Kleene star.
— There is a Boolean RPQ Q of the form Ans()← (x,w, y), where w is a word in {0, 1}∗,

such that Data complexity(Q) is coNP-hard even over P
lv
Codd patterns whose under-

lying graph is a DAG.

Proof. We prove the first part and leave the second, more technical proof, to the ap-
pendix. We prove that there exists a Boolean RPQ Q of the form Ans() ← (x, L, y),
where L is a regular expression built using only concatenation and Kleene star, and Data
complexity(Q) is coNP-hard even over input patterns in P

lv whose underlying graph is
a path.

We establish a reduction from monotone 1-in-3 3SAT, which is known to be NP-hard,
to the complement of Data complexity(Q). The input to monotone 1-in-3 3SAT is a
conjunction φ of clauses, with exactly three literals each, in which no negated variable
occurs. The problem is determining whether there is a truth assignment to the variables so
that each clause has exactly one true variable.

Let Σ = {#, 0, 1, in, out}. The query Q over Σ is the boolean RPQ that consists of the
atom Ans()← (x, L, y), where L is the regular language in·L∗1 ·L

∗
2 · · ·L

∗
10 ·out, and languages

Li, 1 ≤ i ≤ 10, are defined as follows (we assume that Σ∗ corresponds to the expression
(in∗0∗1∗#∗out∗)∗):

L1 := Σ∗inΣ∗; L2 := Σ∗outΣ∗; L3 := Σ∗##Σ∗

L4 := Σ∗#0#Σ∗; L5 := Σ∗#1#Σ∗; L6 := Σ∗#111Σ∗;

L7 := Σ∗#011Σ∗; L8 := Σ∗#101Σ∗; L9 := Σ∗#110Σ∗; L10 := Σ∗#000Σ∗.

Clearly, L is a regular expression that uses concatenation and Kleene-star only.
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The reduction is as follows. Let φ = C1 ∧ · · · ∧Cm be a formula in 3CNF using variables
{x1, . . . , xk}, and assume that for each 1 ≤ i ≤ m clause Ci is of form Ci = xi1 ∨ xi2 ∨ xi3 ,
where 1 ≤ ij ≤ k for j = 1, 2, 3. With each variable xℓ (1 ≤ ℓ ≤ k) we associate a different
label variable Xℓ. We construct a pattern π over Σ that uses variables {X1, . . . , Xℓ} and

node ids {nin1
, nin2

, nout, {n
j
i | 1 ≤ i ≤ m, 0 ≤ j ≤ 3}}.

Moreover, π contains the following edges:

— it contains the edges (n0
i , Xi1 , n

1
i ), (n1

i , Xi2 , n
2
i ) and (n2

i , Xi3 , n
3
i ), for each 1 ≤ i ≤ m;

— for each 1 < i ≤ m, π contains as well the edge (n3
i−1,#, n

0
i ); and

— finally, π contains the edges (nin1
, in, nin2

), (nin2
,#, n0

1), and (n3
m, out, nout).

Graphically, this pattern looks as follows:

out

nin1 nin2

in # X11 X12 X13

n0
1 n1

1 n2
1 n3

1

. . .
n3

i−1 n0
i n1

i n2
i

# Xi1 Xi2

n3
i

Xi3
. . .

n2
m n3

m nout

Xm3

Clearly, π belongs to P
lv and can be constructed in polynomial time from φ. Also, notice

that the underlying graph of π is a path. Next we prove that there is a truth assign-
ment to the variables of φ so that each clause has exactly one true variable if and only if
certain(Q, π) = false.

(⇒) Let γ : {x1 . . . , xk} → {0, 1} be a truth assignment for the variables of φ so that
γ assigns the value 1 to exactly one variable in each clause of φ. In order to prove that
certain(Q, π) = false, we show the existence of a graph G ∈ JπK such that Q(G) = false.

To define G, we construct a mapping ν : {X1, . . . , Xk} → {#, 0, 1, in, out} as follows. For
each 1 ≤ ℓ ≤ k, we set ν(Xℓ) = γ(xℓ). Then we define G as the graph resulting of replacing
each variable Xi in {X1, . . . , Xℓ} with ν(Xi).

We now prove that Q(G) = false. Assume for the sake of contradiction that this is
not the case. That is, assume that there is a path ρ in G such that λ(ρ) belongs to the
language defined by L. Simply by construction of G, it is easy to check then that if Q′ :=
Ans() ← (nin2

, L∗1 · L
∗
2 · · ·L

∗
10, n

3
m) then it must be the case that G |= Q′. Let ρ be the

unique path from nin2
into n3

m in G. Clearly, ρ is nonempty and, further, does not satisfy
Lj, for each 1 ≤ j ≤ 5. Thus, it must be the case that λ(ρ) contains at least one subword
in the set {#111,#011,#101,#110,#000}, thus matching one of {L6, . . . , L10}. We only
derive a contradiction in the case when λ(ρ) contains the subword #111, all other cases are
completely symmetrical.

Assume then that #111 is a subword of λ(ρ). In other words, we have that G contains a
path ρ′ such that λ(ρ′) = #111 (and, of course, that is a subpath of ρ).

Notice that, from the construction of π and ν, the only edges labeled with # are those
of the form (n3

i−1,#, n
0
i ), for 1 < i ≤ m, and the edge (nin2

,#, n0
1).

Then, it must be the case that ρ′ start in some node n3
i−1 (1 < i ≤ m), or in node

nin2 , and therefore (by the construction of G), ρ′ uses edges (n3
i−1,#, n

0
i ), (n0

i , ν(Xi1), n
1
i ) ,

(n1
i , ν(Xi2), n

2
i ) and (n2

i , ν(Xi3), n
3
i ) (or starting with (nin2

,#, n0
1) if i = 1). Given that λ(ρ′)

is #111, we have that ν(Xi1) = ν(Xi2 ) = ν(Xi3 ) = 1; by the construction of π, this means
that there is a clause Ci = xi1 ∨xi2 ∨xi3 , 1 ≤ i ≤ m, such that γ(xi1) = γ(xi2) = γ(xi3 ) = 1,
which contradicts the fact that γ assigns the value 1 to exactly one variable in each clause.

(⇐): Assume now that certain(Q, π) = false. Then there must be a graph G ∈ JπK
such that Q(G) = false. Since G ∈ JπK there is a homomorphism h = (h1, h2) from π into
G, where h1 maps nodes of π into nodes of G and h2 maps the label variables of π into the
alphabet {#, 0, 1, in, out}.

Consider the path ρ in G defined as
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nin1
innin2

#n0
1 h2(X11)n

1
1 h2(X12)n

2
1 h2(X13)n

3
1 #n0

2 · · ·

n0
m h2(Xm1)n

1
m h2(Xm2)n

2
m h2(Xm3)n

3
m outnout.

Then λ(ρ) does not belong to L, which implies that if ρ′ is the subpath of ρ that starts in
nin2

and finishes in n3
m, then λ(ρ′) does not belong to the language given by L∗1 · · ·L

∗
10. In

particular, there is no subword of λ(ρ′) that satisfies Lj, for 1 ≤ j ≤ 5. It can be easily
checked that this implies that h2(Xℓ) ∈ {0, 1}, for each 1 ≤ ℓ ≤ k.

Thus, from h2 we define a valuation γ : {x1, . . . , xk} → {0, 1} for the variables of φ as
follows: For every 1 ≤ ℓ ≤ k, we let γ(xℓ) = h2(Xℓ). We prove next that γ assigns the value
1 to exactly one variable in each clause of φ.

Assume for the sake of contradiction that γ does not satisfy this property. Then there is a
clause Ci = xi1 ∨xi2 ∨xi3 , 1 ≤ i ≤ m, such that γ does not assign the value 1 to exactly one
of {xi1 , xi2 , xi3}. There are five symmetric cases, for each one of the possible valuations that
do not satisfy this property. It is easy to derive a contradiction for each one of these cases,
and we only show how to do it for the case when γ is such that γ(xi1) = γ(xi2 ) = γ(xi3) = 1.
But then it is clear that λ(ρ′) ∈ L6, and, thus, λ(ρ) belongs to L. This contradicts the fact
that Q does not hold in G.

The only possibility for a polynomial-time query answering algorithm left open by this
result appears to be Codd patterns in P

lv with very nice underlying graphs. We shall see
in Section 7, when we study tractable restrictions, that there is indeed a tractable class
obtained along these lines.

The role of regular expressions In the case of patterns from P
re we have an additional

parameter to vary: the regular expressions used in patterns. Nevertheless, we shall see that
coNP-hardness is already witnessed by very simple regular expressions.

Theorem 5.8.

— There exists a Boolean RPQ Q of the form Ans()← (x,w, y), where w is a single word
over Σ = {0, 1}, such that Data complexity(Q) is coNP-hard even over input patterns
in P

re over Σ whose underlying graph is a DAG. It remains coNP-hard even if each
regular expression used in input patterns is 0|1.

— There exists a Boolean RPQ Q such that Data complexity(Q) is coNP-hard even
over input patterns in P

re that only use regular expressions of the form a, for a ∈ Σ, or
a∗1 . . . a

∗
n, where the ai’s are distinct letters in Σ.

Proof. The first part of the theorem follows directly from the second part of Theorem
5.7. This is because each pattern π ∈ P

lv
Codd over Σ = {0, 1} is equivalent to the pattern

π′ ∈ P
re over Σ that is obtained from π by replacing each label variable X mentioned in

π by the regular expression (0|1) (that is, JπK = Jπ′K). Clearly, the underlying graphs of π
and π′ are the same.

For the second part, we use a reduction from non-3-colorability. Assume we have an
arbitrary undirected graph G; we represent it as a labeled graph where between two nodes
n1 and n2 connected by an edge we have two edges labeled a, i.e., (n1, a, n2) and (n2, a, n1).
Now we turn it into a P

re pattern πG over the alphabet {a, r, g, b, d} as follows. For each
node n do the following: First, create a self-loop labeled on n labeled d. Second add a
new node n′ and add edges (n′, (r∗g∗b∗), n) and (n, (r∗g∗b∗), n′), It can be shown that the
certain answer to the Boolean RPQ Ans() ← (x, L, y) over πG is true if and only if G is
not 3-colorable, where L is the language (rdb|rdg|gdb|gdr|bdg|bdr|gag|rar|bab).
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Like the case of patterns with label variables, this leaves open the possibility that more
restrictive underlying graphs may lead to tractability. Indeed, we shall prove such results
in Section 7.

6. INCOMPLETE AUTOMATA FOR QUERYING PATTERNS

Notice that graph databases can be viewed as finite automata. Graph patterns in turn can
be viewed as incomplete automata. We now define those, and show that they naturally
generate two notions of acceptance. These notions correspond to certain answers: one for
certain answers as we defined them, and the other for certain answers for queries that can
output paths.

Extensions of CRPQs outputting paths have been defined in [Barceló et al. 2010]. We
shall present this notion for RPQs (for CRPQs, it includes the concept of synchronizing
paths, which will complicate the presentation). An RPQ with a path output is a query of
the form

Ans(z̄, ρ) ← (x, ρ : L, y)

where, on top of the usual RPQ Ans(z̄) ← (x, L, y), one is allowed to name the path ρ
witnessing the query, and to output its label. Of course the number of L-paths between
two nodes could be infinite, but one easily observes that for every nodes n1, n2 in a graph
database, the set of labels of L-paths between them is regular, and thus can be represented
by a finite automaton.

Assume we have an RPQ Q with a path variable, as above, and a graph pattern π. Let
n1, n2 be two nodes from N that occur in π. We say that a word ρ ∈ Σ∗ is a certain path
between n1 and n2 with respect to Q if for every G ∈ JπK, there is an L-path between n1 and
n2 with label ρ. The set of such certain paths will be denoted by certainpath(Q;π, n1, n2).

We shall write certainpath
Σ when Σ is not clear from the context.

The following example illustrates this concept.

Example 6.1. For m > 0, consider the pattern πm over Σ = {0, 1} shown in the figure
below.

Xm

0|1 0|1

X1 X2

n0 n1 nm

Notice that each G ∈ JπmK will contain a path from node n0 to node nm. In particular,
(n0, nm) is a certain answer to the RPQ Q given by (x, ρ : (0|1)∗, y).

However, one can see that every word in certainpath
Σ (Q;π, n0, nm) must contain, as sub-

words, all the 2m words of length m over {0, 1} since the Xi’s can be instantiated arbitrarily.

Due to the presence of the loops, the converse also holds, and certainpath
Σ (Q;π, n0, nm)

consists precisely of the words that contain all the 2m subwords of length m. In particu-
lar, the smallest certain paths are precisely the non-circular De Bruijn sequences of order
m, and thus have length 2m + m − 1. One can also easily show that any NFA accepting

certainpath
Σ (Q;π, n0, nm) will have exponentially many states (in m). ✷

This example suggests that the problem of computing the certain paths is inherently
different from the problem of computing certain answers for graph patterns, and thus we
need to develop new tools for solving this problem. This is what we do next.

6.1. Incomplete automata and certain answers

For convenience, we shall assume that NFAs can have edges labeled by words. That is, NFAs
will be of the form A = (Q,Σ, q0, F, δ), where Q is the set of states, Σ is the alphabet, q0 is
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the initial state, F is the set of final states, and the transition relation δ is a finite subset
of Q × Σ∗ × Q (we impose finiteness to maintain equivalence with the standard notion of
NFAs used in the literature). The notion of acceptance extends to such an automaton in
the standard way: if there is a transition (q, w, q′), the automaton is in state q, then, if w
is a subword that starts in the current position, the automaton skips it and moves to the
state q′. When all the w’s used in transitions are single letters, this is the standard notion
of NFAs; in that case we shall refer to them as standard NFAs.

The language accepted by an NFA is denoted by L(A). Note that for each NFA, one
can construct, in polynomial time, a standard NFA A′ such that L(A) = L(A′). This is
done by converting each word in a transition into a DFA (in polynomial time) and plugging
it in place of the transition. Hence, using extended transitions is indeed just a matter of
convenience.

Definition 6.2 (Incomplete automata). An incomplete automaton A is a tuple A =
(Q,Σ,W , q0, F, δ), whereW is a finite set of label variables from Vlab, and δ ⊆ Q×REG(Σ∪
W)×Q. ✷

Thus, an incomplete automaton is really just a graph pattern from P
nv,lv,re with a dis-

tinguished node corresponding to the initial state, and a set of nodes corresponding to the
final states.

To define acceptance by these automata, we need the notion of valuation. For an incom-
plete automaton A = (Q,Σ,W , q0, F, δ), a valuation is a pair ν = (η, θ), where η :W → Σ
maps label variables in W to Σ, and θ : (Q × REG(Σ ∪ W) × Q) → (Q × Σ∗ × Q) as-
signs to each transition (q, L, q′) ∈ δ a transition (q, w, q′), where w is a word that belongs
to η(L). Thus, a valuation ν = (η, θ) for an incomplete automaton A defines an NFA
ν(A) = (Q,Σ, q0, F, θ(δ)).

We now consider two notions of acceptance. Weak acceptance refers to those languages
over Σ that are related to all valuations of an automaton, and strong acceptance defines
words over Σ that are accepted by all these valuations.

Definition 6.3 (Weak and strong acceptance).

— A regular language L ⊆ Σ∗ is weakly accepted by an incomplete automaton A if L ∩
L(ν(A)) 6= ∅ for every valuation ν.

— A word w ∈ Σ∗ is strongly accepted by an incomplete automaton A if w ∈ L(ν(A)) for
every valuation ν.

We write Lw(A) for the set of languages weakly accepted by A, and Ls(A) for the set of

words strongly accepted by A. Note that Lw(A) ⊆ 2Σ∗

while Ls(A) ⊆ Σ∗. ✷

It is easy to see that for words the two previous notions can be related as follows: For
each incomplete automaton A = (Q,Σ,W , q0, qf , δ) and word u ∈ Σ∗ it is the case that
u ∈ Ls(A) if an only if {u} ∈ Lw(A). We prefer to continue talking, however, about both
weak and strong acceptance since in this way we can clearly distinguish when we refer to
acceptance of a word or of a regular language.

While not immediately obvious from the definition, we can show that languages strongly
accepted by incomplete automata are regular.

Proposition 6.4. For an incomplete automaton A, the language Ls(A) of words
strongly accepted by A is regular. An NFA accepting Ls(A) can be constructed in doubly
exponential time.

Proof. Let A = (Q,Σ,W , q0, F, δ) be an incomplete automaton. Assume that (q, L, q′)
is a transition in δ. We use the following technical but self-evident claim:
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Claim 3. The regular expression L defines a finite language over alphabet Σ∪W if and
only if η(L) defines a finite language over alphabet Σ, for each mapping η :W → Σ.

The key idea of the proof of the Proposition is the fact that, in terms of strong acceptance,
we can dismiss all transitions in A that are labeled by expressions that define infinite
languages. More precisely, let δfin ⊆ δ be the set of transitions of form (q1, L, q2) such
that L defines a finite language over alphabet Σ ∪ W . We denote by Afin the automaton
(Q,Σ,W , q0, F, δ

fin) (notice that Afin may contain variables in W that do not appear in
any transition in δfin). The following lemma formalizes the idea presented above.

Lemma 6.5. Ls(A) = Ls(Afin).

Proof. The fact that Ls(Afin) ⊆ Ls(A) is straightforward. Thus, we only need to show
that Ls(A) ⊆ Ls(Afin). Assume that a word w belongs to Ls(A). To prove that w belongs
to Ls(Afin) we show next that for every valuation ν of Afin it is the case that ν(Afin)
accepts w.

Let ν = (η, θ) be an arbitrary valuation for Afin. Construct a valuation ν′ = (η′, θ′) for
A as follows:

— valuation η′ is a copy of η,
— define θ′((q1, L, q2)) = θ((q1, L, q2)), if (q1, L, q2) belongs to δfin, and
— otherwise θ′((q1, L, q2)) = w′, where w′ is an arbitrary word in η(L) such that |w′| > |w|

(We know that such word exists since L is an infinite language, and, therefore, from
Claim 3, η(L) is also an infinite language).

Since w ∈ Ls(A) and ν′ is a valuation for A, the word w is accepted by ν′(A). Fur-
thermore, notice that any accepting run ρ of w for ν′(A) is also an accepting run for
ν(Afin), as clearly ρ cannot use any transition labeled by a word of size larger than w. This
shows that ν(Afin) accepts w. Since ν is an arbitrary valuation for Afin, we conclude that
w ∈ Ls(A

fin), which finishes the proof of the Lemma.

We continue now with the proof of the proposition. Let A be an incomplete automaton.
First, we prove that Ls(A) is regular. By Lemma 6.5 we know that Ls(A) can be defined
as the intersection of all NFAs of the form ν(Afin), where ν is a valuation for Afin. But
notice that the set {ν(Afin) | ν is a valuation for Afin} is finite. This is because every edge
in Afin is labeled by an expression L that defines a finite language over alphabet Σ ∪W ,
and, thus, from Claim 3, for each valuation η :W → Σ its is the case that η(L) also defines
a finite language over Σ. The proof then follows from the fact that every finite intersection
of regular languages is regular.

It remains to show that we can construct in double exponential time an NFA B such that
L(B) = Ls(A). We have argued in the previous paragraph that Ls(A) can be defined as
the intersection of each automaton in the set {ν(Afin) | ν is a valuation for Afin}. But
notice that all of these automata are standard NFAs, so they can be intersected using the
standard cross product construction. Thus, we just define B as

∏

ν ν(A
fin). That B can

be constructed in double exponential time follows from the next claim, which can be easily
proved using standard automata tools:

Claim 4. Let r be a regular expression over an alphabet Σ, such that L(r) is finite.
Then all words in L(r) are of size at most |r| (that is, they have at most |r| symbols).
Furthermore, L(r) contains at most O(|Σ||r|) words.

From Claims 3 and 4 we immediately obtain that, for each valuation ν = (η, θ) for
Afin, it is the case that ν(Afin) is of size polynomial with respect to A. Let us now
analyze the number of different valuations ν = (η, θ) that can be defined for Afin. Clearly,
we have |Σ||W| possible mappings η from W to Σ. For each of one of those mappings,
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different mappings θ can be constructed by mapping each edge (p, L, q) in δfin to different
words in η(L). By Claim 3 we have that η(L) always defines a finite language, and thus
by Claim 4 the number of words in η(L) is bounded by O(|Σ||L|) (recall that we assume
that L is given as a regular expression). This clearly shows that the the number of different
valuations that can be defined for Afin is at most exponential in the size of Afin, and
then B =

∏

ν ν(A
fin) is a product of exponentially many automata, each one of polynomial

size. Using this observation, it is now easy to show that B can be constructed in double
exponential time. ✷

We shall see later (Theorem 6.11) that the bound of Proposition 6.4 is tight.

Given a graph pattern π = (N,E) ∈ P
nv,lv,re over Σ that uses label variables W , and

two nodes n1, n2 from N ∩ N (i.e., nodes which are not variables), we let Aπ(n1, n2) be
the incomplete automaton (N,Σ,W , n1, {n2}, E). The following theorem shows the relation
between querying graph patterns and incomplete automata.

Theorem 6.6. Let Ans(x, y, ρ)← (x, ρ : L, y) be an RPQ, π = (N,E) a graph pattern,
and n1, n2 two of its nodes from N . Then

(1 ) (n1, n2) ∈ certain(Q, π) if and only if L is weakly accepted by Aπ(n1, n2).
(2 ) w ∈ certainpath(Q;π, n1, n2) if and only if w ∈ L and w is strongly accepted by
Aπ(n1, n2).

Proof. We only prove that w ∈ certainpath(Q;π, n1, n2) if and only if w ∈ L and w is
strongly accepted by Aπ(n1, n2). The first part of the theorem, being similar, is left to the
appendix.

(⇒): Assume that w ∈ certainpath(Q;π, n1, n2). By definition we have that w belongs
to L. Thus, we only prove that w is strongly accepted by Aπ(n1, n2). Let ν = (η, θ) be
an arbitrary valuation for Aπ(n1, n2); that is, η is a mapping from W into Σ and θ :
(N × REG(Σ ∪ W) × N) → (N × Σ∗ × N) assigns to each edge (p, r, q) ∈ E a transition
(p, w, q), where w is a word that belongs to η(r). Next we show that w ∈ L(ν(Aπ(n1, n2))).

Let σ be the assignment from the nodes of π into N that is the identity on node ids and
maps each node variable x into a different node id nx. Then we define a graph database
G as the unique (up to isomorphism) σ-canonical graph database1 for π that satisfies the
following: For every edge e = (p, r, q) of π, the path ρ that is associated with e in G is such
that λ(ρ) = w, where θ(e) = (p, w, q). Notice that G is, indeed, a σ-canonical assignment
via η. This is because for each edge e = (p, r, q) in E it is the case that if θ(e) = (p, w, q)
then w ∈ η(r).

It is immediately clear that G ∈ JπK (since G is σ-canonical for π), and that σ(n1) = n1

and σ(n2) = n2. Furthermore, since w ∈ certainpath(Q;π, n1, n2), there is a path ρ in G
from n1 to n2 such that λ(ρ) = w. It is now easy to show that there is a run of ν(Aπ(n1, n2))
that accepts w. This is because the transitions of ν(Aπ(n1, n2)) are precisely the paths of
G that are associated with the edges of π; that is, if (p, u, q) is a transition in ν(Aπ(n1, n2))
then there is a path in G from p to q labeled u.

Thus, w ∈ L(ν(Aπ(n1, n2))). Since ν is an arbitrary valuation, we conclude that w is
strongly accepted by Aπ(n1, n2).

(⇐): Assume that w ∈ L and that w is strongly accepted by Aπ(n1, n2). We prove that
w ∈ certainpath(Q;π, n1, n2). Let G be an arbitrary graph in JπK, and h = (h1, h2) a
homomorphism from π to G. Clearly, both node ids n1 and n2 belong to G.

Construct a valuation ν = (η, θ) for Aπ(n1, n2) as follows. Define η(X) = h2(X) for every
variable X in Aπ(n1, n2), and for every edge e = (p, r, q) in E, nondeterministically choose
a word u ∈ L(r) such that there is a path from h1(p) to h1(q) in G that is labeled with u

1For a definition see the proof of Proposition 5.6.
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(we know there is at least one such word since G ∈ JπK). Then define θ(e) = (p, u, q). It is
clear that ν = (η, θ) is a valid valuation for Aπ(n1, n2). Thus, since w is strongly accepted
by Aπ(n1, n2), we have that w is accepted by ν(Aπ(n1, n2)). It is not hard to prove then
that there is an L-path in G from n1 to n2 that is labeled w. This is because the transitions
of ν(Aπ(n1, n2)) are a subset of the paths of G that are associated with the edges of π;
that is, if (p, u, q) is a transition in ν(Aπ(n1, n2)) then there is a path in G from p to q
labeled u. Since G is an arbitrary graph database in JπK, and w ∈ L, we conclude that
w ∈ certainpath(Q;π, n1, n2). This finishes the proof.

The results in this section show that the query evaluation problem, for both nodes
and paths, can be stated in purely automata-theoretic terms. In particular, the set
certainpath(Q;π, n1, n2) is regular for every RPQ. Thus, our next goal is to study proper-
ties of incomplete automata.

6.2. Computational problems for incomplete automata

Theorem 6.6 suggests studying computational problems for incomplete automata related to
query evaluation. Results for weak acceptance have, in essence, been established earlier, so
we are interested in strong acceptance, which accounts for having paths in the output.

For weak acceptance, membership (i.e., given incomplete automaton A and a regular
language L, presented as a regular expression or as an NFA, does L belong to Lw(A)?) is
the problem of finding certain answers to RPQs. Hence, we have

Corollary 6.7. The membership problem for incomplete automata under weak accep-
tance is Pspace-complete, and coNP-complete if the language L is fixed.

It can also be easily seen that the emptiness problem under weak acceptance, i.e., whether
Lw(A) 6= ∅, is solvable in polynomial time.

Now we address the case of strong acceptance, which, by Theorem 6.6, gives us complexity
bounds for computing paths that are returned with certainty. There are three versions of
the problem we consider:

— Checking whether the query output is not empty. In automata-theoretic terms, this is
the emptiness problem under strong acceptance: given an incomplete automaton A, check
whether Ls(A) 6= ∅.

— Checking whether a specific path belongs to the output, i.e., whether w ∈
certainpath(Q;π, n1, n2). In automata-theoretic terms, we are interested in the mem-
bership problem under strong acceptance, i.e., given an incomplete automaton A and a
word w, check whether w ∈ Ls(A).

— Computing certainpath(Q;π, n1, n2). As this set is regular, in automata-theoretic terms,
we study the following problem: For an incomplete automaton A, construct an NFA A′

so that L(A′) = Ls(A).

As we analyze these problems, we shall see that hardness results will be witnessed by
an especially simple kind of incomplete automata: namely, wildcard automata, in which
all regular languages used in transitions are single letters (alphabet letters or variables).
Formally, a wildcard automaton A is (Q,Σ,W , q0, F, δ), where δ ⊆ Q× (Σ ∪W)×Q.

We now show that problems related to computing certain paths are computationally hard
as long as regular expressions or label variables are present in the edges.

The following does not appear to follow from known Expspace-completeness results for
graph databases [Calvanese et al. 2000b; Barceló et al. 2010].

Theorem 6.8. The emptiness problem under strong acceptance is Expspace-complete,
and remains Expspace-hard for wildcard automata.
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The upper bound is easy to obtain: From the proof of Proposition 6.4 it follows that Ls(A),
for each incomplete automataA, can be represented as an intersection of exponentially many
NFAs of polynomial size (measured, of course, in terms of the size of A). Moreover, it is well
known that checking nonemptiness of the intersection of a family of k NFAs of polynomial
size can be solved in polynomial space in k. Given that k in this case is exponential in
the size of A, we get an Expspace upper bound for the emptiness problem under strong
acceptance.

The lower bound requires a new and quite involved proof. However, before proving this
lower bound, we show that an already high lower bound – Pspace-hardness – can be
obtained with a relatively simple proof. The proof of this lower bound relies directly on the
following lemma, which esentially reduces, in polynomial time, the problem of emptiness of
the intersection of NFAs (which is known to be Pspace-hard) to the problem of checking
emptiness of a wildcard automaton under strong acceptance. We will also need this lemma
later in order to prove the Expspace lower bound of Theorem 6.8. In such case we will
actually need a stronger version of this result, as stated in Lemma 6.9, that shows that the
problem of emptiness of the intersection of the languages accepted under strong acceptance
by a set of wildcard automata can be reduced, in polynomial time, to the problem of checking
emptiness of a single wildcard automaton under strong acceptance

Lemma 6.9. Given a set {A1, . . . ,Ak} of wildcard automata over an alphabet Σ with
at least two symbols, then one can construct in polynomial time a wildcard automaton A′

over Σ such that
⋂

j≤k Ls(Aj) 6= ∅ if and only if Ls(A′) 6= ∅.

It is well known that deciding wether the intersection of a finite set of NFAs is nonempty
is Pspace-complete [Kozen 1977]. Thus, Lemma 6.9 reduced to the case when {A1, . . . ,Ak}
is a set of standard NFAs, immediately gives us a Pspace lower bound for the emptiness
problem for wildcard automata under strong acceptance.

It is important to remark that Lemma 6.9 also shows a striking difference between in-
complete automata and standard NFAs. Indeed, under the widely held complexity the-
oretic assumption that Ptime 6= Pspace, there is no efficient algorithm that, given a
set {A1, . . . ,Ak} of NFAs, constructs an NFA A such that L(A) is empty if and only if
⋂

1≤i≤k L(Ai) is empty.

Proof of Lemma 6.9. Assume that each Aj (1 ≤ j ≤ k) is of the form Aj :=

(Qj ,Σ,Wj, q
j
0, Fj , δj). We assume without loss of generality that the Qj ’s are pairwise dis-

joint, and that the same is true for the Wj ’s.
Pick up two arbitrary symbols S and R from Σ. The wildcard automaton A′ contains a

copy of each Aj plus a control that helps simulating the intersection of the Aj ’s. Formally,
we construct the wildcard automaton A′ = (Q′,Σ,W ′, q′0, F

′, δ′) as follows:

— The set Q′ of states is {q′1, . . . , q
′
k} ∪ {p

′
1, . . . , p

′
k} ∪

⋃

j≤k Qj , where we assume that

the states in {q′1, . . . , q
′
k, p
′
1, . . . , p

′
k} are pairwise distinct and {q′1, . . . , q

′
k, p
′
1, . . . , p

′
k} ∩

⋃

j≤k Qj = ∅;

—F ′ =
⋃

j≤k Fj ;

— The initial state is q′1;
—W ′ = {X1, . . . , Xk−1}∪

⋃

j≤kWj , where each Xi (1 ≤ i ≤ k−1) is a fresh label variable;

— the set δ′ of transitions contains the triples in each δj , 1 ≤ j ≤ k, plus the following:
— triples (q′i, a, q

′
i), for each a ∈ Σ \ {S} and i ∈ [1, k];

— triples (p′i, a, p
′
i), for each a ∈ Σ \ {S} and i ∈ [1, k];

— the triple (q′k, R, p
′
1);

— triples (q′i, Xi, q
′
i+1), for every i ∈ [1, k − 1];

— triples (p′i, S, p
′
i+1), for every i ∈ [1, k − 1];
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q′1 q′2 q′k

p′k p′2 p′1

qk
0 q20 q10

X2 Xk−1

S S S

X1

R

RSkRRSkRRSkR

Σ \ {S} Σ \ {S} Σ \ {S}

Σ \ {S}

Σ \ {S}

Σ \ {S}

Fig. 6. Control section of wildcard automaton A′.

— and the triples (p′j , RS
kR, qj

0), for every j ∈ [1, k]

The control part of automaton A′ is depicted in Figure 6.2. Notice that the states
q10 , . . . , q

k
0 are the initial states of automata A1, . . . ,Ak, respectively.

It is clear that A′ can be constructed in polynomial time from {A1, . . . ,Ak}. We prove
next that

⋂

j≤k Ls(Aj) is empty if and only if Ls(A′) is empty.

(=⇒): Assume that
⋂

j≤k Ls(Aj) is empty, and assume for the sake of contradiction that

there is a word w ∈ Σ∗ such that w belongs to Ls(A′). It is easy to see from the construction
of A′ that w must contain the word RSkR as a subword. Then there are words u, v in Σ∗

such that w = uRSkRv. We assume, without loss of generality, that u does not contain the
word RSkR (if not, one can always pick different words u and v).

Next we prove that the word u contains exactly k − 1 appearances of S. Assume for the
sake of contradiction that this is not the case. Then there are two cases to consider:

(1) First, suppose that u contains a number p > k − 1 appearances of the symbol S. Let
ν = (η, θ) be a valuation for A′, such that η does not assign the symbol S to any of
the variables of A′. It is now easy to see from the construction of A′ that ν(A′) cannot
accept w, as no state of ν(A′) can be reached from q′1 using u: first, none of the states in
{q′1, . . . , q

′
k} or {p′1, . . . , p

′
k} in ν(A′) can be reached from q′1 with a word that contains

more than k − 1 appearances of the symbol S, and, second, the remaining states in A′

can only be reached with a word containing the subword RSkR. This is our desired
contradiction since w ∈ Ls(A′), and hence w ∈ ν(A′).

(2) On the other hand, if u contains a number p < k − 1 appearances of S, consider a
valuation ν = (η, θ) such that η assigns an S to every label variable in A′. Now notice
that the state q′k in ν(A′) can only be reached by a word containing exactly k − 1
appearances of S, and that it cannot be reached with a word containing RSkR. It
follows that ν(A′) cannot accept w, which is again a contradiction.

Thus, it must be the case that the word u contains exactly k − 1 appearances of S.
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We claim now that the word v belongs to
⋂

j≤k Ls(Aj), which contradicts the fact that
⋂

j≤k Ls(Aj) is empty.
Assume for the sake of contradiction that there exists 1 ≤ j ≤ k such that v does not

belong to Ls(Aj). Then there is a valuation ν = (η, θ) for Aj such that ν(Aj) does not
accept the word v. Construct a valuation ν′ = (η′, θ′) for A′ as follows: ν′ extends ν by
assigning values to the label variables in W ′ \Wj in the following way. It assigns symbol R
to each label variable in {X1, . . . , Xj}, and symbol S to each variable in {Xj+1, . . . , Xk−1}
and each variable in the sets Wi, for 1 ≤ i ≤ k and i 6= j.

Recall that we assume, for the sake of contradiction, that w ∈ Ls(A′), and thus w
belongs to L(ν′(A′)). Fix an accepting run ρ for w over ν′(A′). Given that u has exactly
k − 1 appearances of S, by counting the transitions in ν′(A′) labeled with S we conclude
that the run ρ can only lead to the state pj after reading the word u. Then ρ must lead to

state qj
0 after reading uRSkR. Given that w is accepted by ν′(A′), and that valuation ν′ is

an extension of ν, it must be possible to reach a final state of ν(Aj) using word v. This is
a contradiction since we have assumed that v is not accepted by ν(Aj).

(⇐=): Assume that Ls(A′) is empty, and assume for the sake of contradiction that there is
a word w ∈ Σ∗ such that w belongs to

⋂

j≤k Ls(Aj). Let c̄ be a concatenation (in any order)

of the symbols in Σ\{S}. We prove below that Ls(A′) contains the word (c̄kSR)k−1RSkRw,
which is a contradiction.

Let ν = (η, θ) be an arbitrary valuation for A′. We show that (c̄kRS)k−1RSkRw belongs
to ν(A′). The proof depends on the number of label variables in {X1, . . . , Xk−1} that are
assigned value S by η. We only show two cases, the other ones being similar:

— Suppose that η does not assign the symbol S to any of the variables in {X1, . . . , Xk−1}.
Then clearly it is possible to reach state q′k in ν(A′) from q′1 using word c̄k. Furthermore,
state p′2 is reachable from q′k using word RS, and qk

0 is reachable from p′2 using word
(c̄kRS)k−2RSkR. Let νk be the restriction of ν over the variables of Ak. Since w belongs
to Ls(Ak), a final state of νk(Ak) can be reached from qk

0 using w. We conclude that
a final state of ν(A′) can be reached from q′1 using word (c̄kRS)k−1RSkRw, and hence
that (c̄kRS)k−1RSkRw belongs to ν(A′).

— Suppose that η assigns the symbol S to a single variableXp, 1 ≤ p ≤ k−1 (and, therefore,
it assigns a symbol different from S to each Xj , for 1 ≤ j ≤ k − 1 and j 6= p). Then it
is easy to see that state q′p can be reached from q′1 in ν(A′) using word c̄k, q′p+1 can be
reached from q′p in ν(A′) using word RS, q′k is reachable from q′p+1 in ν(A′) using word

c̄k, and p′2 is reachable from q′k using word RS. Furthermore, state qk−1
0 is reachable

from p′2 in ν(A′) using word (c̄kRS)k−3RSkR. Let νk−1 be the restriction of ν over the
variables of Ak−1. Since w belongs to Ls(Ak−1), a final state of νk(Ak−1) can be reached

from qk−1
0 using w. We conclude that a final state of ν(A′) can be reached from q′1 using

word (c̄kRS)k−1RSkRw, and hence that (c̄kRS)k−1RSkRw belongs to ν(A′).

This finishes the proof of the lemma since ν is an arbitrary valuation for A′.

We prove the Expspace lower bound of Theorem 6.8 below, using a generic reduction
from the acceptance problem for Turing machines that work in exponential space.

Proof of Theorem 6.8. We have already explained how to obtain the upper bound.
We prove the lower bound directly for wildcard automata. But before showing the proof we
need to define some auxiliary notation.

In order to keep the proof readable, we shall assume that NFAs can have edges labeled
by regular expressions. That is, NFAs will be of the form A = (Q,Σ, q0, F, δ), where Q is
the set of states, Σ is the alphabet, q0 is the initial state, F is the set of final states, and the
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transition relation δ is a finite subset of Q×REG(Σ)×Q. The notion of acceptance extends
to such an automaton in a standard way: if there is a transition (q, e, q′), the automaton is
in state q, then, if there is a subword w ∈ L(e) that starts in the current position, then the
automaton skips it and moves to the state q′. Note that for each NFA A with transitions
labeled by regular expressions, one can construct, in polynomial time, a standard NFA A′

such that L(A) = L(A′). This is done by converting each regular expression in a transition
into an NFA (in polynomial time) and plugging it in place of the transition. Hence, using
these extended transitions is indeed just a matter of convenience.

We shall also abuse the notation and define wildcard automata using transitions as triples
in Q×REG(Σ∪W)×Q. But the semantics must not be confused with that of incomplete
automata; on the contrary, these automata represent a set of NFAs as defined by valuations
ν = (η, θ) as follows (recall that we allow transitions in NFAs to be labeled over regular
expressions). A valuation ν = (η, θ) for an extended wildcard automata is such that θ
maps each regular language L ∈ REG(Σ ∪W) into η(L) ∈ REG(Σ), and thus a wildcard
automaton A into an NFA ν(A) = (Q,Σ, q0, qf , θ(δ)), where (q, η(L), q′) ∈ θ(δ) if and only
if (q, L, q′) ∈ δ. The component θ of each valuation is, therefore, idle, and thus for the
remainder of the proof we omit its definition, and just refer to valuations as mappings ν
from label variables into symbols of the alphabet. Note that for each wildcard automata A
with transitions labeled in REG(Σ∪W), one can construct, in polynomial time, a standard
wildcard automataA′, that is, with transitions labeled in Σ∪W , such that ν(A) = ν(A′), for
each valuation ν for the label variables inW . This is done, again, by converting each regular
expression in REG(Σ ∪W) in a transition into an NFA over Σ ∪W (in polynomial time),
and plugging it in place of the transition. Hence, again, using these extended transitions is
indeed just a matter of convenience.

We now start with the reduction for proving the Expspace lower bound. Let L ⊆ Σ∗ be
a language that belongs to Expspace, and let M be a deterministic Turing machine that
decides L in Expspace. Given an input ā ∈ Σ∗ we construct in polynomial time with respect
toM and ā a wildcard automaton AM,ā such that Ls(AM,ā) 6= ∅ if and only ifM accepts
ā. This proves that the emptiness problem under strong acceptance is Expspace-complete
for wildcard automata.

Assume that the Turing machine M is defined as (QM,Σ ∪ {B}, s0, {sm}, δM), where
QM = {s0, . . . , sm} is the set of states, Σ∪{B} is the tape alphabet, with B being the blank
symbol, s0 is the initial state, sm is the unique final state, and δ : (QM \{sm})× (Σ∪B)→
QM×Σ×{L,R} is the transition function. Notice that we assume without loss of generality
that no transition is defined on the final state sm. Further, we assume without loss of
generality that Σ = {0, 1}. SinceM decides L in Expspace, there is a polynomial S() such
that, for every input ā over Σ,M decides ā using space of order 2S(|ā|).

Let ā = a0a1 · · · ak−1 ∈ Σ∗ be an input forM (that is, each ai, 0 ≤ i ≤ k− 1 is a symbol
in Σ). For notational convenience we will assume from now on that S(|ā|) = n. Due to
Lemma 6.9, it suffices to construct in polynomial time from M and ā a set A of wildcard
automata such that

⋂

A∈A
Ls(A) is nonempty if and only ifM accepts on input ā. We split

A into four groups: a single wildcard automaton A1, and three sets A2, A3 and A4 of NFAs.
The main idea of the reduction is to code each finite sequence of configurations of M

as a word w, such that
⋂

A∈A
Ls(A) is nonempty if and only if w represents an accepting

computation ofM on input ā (that is,M accepts ā). The key is that the information of the
computation is not only directly coded into the word, but also into the runs of the NFAs in
A. This can be better explained as follows.

Although it will be formally defined later, the wildcard automaton A1 contains n label
variables, X1, . . . , Xn. Furthermore, the alphabet of our automata is Σ = {0, 1}. Thus, the
number of different valuations ν : {X1, . . . , Xn} → {0, 1} for A1 is precisely 2n; we shall
enumerate them as ν0, . . . , ν2n−1, where for each 0 ≤ i ≤ 2n − 1, νi corresponds to the
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valuation νi : {X1, . . . , Xn} → {0, 1} such that νi(X1) · · · νi(Xn) is the n-symbol binary
representation of the number i. For example, ν0 corresponds to the valuation that maps
each X1, . . . , Xn to the symbol 0, while ν2n−1 maps each variable to the symbol 1. Since A1

represents 2n NFAs, one way of checking whether a word w belongs to the language Ls(A1)
is to perform a parallel computation of all 2n NFAs represented by A1, reading w symbol
by symbol, while keeping track of the state of each automata νi(A1), for 0 ≤ i ≤ 2n−1.
We represent a parallel run of ν0(A1), . . . , ν2n−1(A1) by explicitly stating the sequence of
arrays of states of size 2n, of the form:

(q1ν0(A1), . . . , q
1
ν2n

−1(A1)), (q
2
ν0(A1), . . . , q

2
ν2n

−1(A1)), . . .

where each array represent the states of (ν0(A1), . . . , ν2n−1(A1)) at a given step of the
computation.

The states of A1 are defined as:

{qa | a ∈ Σ ∪ {B}} ∪ {qa,s | a ∈ Σ ∪ {B}, s ∈ QM}.

Thus, a parallel run of ν0(A1), . . . , ν2n−1(A1) can be seen as representing a sequence of
configurations of the Turing machine M: On a given instance j of this run, for every
i ∈ {0, 2n−1}, if qj

νi(A1) = qa (a ∈ ΣM ), then the i-th cell of the tape ofM contains symbol

a at step j of the computation. Moreover, if qj

νi(A1) = qa,s for some state s ofM, then not

only the i-th cell of the tape contains symbol a at step j of the computation, but also the
head ofM is in position i at such step, andM is in state s.

Naturally, we need to enforce that these configurations represent a valid run of M with
respect to ā and δ (for example, we need to enforce that at each step at most one of
ν0(A1), . . . , ν2n−1(A1) is on a state of form qa,s). This is achieved with the transitions of
A1 and the NFAs in the sets A2, A3 and A4.

Next we describe the sets A2, A3 and A4 of NFAs. In what follows, given a number i such
that 0 ≤ i ≤ 2n− 1, we use the notation [i] to denote its binary representation as a word of
symbols in {0, 1}n. For example, the word [3] corresponds to 0n−211, and the word [2n− 2]
corresponds to word 1n−10.

(A2): The set A2 consists of the following NFAs.

— The first NFA in A2 accepts precisely all the words accepted by the regular expression:
(

(0|1)n+3
)∗
.

Thus, each word w in
⋂

A∈A
Ls(A) must be of size 0 mod (n + 3). The idea is that we

find useful to divide each such word into several consecutive subwords of size n+3. Given
a word w, we say that a subword w′ is an (n+3)-subword of w if the size of w′ is n+3, w′

is a subword of w and there is an integer k = 0 mod (n+ 3) such that there is a match
for w′ that starts from position k in w. For example, consider the word w = 0101n0001n.
Then w contains two (n+ 3)-subwords, namely the words 0101n and 0001n.

— The set A2 also contains the NFA that accepts the words represented by the expression
(

(000)(0|1)n
)∗(

(001|101|100|101)(0|1)n
)∗(

111)(0|1)n
)∗
.

This states that all (n + 3)-subwords of every word w that belongs to
⋂

A∈A
Ls(A) are

such that their first three symbols are either 000, 001, 010, 100, 101 or 111, followed
by an n-bit word. The first three symbols are used to code a particular behavior of the
reduction, while the subsequent n-bit words are used to signal one (and only one) of the
automata ν0(A1), . . . , ν2n−1(A1).
Further, all words represented by this NFA will be such that its first (n + 3)-subword
can only have 000 as a prefix, while the last one can only have prefix 111. Intuitively, all
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(n + 3)-subwords with prefix 000 are related to the initial configuration of M on input
ā, while all (n+ 3)-subwords with prefix 111 are related to the final configuration ofM.

— Next, set A2 also contains a set of NFAs whose intersection defines the language given
by the expression

000[0] · 000[1] · · ·000[2n − 2] · 000[2n − 1] ·
(

(001|101|100|101|111)(0|1)n
)∗
.

In other words, all words accepted by this language contain exactly 2n (n+ 3)-subwords
starting with the prefix 000, one for each different n-bit word, and ordered from [0] to
[2n − 1].

— Finally, A2 contains an NFA accepting the language given by the expression:
(

(000|001|101|100|101)(0|1)n
)∗

111(0|1)n,

stating that there is only one (n+ 3) subword of w that starts with the prefix 111.

(A3): Next we describe A3. This consists of a set of NFAs such that
⋂

A∈A3
L(A) is the

language described by the expression:

(

000(0 | 1)n
)∗

(

001(0 | 1)n · 001(0 | 1)n · (010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]

)∗

111(0 | 1)n.

Thus, any word w in
⋂

A∈A3
L(A) can be decomposed as viu1 · · ·upvf , where vi is the

initial part of w, corresponding to a concatenation of words of the form 000(0|1)n, vf

is the final part of w, of the form 111(0|1)n, and each um, 1 ≤ m ≤ p is of the form
(

001(0 | 1)n001(0 | 1)n(010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]
)

.
Each of these words will intuitively represent one transition of M. This will be better

explained after we define A1; let us just say for the time being that we need to force each
um to contain exactly one (n + 3)-subword that ends with [j], for each 0 ≤ j ≤ 2n − 1;
the easiest way to impose this condition is to force each um to be a concatenation of words
whose final n symbols form exactly the sequence [0][1] · · · [2n − 1].

(A4): Finally, let Lj be the language represented by the following expression:

001(0 | 1)n · 001[j] ·
(

010(0 | 1)n
)∗
· (100[j − 1] | 101[j + 1]) ·

(

010(0 | 1)n
)

Then, A4 consists of a set of NFAs such that
⋂

A∈A4
L(A) is the language described by the

expression:

(

000(0 | 1)n
)∗
·

((

001(0 | 1)n · 001[0] ·
(

010(0 | 1)n
)∗
· 101[1] ·

(

010(0 | 1)n
)∗

)

|

L1 | L2 | · · · | L2n−2 |
(

001(0 | 1)n · 001[2n − 1] ·
(

010(0 | 1)n
)∗
· 100[2n − 2] ·

(

010(0 | 1)n
)∗

))∗

·

111(0 | 1)n.

Notice that A4 intuitively imposes more conditions on the form of the words u1, . . . , up

mentioned before. That is, any word w ∈
⋂

A∈A3
L(A) ∩

⋂

A∈A4
L(A) is such that

w = viu1 · · ·upvf , where vi is a concatenation of words of the form 000(0 | 1)n,
vf is of the form 111(0 | 1)n, and each um, 1 ≤ m ≤ p, is of the form
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(

001(0 | 1)n001[j](010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]
)

, for some 0 ≤ j ≤ 2n − 1,
but such that each um contains exactly one (n + 3)-subword w starting with 100 or 101.
Further, w is either of the form 100[j − 1] or 101[j + 1].

We now have enough ingredients to give some intuition on how the words u1, . . . , up

simulate a transition of M. The first (n + 3) symbols on each um represent the state into
whichM enters after the transition, and the following (n+3) symbols represent the position
in the tape that the head ofM is scanning. Furthermore, if um contains a (n+ 3)-subword
of the form 101[j + 1], it means that M is moving its head to the right (into the j + 1-th
position). On the other hand, the presence of a (n + 3)-subword of the form 100[j − 1]
indicates a transition that moves the head to the left.

For example, consider that for some 1 ≤ m ≤ p, the word um is of the form

001[ℓ]n · 001[j] · 010[0] · · ·010[j] · 101[j + 1] · 010[j + 2] · · · 010[2n − 1],

for some 0 ≤ ℓ ≤ m and 0 ≤ j ≤ 2n − 1. Then this word intuitively represents a transition
in which the head ofM is moved from the j-th to the (j + 1)-th position of the tape, that
is, to the right, andM enters state sℓ.

We give now the formal definition of A1 = (Q,Σ,W , q0, F, δ):

— The set Q of states of A1 contains state qa, for each a ∈ Σ∪{B}, plus state qa,s for each
a ∈ Σ ∪ {B} and s ∈ QM; plus states qf , q0, . . . , qk and q′0, . . . , q

′
k.

— The initial state is q0.
— The unique final state in F is qf .
— The set of label variables: W is {X1, . . . , Xn}.

In what follows, we denote by X̄ the word X1X2 · · ·Xn.
The transition function δ is defined next:

— First, we simulate the initial configuration ofM with the following transitions: For each
0 ≤ j < k − 1, add transition (qj , 000(0 | 1)n, qj+1) to δ, and for each 0 ≤ j ≤ k, add
transitions (qj , 000X̄, q′j) and (q′j , 000(0 | 1)n, q′j) to δ.

In addition, add to δ the following transitions: (q′j , 0001n, qaj
) for each 1 ≤ j ≤ k −

1, plus the triples (q′0, 0001n, qa0,s0), (q′k, 0001n, qB), (qk, 0001n, qk), (q′k, 0001n, q′k) and
(qk, 000X̄, qB). All these transitions are depicted in the following figure.
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000X̄

000(0 | 1)n000(0 | 1)n

q0 qkq1 qk−1

000(0 | 1)n

000(0 | 1)n 000(0 | 1)n 000(0 | 1)n 000(0 | 1)n

q′0 q′k−1 q′k

000(0 | 1)n

q′1

000(0 | 1)n

000X̄ 000X̄ 000X̄

0001n 0001n 0001n 0001n

000X̄

qa0,s0 qa1
qak−1 qB

The idea is that, after reading word 000[0] · · ·000[2n − 1], each νi(A1) is in a state that
corresponds to the initial configuration ofM; that is, ν0(A1) is in state qa0,s0 , the NFA
ν1(A1), · · · , νk−1(A1) are in state qa1 , . . . , qak−1

, respectively, and the rest of the NFAs
are in state qB (recall that k is the size of the initial input).

— Next we define the transitions that simulate the final transition of M. Add to δ the
triples (qa, 111(0 | 1)n, qf ), for every a ∈ Σ; and (qa,sm

, 111X̄, qf ) for every a ∈ Σ (recall
that sm is the final state ofM). The intuition behind these transitions is that they check
that the head is on the final state at the end of the configuration. Indeed, since the only
transition leaving from a state of the form qa,sm

on input 111[i] is (qa,sm
, 111X̄, qf ), this

ensures that it must be the case that νi(A1) is on state qa,sm
before reading the last

(n+ 3) symbols of w.
— We continue with the transitions that simulate the run ofM. For each transition in δM

of the form δ(sj , a) = (sℓ, b, L) (a ∈ Σ ∪ {B}, b ∈ Σ, 0 ≤ j, ℓ ≤ m), we add the following
pair to δ:

(qa,sj
, 001[ℓ] 001X̄

(

010(0 | 1)n
)∗

100(0 | 1)n
(

010(0 | 1)n
)∗
, qb);

and for each transition in δM of the form δ(sj , a) = (sℓ, b, L) (a ∈ Σ ∪ {B}, b ∈ Σ,
0 ≤ j, ℓ ≤ m), we add the following pair to δ:

(qa,sj
, 001[ℓ] 001X̄

(

010(0 | 1)n
)∗

101(0 | 1)n
(

010(0 | 1)n
)∗
, qb)

— Finally, for every D ∈ {L,R}, a ∈ Σ∪{B} and 0 ≤ ℓ ≤ m, δ contains the following pairs:

(qa, 001[ℓ] 001(0 | 1)n (010(0 | 1)n)∗ (100 | 101)X̄ (010(0 | 1)n)∗, qa,sℓ
)

(qa, 001[ℓ] 001(0 | 1)n ((010 | 100 | 101)(0 | 1)n)∗ 010X̄ ((010 | 100 | 101)(0 | 1)n)∗, qa).

We provide some intuitions regarding this last set of transitions in δ. Recall the first
(n+ 3) symbols of each word of the form

001(0 | 1)n · 001(0 | 1)n · (010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]

represent the state in which M enters after a transition, and that the following (n + 3)
symbols represent the position in the tape that the head ofM is scanning. The idea of this
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set of transitions is to force each νi to behave correctly, according to the new configuration
ofM after performing a new computation.

For example, consider a word of the form

001[ℓ]n001[j] 010[0] · · ·010[j] 101[j + 1] 010[j + 2] · · · 010[2n − 1],

for 0 ≤ ℓ ≤ m and 0 ≤ j ≤ 2n−1. As we already mentioned, this word intuitively represents
a transition in which the head of M is moved from the j-th to the (j + 1)-th position of
the tape, that is, to the right, and M enters state sℓ. But furthermore, assume that such
transition is of the form δ(sp, a) = (sℓ, b, R), for 0 ≤ p ≤ m, a ∈ Σ ∪ {B} and b ∈ Σ. Then
the last set of transitions in δ allow νj(A1) to advance from state qa,sp

to state qb, and force
νj+1(A1) to move from state of the form q′a to state qa′,sℓ

. The rest of the states are forced
to remain unchanged.

This finishes the definition of A. It is clear that A1 can be constructed in polynomial
time fromM and ā. Moreover, while not immediate from the definition, it is important to
notice that also A2, A3 and A4 can be constructed in polynomial time.

Claim 5. Each of the sets A2, A3 and A4 can be constructed in polynomial time with
respect to ā and M.

The proof for Claim 5 is esentially based on the idea that the language that consists
of the word w = [0] · [1] · · · [2n − 1] can be represented as an intersection of a polynomial
number of NFAs. This intersection expresses that for each i ≤ 2n − 2, the word [i] has
to be followed by the word [i + 1], and that the only occurrences of [0] or [2n − 1] as an
n-subword of w are respectively at the beginning and at the end of w. We skip the proof
for the sake of presentation, since it is rather cumbersome and, at the same time, based
on absolutely standard ideas on how to encode an n-bit counter [Kozen 1977; Börger et al.
1997; Calvanese et al. 2000b].

Finally, we prove that the language Ls(A1) ∩
⋂

A∈A2,A3,A4
L(A) is nonempty if and only

ifM accepts on input ā.

(=⇒) Assume that there is a word w that belongs to Ls(A1) ∩
⋂

A∈A2,A3,A4
L(A). We

show thatM accepts in input ā by constructing an accepting run for M, as follows.
Since w belongs to

⋂

A∈A2,A3,A4
L(A) it must be of the form:

(

000(0 | 1)n
)∗

(

001(0 | 1)n001(0 | 1)n(010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]

)∗

111(0 | 1)n.

Let us then divide w into xu1 · · ·upy, where each ui belongs to to the language represented
by the expression

001(0 | 1)n001(0 | 1)n(010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1].

It is clear that there is only one possible to split w in this way, as each ui begins with two
(n+ 3)-subwords with prefix 001 and contains no more (n+ 3)-subwords with this prefix.

Since w belongs to Ls(A1) it must also belong to νj(A1), for each 0 ≤ j ≤ 2n − 1. Let
ρ0, . . . , ρ2n−1 be accepting runs over the word w for ν0(A1), . . . , ν2n−1(A1), respectively.
We are interested in the states assigned by the runs ρ0, . . . , ρ2n−1 only to those positions
of w that immediately precced one of the subwords of w of the form ui, for 1 ≤ i ≤ p. For
simplicity, we denote each such state by ρj(ui); that is, ρj(ui) is the state that is assigned
by ρj to the subword x, if i = 1, and to xu1 · · ·ui−1, if 1 < i ≤ p.
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Consider the following sequence d1, . . . , dp of configurations of M: The j-th position of
the tape in a given di contains a symbol a ∈ Σ ∪ {B} if and only if ρj(ui) = qa. Further,
it contains a symbol a ∈ Σ ∪ {B} and the head is in position j in state s if and only if
ρj(ui) = qa,s. In any other case it contains the symbol B. All that is left to do is to show
that each di is, indeed, a configuration of M (for instance, that the head is not assigned
to two different positions of the tape by di), and that d1, . . . , dp represents an accepting
computation ofM on input ā. This follows from the following claim (the simple but rather
technical proof can be found in the appendix):

Claim 6. The following hold:

(1 ) The configuration d1 corresponds the initial configuration of M on input ā.
(2 ) For each 1 ≤ i < p, di+1 is a configuration of M that can be obtained from di by

applying the transition rules of M.
(3 ) The configuration dp is a final configuration for M.

(⇐=) Assume, on the other hand, that there is an accepting computation d1, . . . , dp of
M on input ā. That is, d1, . . . , dp is a sequence of configurations of M such that: (i) d1

is the initial configuration of M on input ā, (2) dp is a final configuration for M, and (3)
for each 1 ≤ i < p, di+1 is a configuration that can be obtained from di by applying the
transition rules ofM. We show that Ls(A1) ∩

⋂

A∈A2,A3,A4
L(A) is nonempty.

Construct a word w = xu1 · · ·upy over Σ as follows:

— x = 000[0] · · ·000[2n − 1].
— Assume that in the final configuration dp the head ofM is in position j (1 ≤ j ≤ 2n−1).

Then y := 111[j].
— The word ui, for 1 ≤ i ≤ p, is constructed as follows. Assume that in di, 1 ≤ i ≤ p, M

is in state sj , 0 ≤ j ≤ m, and with its head pointing to the ℓ-th position of the tape
(0 ≤ ℓ ≤ 2n−1). Further, assume that in di the ℓ′-th cell of the tape contains the symbol
cℓ′ ∈ Σ∪ {B}, for each 0 ≤ ℓ′ ≤ 2n − 1, and that di+1 is obtained from di by applying a
transition of the form δ(sj , a) = (sj′ , b,D), where 0 ≤ j′ ≤ m, a ∈ Σ ∪ {B}, b ∈ Σ, and
D is either L or R. Then ui is:
— 001[ℓ]001[j′]010[0] · · ·010[ℓ− 2]100[l− 1]010[ℓ] · · ·010[2n − 1], if D = L, and
— 001[ℓ]001[j′]010[0] · · ·010[ℓ]101[ℓ+ 1]010[l+ 2] · · · 010[2n − 1], if D = R.

It is not difficult, but rather cumbersome, to show that w belongs to Ls(A1) ∩
⋂

A∈A2,A3,A4
L(A). The proof can be found in the appendix.

We now consider problems related to query answering. The first is finding certain paths,
or, in automata-theoretic terms, the membership problem under strong acceptance.

Proposition 6.10. The membership problem under strong acceptance for incomplete
automata is coNP-complete. It remains coNP-hard for wildcard automata and for incom-
plete automata that do not use any label variables.

Proof. We can easily prove coNP-hardness for wildcard automata as follows: The
second part of Theorem 5.7 shows that there is a Boolean RPQ Q of the form Ans() ←
(x,w, y), where w is a word over {0, 1}, such that checking whether certain(Q, π) = true

is coNP-hard over the class of patterns π ∈ P
lv
Codd. Let π be a pattern in P

lv
Codd and let

π′ be the pattern obtained from π by adding two fresh node ids n1 and n2, and adding an
outgoing edge labeled 0 from n1 into every node of π and an ingoing edge labeled 0 from
each node of π into n2. Clearly, Aπ′(n1, n2) is a wildcard automaton. Further, by easily
adapting the proof of Theorem 6.6 we can show that certain(Q, π) = true if and only if
{0w0} is weakly accepted by Aπ′(n1, n2). But the latter holds if and only if 0w0 is strongly
accepted by Aπ′(n1, n2). Clearly Aπ′(n1, n2) can be constructed in polynomial time from π,
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which proves that the membership problem under strong acceptance for wildcard automata
is coNP-hard (notice that this is true even for the fixed word 0w0). In order to prove
coNP-hardness for patterns without label variables, we only need to convert the pattern
π ∈ P

lv
Codd into an equivalent pattern πr in P

re by replacing each label variable X in π with
the regular expression (0|1). The rest of the proof uses exactly the same ideas explained
above.

For the membership in coNP, let A = (Q,Σ,W , q0, F, δ) be an incomplete automaton.
Recall that Afin is the automaton (Q,Σ,W , q0, F, δ

fin), where δfin ⊆ δ is the set of transi-
tions in δ of the form (q1, L, q2) such that L defines a finite language over alphabet Σ∪W .
Moreover, recall that the proof of Proposition 6.4 shows that each NFA ν(Afin) is of poly-
nomial size w.r.t. A, for every possible valuation ν = (η, θ) for Afin. The same argument
can be used to show that every valuation for Afin can be easily represented in polynomial
space with respect to A.

Then, given an incomplete automaton A = (Q,Σ,W , q0, F, δ) and a word w, the coNP
algorithm first constructs Afin (which can be done in polynomial time as we only have
to remove all those transitions of the form (p, L, q) in A such that L uses the Kleene-
star ∗), then guesses in polynomial time a valuation ν = (η, θ) for Afin, then checks in
polynomial time that ν is a valuation for Afin, and finally, checks in polynomial time that
w /∈ L(ν(Afin). The correctness and soundness of this procedure follow immediately from
Lemma 6.5.

The next question is about the size of automata defining Ls(A). Normally large size
bounds are easy to obtain for deterministic automata, while NFAs could be exponentially
smaller. Here we use techniques from [Glaister and Shallit 1996] to show that even the small-
est NFAs capturing certain paths in the answer to an RPQ could be doubly exponential,
matching the upper bound of Proposition 6.4.

Theorem 6.11. There exists a polynomial p and a family {An}n∈N of wildcard au-
tomata such each An is of size at most p(n) and uses n wildcards, and every NFA A′n
satisfying L(A′n) = Ls(An) has 22Ω(n)

states.

There also exists a family of incomplete automata without label variables with the same
property.

Proof. Let {An}n∈N be the family of automata containing, for each n ∈ N, the incom-
plete automata An = (Q,Σ,W , q0, F, δ), where:

—Q = {q0, q1, . . . , qn, p1, . . . , pn, r1, . . . , rn},
— Σ = {0, 1} and W = {X1, . . . , Xn},
—F contains only qn, and
— δ contains (qi−1, Xi, qi) for every 1 ≤ i ≤ n, plus the triples (q0, 0, p1), (q0, 1, p1),

(qn, 0, r1), (qn, 0, r1), and (pj−1, 0, pj), (pj−1, 1, pj), (rj−1, 0, rj), (rj−1, 1, rj) for each
1 ≤ j ≤ n.

The automaton is depicted by the following figure, where the transitions labeled by (0 | 1)n

represent the sections of the automata corresponding to states p1, . . . , pn and r1, . . . , rn; the
intended meaning of these sections of An is to allow the runs of An to do an n-symbol loop
on states q0 and qn.

Xn

(0 | 1)n

q1q0 qn
X1 X2

(0 | 1)n
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It is clear that the size of An is polynomial with respect to n. In order to show that every

NFA A′n satisfying L(A′n) = Ls(An) has 22Ω(n)

states, we use the following result:

Theorem 6.12. ([Glaister and Shallit 1996]) Let L ⊂ Σ∗ be a regular language, and
suppose that there exists a set of pairs P = {(ui, vi) | 1 ≤ i ≤ n} such that

(1 ) uivi ∈ L, for every 1 ≤ i ≤ n,
(2 ) ujvi /∈ L, for every 1 ≤ i, j ≤ n and i 6= j.

Then any NFA accepting L has at least n states.

Given a collection S of words over {0, 1}, let wS denote the concatenation, in lexicograph-
ical order, of all the words that belong to S, and let wS̄,n denote the concatenation of all
words in {0, 1}n that are not in S.

Then define a set of pairs Pn = {(wS , wS̄,n) | S ⊂ {0, 1}n and |S| = 2n−1}. Since there

are 2n binary words of length n, the are
(

2n

2n−1

)

different subsets of {0, 1}n of size 2n−1, and

thus Pn contains
(

2n

2n−1

)

pairs, which clearly belongs to 22Ω(n)

.
Next we show that Pn satisfies the conditions of (1) and (2) of the aforementioned result

by [Glaister and Shallit 1996].

(1) We need to show that for every set S ⊂ {0, 1}n of size 2n−1, the word wSwS̄,n belongs to

Ls(An). Let then S be an arbitrary subset of {0, 1}n of size 2n−1, and let ν = (η, θ) be
an arbitrary valuation for An. Notice that η maps each element from {X1, . . . , Xn} into
Σ. Define u = η(X1) · · · η(Xn). Then u is a subword of either wS or wS̄,n. Assume the
former is true (the other case is analogous). Then the word wSwS̄,n can be decomposed
in v · u · v′ · wS̄,n, with v′, v′′, wS̄,n ∈ L((0 | 1)n)∗). Then, to build an accepting run for
ν(An) on the word wSwS̄,n, just let the automaton ν(An) loop on q0 until the beginning
of u appears, at which point we advance to state qn using u, and then continue in qn
until the end of the word is reached.

(2) Assume for the sake of contradiction that there are distinct subsets S1, S2 of {0, 1}n of
size 2n−1 such that wS1wS̄2,n belongs to Ls(An). Since S1 and S2 are distinct, proper

subsets of {0, 1}n (they are of size 2n−1), there must be a word in {0, 1}n that belongs to
S2 but not to S1. Let s be such word. Moreover, let η be a valuation from {X1, . . . , Xn}
into Σ such that η(X1) · · · η(Xn) = s. It is straightforward to show the following: Let
u ∈ {0, 1}n be a word of size n. Then u is a subword of every w ∈ Ls(An). Moreover,
there is a match for u in w that starts in a position j of w (1 ≤ j ≤ |w|), and such that
j = 0 mod n.
Since we have assumed that the word wS1wS̄2,n belongs to Ls(An), by the above claim
we have that s must be a subword of wS1wS̄2,n that matches wS1wS̄2,n in a position j
such that j = 0 mod n. Then, from the construction of wS1 and wS̄2,n, it must be that
s either belongs to S1 or does not belong to S2. This is a contradiction.

For the family of automata without label variables, notice that each An can be easily
transformed into an equivalent incomplete automaton without label variables, by replacing
each label variable in An with the regular expression (0 | 1). The proof is analogous.

This gives a lower bound on the size of automata for representing certain paths in answers
to RPQs.

Corollary 6.13. There exists a polynomial p, a family {πn}n∈N of P
lv graph patterns,

each with two distinguished nodes n1 and n2, and an RPQ Q such that the size of πn is at

most p(n), and every NFA defining certainpath(Q;πn, n1, n2) has 22Ω(n)

states.

The same holds for P
re patterns.
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Note there is an exponential gap between the complexity of the membership problem
and the size of a representation of all words strongly accepted by an incomplete automaton.
There is no contradiction, of course, between Theorem 6.11 and Proposition 6.10 as smallest
NFAs accepting even finite languages L can be of size exponential in the maximum length
of a word in L.

Remark: By closely inspecting proofs one notices that lower bounds in Theorem 6.11,
Proposition 6.10, and Corollary 6.13 remain true even for the Codd interpretation of pat-
terns and wildcard automata (i.e., each label variable is used in at most one transition).
The same is true of Theorem 6.8, but at the cost of a much more involved reduction. For
the sake of presentation we have decided to leave it to the appendix.

7. TRACTABILITY RESTRICTIONS AND HEURISTICS

While many results of Sections 5 and 6 point to a rather high complexity of query answering,
they still leave a few routes for finding tractable classes, or providing heuristics that – at
least based on the experience of other areas – may be useful.

If we look at data complexity, results of Subsection 5.2 show that one possibility of
getting tractable cases is to impose further restrictions on underlying graphs of patterns.
Being DAGs, as we saw, is not enough, which suggests trees. We shall in fact get a more
general result, replacing trees with graphs of bounded treewidth.

Combined complexity results in Subsection 5.1 point to P
nv,lv as the largest class with

acceptable combined complexity (i.e., not exceeding that of FO; in fact staying in the 2nd
level of the polynomial hierarchy). The data complexity for the class, although intractable,
drops to the 1st level of the polynomial hierarchy. This suggests using techniques from a
field that has achieved great success in solving problems of this complexity, namely con-
straint satisfaction [Dechter 2003; Kolaitis and Vardi 2007]. The field has identified many
tractable restrictions and, what is equally important, provided many practical heuristics
that help solve intractable problems. The connection between RPQs on graph databases
and constraint satisfaction was already established in [Calvanese et al. 2000c]. As the sec-
ond contribution of this section, we show how to cast the query answering problem for
RPQs over graph patterns as a constraint satisfaction problem, with a particularly simple
translation for several classes.

7.1. Tractability restrictions

Recall the standard definition of tree decompositions and treewidth of a graph G = (N,E),
with E ⊆ N × N (see, e.g., [Diestel 2005]). A tree decomposition is a pair (T, f) where
T is a tree and f : T → 2N assigns to each node t in T a set of nodes f(t) of G such
that every edge of G is contained in one of the sets f(t), and each set {t | n ∈ f(t)} is a
connected subset of T for all n ∈ N . The width of such a decomposition is maxt |f(t)| − 1.
The treewidth of G is the minimum width of a tree decomposition of G. The treewidth of a
connected graph G equals 1 if and only if G is a tree.

A class of graph patterns is of bounded treewidth if there is a fixed k ∈ N so that for every
pattern π in the class, the treewidth of its underlying graph Gπ is at most k.

We saw that label variables and regular expressions lead to intractable data complexity
of query answering. We now show that bounded treewidth guarantees tractability for large
classes of patterns with these features.

Theorem 7.1. The data complexity of finding certain answers to CRPQs over classes

of graph patterns of bounded treewidth in P
nv,re and P

nv,lv
Codd is in Ptime.

Proof. It is sufficient to prove the theorem for the case of patterns in P
nv,re. This is

because each pattern π ∈ P
nv,lv that does not repeat label variables is equivalent to the

pattern π′ ∈ P
nv,re that is obtained from π by replacing each label variable X mentioned
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in π by the regular expression
⋃

a∈Σ a (that is, JπK = Jπ′K). Clearly, the underlying graphs
of π and π′ are the same.

We start by proving some auxiliary but necessary results. Let A1 and A2 be two NFAs
over the same alphabet Σ. Assume that the set of states of A1 is S, its transition function
is given by δ : S × Σ → 2S , s0 is the initial state, and F ⊆ S is the set of final states.
Let f be a function from S into 2S , S′ be a subset of S, and S be a subset of 2S . We
say that the tuple (f, S′,S) is realized in A2 whenever A2 accepts a word w such that (1)
δ({s}, w) = f(s), for each s ∈ S, (2) S′ ⊆ S consists of exactly those states s such that
for some prefix w′ of w, δ({s}, w′) contains at least one final state, and (3) S consists of
exactly those S′′ ⊆ S such that for some suffix w′′ of w it is the case that δ({s0}, w′′) = S′′.
The following claim will be useful for the rest of the proof. The proof can be found in the
appendix.

Claim 7. Assume that the size of A1 is considered to be fixed. Then the set of tuples
of the form (f, S′,S) that are realized in A2 can be computed in polynomial time.

Now we prove the proposition. In order to do this we use the following idea. Given a
pattern π in P

nv,re, whose underlying undirected graph is of fixed treewidth, and a fixed
CRPQ Q (that we assume without loss of generality to be Boolean), we do the following:

— First, from π and Q we construct in polynomial time a first-order structure Bπ,Q over
vocabulary σ (as defined below) such that the tree-width of Bπ,Q is fixed.

— Second, from Q we construct in constant time a sentence φQ in monadic second-order
logic (MSO) over vocabulary σ such that certain(Q, π) = false if and only if φQ holds
in Bπ,Q.

It follows from Courcelle’s theorem that the fixed MSO sentence φQ can be evaluated in
polynomial time over Bπ,Q (since Bπ,Q is of fixed tree-width). Since φQ can be constructed
in constant time from Q, and Bπ,Q can be constructed in polynomial time from π and Q,
we conclude that there is a polynomial time algorithm that evaluates fixed CRPQs over the
class of patterns in P

nv,re such that its underlying undirected graph is of fixed treewidth.
Let π be a pattern in P

nv,re over Σ, such that its underlying undirected graph is of fixed
treewidth k > 0, and let Q be a Boolean CRPQ. We assume that Q is an RPQ of the
form (x,R, y), where R is a regular expression over Σ. We later explain how to extend the
argument to arbitrary CRPQs with constants. This case, although much more cumbersome,
uses essentially the same ideas that we use to solve the problem for RPQs.

We start by constructing an NFA A that is equivalent to R. Clearly, this can be done in
constant time since Q itself is constant. Assume that the set of states of A is S, that its
transition function is δ : S × Σ → 2S , the initial state is s0 ∈ S, and F ⊆ S contains the
final states. Let s1, . . . , sp be an arbitrary enumeration of the states in S. Further, let F be
the set of all functions f : S → 2S , let W1, . . . ,Wt an arbitrary enumeration of the elements

in F × 2S × 22S

(that is, t = |F| × 2p × 22p

), and Z1, . . . , Z2t an arbitrary enumeration

of the subsets of F × 2S × 22S

. Then we construct, for each e of the form (p, L, q) in π,

the set Ce ⊆ F × 2S × 22S

that contains exactly those tuples of the form (f, S′,S), where
f : S → 2S , S′ ⊆ S, and S ⊆ 2S, that are realized by the NFA that is equivalent to L.
Using Claim 7, and the fact that for each regular expression an equivalent NFA can be
constructed in polynomial time, one can easily prove that the set Ce can be constructed in
polynomial time, for each edge e in π.

Construction of Bπ,Q: Now we show how to construct Bπ,Q from π and Q. First we
define the vocabulary σ. This consists of a ternary relation Edges and unary predicates
U1, . . . , U2t . Next we define the domain of Bπ,Q. In order to do that we associate, with each
edge e in π a constant ce that works as an identifier for e. (That is, if e and e′ are distinct
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edges in π, then ce and ce′ are also distinct constants). Then the domain of Bπ,Q consists
of each node p mentioned in π plus all constants of the form ce such that e is an edge in π.

The interpretation of Edges in Bπ,Q contains all tuples of the form (p, ce, q) such that e
is an edge from p to q in π. The interpretation of predicate Ui, 1 ≤ i ≤ 2t, contains exactly
those constants of the form ce such that Ce = Zi. (Thus, the interpretations of U1, . . . , U2t

define a partition of the set of elements of the form ce in Bπ,Q). It easily follows from
previous remarks that Bπ,Q can be constructed in polynomial time from π and Q (recall
that Q is fixed). Next claim proves that the treewidth of Bπ,Q is fixed.

Claim 8. The treewidth of Bπ,Q is at most 6k2.

Proof. Since Bπ,Q consists of several unary predicates and one ternary relation symbol,
it is sufficient to prove that the restriction B′π,Q of Bπ,Q to the relation symbol Edges

has treewidth bounded by 6k2. Take an arbitrary tree decomposition (T, (Bt)t∈T ), of the
underlying undirected graph G of π, that witnesses that the treewidth of G is at most k.
Recall that (T, (Bt)t∈T ) satisfies the following: (1) T is a tree. (2) Each Bt, t ∈ T , is a subset
of the nodes in G, and every node of G belongs to at least some Bt, t ∈ T . (3) For every node
p in G the set {t | p ∈ Bt} is connected. (4) If (p, q) is an edge of G then for some t ∈ T it is
the case that {p, q} ⊆ Bt. (5) |Bt| ≤ k + 1, for each t ∈ T . From (T, (Bt)t∈T ) we construct
the following tree decomposition of B′π,Q: For each edge (p, q) in G we choose an arbitrary
Bt, t ∈ T , that contains both p and q. Assume that there are exactly m edges e1, . . . , em

that go from p to q in π. Then we replace t in T with a path of m new nodes t1, . . . , tm, and
define Bti

:= Bt ∪ {ce1}, for each 1 ≤ i ≤ m. It is not hard to see that the resulting tuple
(T ′, (B′t)t∈T ′) is a tree decomposition of B′π,Q, and that |B′t| ≤ (k+ 1) + (k+ 1)2 ≤ 6k2, for

each t ∈ T ′. We conclude that the treewidth of Bπ,Q is at most 6k2.

Construction of φQ: The MSO formula φQ is defined as follows:

φQ := ∃Y1 · · · ∃Yt

(

α(Y1, . . . , Yt) ∧ β(Y1, . . . , Yt) ∧ ¬∃x∃yγ(x, y, Y1, . . . , Yt)
)

,

where x and y are first-order variables and each Yj (1 ≤ j ≤ t) is a monadic second-order
order variable. Intuitively, with φQ we try to “guess” a graph database in JπK that does not
satisfy Q. This is done as explained below.

In the Yj ’s we try to guess an assignment (that is, a graph database) that replaces each
element of the form ce in Bπ,Q (that is, each edge e in π) with a word w in the regular
language L, assuming that the edge e is labeled with L in π. Notice, however, that it is
impossible with the power of MSO to guess an entire word for an edge. Nevertheless, we
do not need to guess all the information contained in w, and, indeed, for the sake of query

answering with respect to Q it is enough to guess only the tuple in F × 2S × 22S

that
is witnessed by w. This is precisely what formulas α and β do. Formula α guesses in the

Yj ’s the tuples in F × 2S × 22S

that are witnessed by the words that replace edges in the
graph database represented by π that we are trying to construct to falsify Q, and formula
β checks, for each edge e, that such an assignment is consistent with the tuples in Ce (that

is, that we have guessed for ce a tuple in F × 2S × 22S

that is witnessed by L, assuming
that L is the regular language that labels e in π). On the other hand, ¬∃x∃yγ checks that
Q does not hold in the graph database G ∈ JπK that is represented by the Yj ’s; that is, G is
any graph database that is obtained from π by replacing each edge e in π such that ce ∈ Yj

with a word w that realizes the tuple Wj in F × 2S × 22S

.
The formulas α, β and γ are defined as follows:

— Formula α(Y1, . . . , Yt) establishes that the interpretations of Y1, . . . , Yt form a partition of
the elements of the form ce in Bπ,Q (i.e. the elements that appear in the second coordinate
of the interpretation of the relation Edges in Bπ,Q). Further, only elements of the form
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ce belong to the interpretation of Yj , for each 1 ≤ j ≤ t. (Notice that elements of the
form ce are easily definable with the formula ∃z1∃z3Edges(z1, z2, z3)).

— Formula β(Y1, . . . , Yt) establishes that, for each edge e in π, if the constant ce belongs
to the interpretation of Yj , 1 ≤ j ≤ t, then the tuple (f, S′,S) that corresponds to Wj

belongs to Ce. This can be easily expressed by a formula that states that if an element y
belongs to Yj , 1 ≤ j ≤ t, then it also belongs to the interpretation of some Ui, 1 ≤ i ≤ 2t,
such that Wj ∈ Zi.

— Assume that Wj = (f j , Sj,Sj), for 1 ≤ j ≤ t. Let X1, . . . , Xp be fresh monadic
second-order variables and u1, v1, u2, v2 be fresh first-order variables. Then the formula
γ(x, y, Y1, . . . , Yt) is defined as ∃X1 · · · ∃Xpθ, where θ is the disjunction of the following
formulas:
— θ1(x, y, Y1, . . . , Yt, X1, . . . , Xp),
— ∃u∃v θ2(x, y, u, v, Y1, . . . , Yt, X1, . . . , Xp)
— ∃u∃v θ3(x, y, u, v, Y1, . . . , Yt, X1, . . . , Xp),
— ∃u1∃v1∃u2∃v2 θ4(x, y, u1, v1, u2, v2, Y1, . . . , Yt, X1, . . . , Xp),
and the MSO formulas θi, 1 ≤ i ≤ 4, are as explained below.
First, for S′ ⊆ S and s ∈ S, we define an MSO formula µs,S′(x, y,X1, . . . , Xp, Y1, . . . , Yt)
that establishes the following:
— The interpretations ofX1, . . . , Xp contain exactly the least fixpoints defined as follows:

(1) x belongs to Xi, for each 1 ≤ i ≤ p such that si ∈ S′. (2) For each nodes z, z′

and w, if (a) z belongs to the interpretation Xj , 1 ≤ j ≤ p, (b) Edges(z, w, z′) holds,
(c) w belongs to Yi, 1 ≤ i ≤ t, then z′ belongs to the interpretation of Xℓ, for each
1 ≤ ℓ ≤ p such that sℓ ∈ f i(sj).

— The element y belongs to the interpretation of Xi, assuming that s = si.
It is standard, although rather cumbersome, to construct explicitly the MSO formula
µs,S′(x, y,X1, . . . , Xp, Y1, . . . , Yt). For the sake of readability we omit it here. Intuitively,
this formula checks the following on a pair of nodes x and y from Bπ,Q: If G is a graph
database defined by the Yj ’s (as described above), then the Xi’s contain exactly the
nodes of Bπ,Q (and, hence, of π) that are assigned state si by some “run” of A over the
paths of G, that is initialized by assigning state s′ to x, for each s′ ∈ S′. This is done
as follows: First, assign x to Xi for each 1 ≤ i ≤ p such that si ∈ S′. Then recursively
proceed as follows. If node p of Bπ,Q is assigned to Xi (that is, state si of A), there is
an edge e from node p to q in π, and ce belongs to the interpretation of Yj (that is, ce
has been replaced in G by a word that realizes, in particular, the function f j : S → 2S),
then q has to be assigned to each state sℓ ∈ f j(si), i.e. to the set Xℓ. The formula
µs,S′(x, y,X1, . . . , Xp, Y1, . . . , Yt) checks, in addition, that y is assigned state s (i.e. that
y belongs to Xi assuming that s = si).
Then we define:
— θ1 :=

∨

s′∈F µs′,{s0}(x, y, Y1, . . . , Yℓ, X1, . . . , Xp).

— θ2 :=
∧

1≤j≤ℓ

(

Edges(u, v, x) ∧ Yj(v) →
∨

S′∈Sj

∨

s′∈F µs′,S′(x, y, Y1, . . . , Yℓ, X1, . . . , Xp)
)

.

— θ3 :=
∧

1≤j≤ℓ

(

Edges(y, v, u) ∧ Yj(v) →
∨

s∈Sj µs,{s0}(x, y, Y1, . . . , Yℓ, X1, . . . , Xp)
)

.
— Formula θ4 is:

Edges(u1, v1, x) ∧Edges(y, v2, u2)∧
∧

1≤j,ℓ≤t

(

Yj(v1) ∧ Yℓ(v2)→
∨

S′∈Sj ,s∈Sℓ

µs,S′(x, y, Y1, . . . , Yt, X1, . . . , Xp)
)

.

The meaning of tehse formulas will become clear when we prove the soundness and correct-
ness of the construction of Bπ,Q and πQ (that is, that certain(Q, π) = false if and only
if Bπ,Q |= φQ).
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Clearly, φQ can be constructed in constant time from Q. Next we show that
certain(Q, π) = false if and only if Bπ,Q |= φQ.

Soundness and correctness: Assume first that Bπ,Q |= φQ. This means that there exists
a partition P1, . . . , Pt of the elements of the form ce that belong to Bπ,Q, such that Bπ,Q |=
β(P1, . . . , Pt) ∧ ¬∃x∃yγ(x, y, P1, . . . , Pt). Since Bπ,Q |= β(P1, . . . , Pt), it is the case that if
an element of the form ce belongs to Pi, 1 ≤ i ≤ t, then the tuple (f, S′,S) that corresponds
to Wi belongs to Ce. With this in mind we prove next that certain(Q, π) = false. In order
to do that, we construct a graph G ∈ JπK such that Q(G) = false.

Let σ be an assignment from the nodes of π into the set N of node ids that (1) is the
identity map on node ids, and (2) assigns a distinct node id nx, that does not appear in π,
to each node variable x. Then the graph database G is obtained from π by replacing each
node p by σ(p), and then replacing each edge e of the form (p, L, q) with a path ρe of fresh
node ids that goes from σ(p) to σ(q) that satisfies the following: Assume that ce belongs
to Pi, 1 ≤ i ≤ t, and that Wi = (f, S′,S). Then λ(ρe) is a word w that belongs to L and
such that (1) δ(s, w) = f(s), for each s ∈ S, (2) S′ is precisely the set of states s such that,
for some prefix w′ of w, it is the case that δ(s, w′) contains at least one final state, and (3)
S consists of exactly those S′′ ⊆ S such that for some suffix w′′ of w it is the case that
δ({s0}, w

′′) = S′′. Notice that w exists since Bπ,Q |= β(P1, . . . , Pt) and hence (f, S′,S) is
realized by the NFA A′ that is equivalent to L. It is immediately clear then that G ∈ JπK.

Now we prove that Q(G) = false. Assume, for the sake of contradiction, that there
are two node ids n and n′ in G such that there is a path ρ from n to n′ that satisfies
that λ(ρ) ∈ R. Notice that ρ is either of the form ρ1ρe1ρe2 · · · ρem

ρ2 or ρe1ρe2 · · · ρem
ρ2 or

ρ1ρe1ρe2 · · · ρem
or ρe1ρe2 · · · ρem

, where each ρei
, 1 ≤ i ≤ m, is the path associated with

an edge ei of π in G, ρ1 is a suffix of the path ρe0 in G that is associated with an edge e0
of π, and ρ2 is a prefix of the path ρem+1 in G that is associated with an edge em+1 of π.
We assume in the following that ρ is of the form ρ1ρe1ρe2 · · · ρem

ρ2, all other cases being
similar.

Assume that ce0 belongs to Yj , for 1 ≤ j ≤ t, and that Wj = (f j , Sj,Sj). Thus, if
δ({s0}, λ(ρ1)) = S′ ⊆ S then S′ ∈ S

j. Further, assume that cem+1 belongs to Yℓ, for 1 ≤ ℓ ≤

t, and that Wℓ = (f ℓ, Sℓ,Sℓ). Thus, if δ(S′, λ(ρe1ρe2 · · · ρem
)) = S′′ ⊆ S, then S′′ contains

at least some state s′ in Sℓ (otherwise, it would not be the case that δ(S′′, λ(ρ2)) contains
at least some state in F , and, thus, that λ(ρ) ∈ R). Further, it is clear that the following
holds for each state s ∈ S′′: Assume that e1 = (p1, L1, q1) and that em = (pm, Lm, qm).
Also, assume that U1, . . . , Up contain exactly the least fixpoints defined as follows over the
nodes of π: (1) p1 belongs to Ui, for each 1 ≤ i ≤ p such that si ∈ S

′. (2) For each nodes z,
z′ and w, if (a) z belongs to the interpretation Uj, 1 ≤ j ≤ p, (b) Edges(z, w, z′) holds, (c)
w belongs to Pi, 1 ≤ i ≤ t, then z′ belongs to the interpretation of Uℓ, for each 1 ≤ ℓ ≤ p
such that sℓ ∈ f

i(sj). Then the node qm belongs to the interpretation of Ui, assuming that
s = si.

Assume that ei = (pi, Li, qi), for each 1 ≤ i ≤ m + 1. Then clearly Bπ,Q |=
Edges(p0, ce0 , q0)∧Edges(pm+1, cem+1 , qm+1). Further, it is clear from the previous remarks
that

Bπ,Q |= Yj(ce0) ∧ Yℓ(cem+1) ∧ µs′,S′(p1, qm, P1, . . . , Pt, U1, . . . , Up).

But then Bπ,Q |= ∃x∃yγ(x, y, P1, . . . , Pt), since s′ ∈ Sℓ and S′ ∈ S
j, which is a contradiction.

Assume now that certain(Q, π) = false. Thus, from Claim 2, there is a graph database
G in JπK such that G is σ-canonical for π and Q(G) = false. For each edge e ∈ π, let
ρe be the path that is associated with e in G. We first construct a partition P1, . . . , Pt

for the elements of the form ce in Bπ,Q as follows: For each edge e in π, if the NFA that
only accepts the word λ(ρe) realizes the tuple Wi, then ce belongs to Pi. We show next that
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Bπ,Q |= α(P1, . . . , Pt)∧β(P1, . . . , Pt)∧¬∃x∃yγ(x, y, P1, . . . , Pt), which implies, in turn, that
Bπ,Q |= φQ.

Clearly, since G is canonical for π, Bπ,Q |= α(P1, . . . , Pt) ∧ β(P1, . . . , Pt). It
just rests to show that βπ,Q |= ¬∃x∃yγ(x, y, P1, . . . , Pt). Assume, on the con-
trary, that βπ,Q |= ∃x∃yγ(x, y, P1, . . . , Pt). In particular, assume that βπ,Q |=
∃x∃y∃X1, . . . , Xp∃u1∃v1∃u2∃v2 θ4(x, y, u1, v1, u2, v2, P1, . . . , Pt, X1, . . . , Xp), all other cases
being similar.

Since βπ,Q |= ∃x∃y∃X1, . . . , Xp∃u1∃v1∃u2∃v2 θ4(x, y, u1, v1, u2, v2, P1, . . . , Pt, X1, . . . , Xp),
there exist elements p, p′, q, q′, ce and ce′ in Bπ,Q such that the following holds: (1)
Edges(p′, ce, p) and Edges(q, ce′ , q′) holds in Bπ,Q. (2) If ce ∈ Pj and ce′ ∈ Pℓ, then it is the
case that the following holds: Assume that Wj = (f j , Sj ,Sj) and Wℓ = (f ℓ, Sℓ,Sℓ). Then
for some S′ ∈ S

j and s ∈ Sℓ it is the case that ∃X1 · · · ∃Xpµs,S′(p, q, P1, . . . , Pt, X1, . . . , Xp)
holds in Bπ,Q. From the two previous facts one can easily conclude the following: (1) There
is a suffix ρ1 of ρe such that δ({s0}, λ(ρ1)) = S′. (2) There is a prefix ρ2 of ρe′ such that
δ({s}, λ(ρ2)) contains at least some final state. (3) There is a path ρ in G from σ(p) to
σ(q) such that δ(S′, λ(ρ)) contains the state s. We conclude that ρ1ρρ2 is a path in G such
that λ(ρ) ∈ R. This concludes this part of the proof.

Extension to arbitrary CRPQs: A procedure that computes certain answers in polyno-
mial time for arbitrary conjunctions of RPQs is more cumbersome to describe, but relies
esentially on the same proof ideas. First of all, when constructing Bπ,Q from π and Q we
have to be more careful, and provide in advance the necessary information to constants of
the form ce, in order to be able to recognize later when it is possible for a join between
two node variables to occur in a node that belongs to a path that witnesses the edge e. In
the same way, formula φQ has to be changed accordingly, in order to allow for this kind
of joins to occur in the graph database. The addition of constants to queries only makes
things easier, as then we precisely know where an element has to be witnessed in the graph
database. ✷

The Codd interpretation of label variables is essential, since without it the problem is
already coNP-hard for treewidth 1 (see Theorem 5.7). For P

re patterns, coNP-hardness
results of Theorem 5.8 used classes of DAGs of unbounded treewidth.

7.2. Certain answers via constraint satisfaction

We now demonstrate the potential of using techniques from constraint satisfaction for an-
swering queries over graph patterns, in the spirit of [Calvanese et al. 2000c]. We shall

concentrate on patterns in P
nv,lv, for which data complexity is in coNP. Of course pure

complexity-theoretic argument tells us that (the complement of) query answering can be
cast as a constraint satisfaction problem; what we show here is that the translation for
RPQs is very transparent, opening up the possibility of bringing the huge arsenal of tools
from constraint satisfaction [Dechter 2003].

We adopt the standard view of the constraint satisfaction problem (CSP) as checking for
the existence of a homomorphism from a relational structureM1 to another structureM2 of
the same vocabulary [Kolaitis and Vardi 2007], referring to this problem as CSP(M1,M2).
Often this problem is considered with M2 fixed, in which case one refers to non-uniform
CSP.

Consider a pattern π = (N,E) in P
nv,lv, i.e., E ⊆ N × (Σ∪W)×N for a finite set W of

label variables. Let Q be an RPQ given by Ans(x, y)← (x, L, y), where L ⊆ Σ∗ is a regular
language. We now define logical structuresMπ(n, n′) and MQ over vocabulary

(Nodes,Expr, (Laba)a∈Σ, Src, Sink,Edge),
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where Edge is a ternary relation and other relations are unary. Here n and n′ are two node
ids of π.
Structure Mπ(n, n′) The domain is the disjoint union of N , Σ, and W , the set of label
variables used in π. The interpretation of the predicates is as follows:

Nodes := N Edge := E
Laba := {a} Src := {n}
Expr := W Sink := {n′}

StructureMQ Assume that L is recognized by an NFA (S,Σ, q0, F, δ) with δ : S×Σ→ 2S

(extended, as usual, to a transition function on sets δ(S′, a) =
⋃

s∈S′ δ(s, a)). The domain

ofMQ is the disjoint union of 2S and Σ. The interpretation of the predicates is:

Nodes:=2S Edge:= {(S′, a, S′′) ∈ 2S × Σ× 2S | δ(S′, a) ⊆ S′′}
Laba:={a} Src:={S′ ∈ 2S | q0 ∈ S′}
Expr:=Σ Sink:=2S−F

Theorem 7.2. For patterns π ∈ P
nv,lv, under the above translations, (n, n′) ∈

certain(Q, π) if and only if there is no solution to CSP(Mπ(n, n′),MQ).

Proof. Assume first that (n, n′) 6∈ certain(Q, π). Then there is a graph database G
over Σ such that G ∈ JπK but (n, n′) 6∈ Q(G). Since G ∈ JπK, there exists a homomorphism
h : (h1, h2) from π into G, where h1 maps nodes of π into nodes of G, and h2 maps label
variables used in π into symbols from Σ.

Let A = (S,Σ, q0, F, δ) be the NFA that recognizes L, where we assume, without loss of
generality, that δ(q, a) is defined, for each q ∈ S and a ∈ Σ. Further, let A′ be the NFA
A×G. Recall that π = (N,E) and that W is the set of label variables used in π. Then let
f : N → 2S be the mapping defined as f(p) = S′, where S′ is the subset of S that consists
of exactly those states q such that there is a run of A′ from state (q0, n) to state (q, h1(p)).
Further, let f ′ be the mapping from the domain ofMπ(n, n′) into the domain ofMQ that
is defined as follows:

— For each p ∈Mπ(n, n′) ∩N , it is the case that f ′(p) = f(p);
— For each a ∈Mπ(n, n′) ∩ Σ, it is the case that f ′(a) = a;
— For each X ∈ Mπ(n, n′) ∩W , it is the case that f ′(X) = h2(X).

We prove next that f ′ is a homomorphism fromMπ(n, n′) into MQ.
Clearly, for each element c in the domain ofMπ(n, n′) it is the case that c ∈ T ⇒ f ′(c) ∈

T , for each T ∈ {Nodes,Expr, (Laba)a∈Σ}. Further, it is clear from the definition of f ′ and
f , that f ′(n) contains the state q0, and thus, that for each c in the domain ofMπ(n, n′) it
is the case that c ∈ Source ⇒ f ′(c) ∈ Source. Moreover, since (n, n′) 6∈ Q(G), there is no
run of A′ from (q0, n) to a state (q, n′) such that q ∈ F . Thus, f ′(n′) = f(n′) satisfies that
f ′(n′) ∩ F = ∅, and, therefore, we can conclude that for each c in the domain ofMπ(n, n′)
it is the case that c ∈ Sink⇒ f ′(c) ∈ Sink.

It just rests to show that for each triple of the form (p,D, q), where p, q ∈ N and
D ∈ Σ ∪ W , it is the case that (p,D, p′) ∈ Edges ⇒ (f ′(p), f ′(D), f ′(p′)) ∈ Edges. As-
sume that (p,D, p′) ∈ Edges. Consider an arbitrary state q ∈ f ′(p). Then there exists a
run of A′ from state (q0, n) to state (q, h1(p)). Since (p,D, p′) is an edge of π, it must be
the case that (h1(p), h2(D), h1(p

′)) is an edge of G. Thus, there is a run of A′ from state
(q0, n) to state (δ(q, h2(D)), h1(p

′)). (We assume h2(D) = D if D ∈ Σ). Since q was arbi-
trarily chosen in f ′(p), we conclude that

⋃

q∈f ′(p) δ(q, f
′(D)) ⊆ f ′(p′), and, therefore, that

(f ′(p), f ′(D), f ′(p′)) ∈ Edges.
We conclude that there is a solution for CSP(Mπ(n, n′),MQ).
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Assume, on the other hand, that there is a solution for CSP(Mπ(n, n′),MQ). Thus, there
is a homomorphism f from Mπ(n, n′) into MQ. We define G as the graph database over
Σ that can be obtained from π by replacing each node variable x with a fresh node id nx,
and each label variable X ∈ W with the symbol f(X) ∈ Σ. (Notice that f(X) is, indeed, a
symbol in Σ, since f is a homomorphism fromMπ(n, n′) intoMQ). It is clear that G ∈ JπK.
We prove next that (n, n′) 6∈ Q(G).

Assume that the set of node ids mentioned in G is N ′ ⊇ N . Consider again the NFA
A′ := A × G. Define a function f ′ : N ′ → 2S such that for each n0 ∈ N ′, f ′(n0) is the
subset S′ of S that consists of exactly those states q such that there is a run of A′ from state
(q0, n) to state (q, n0). We claim that f ′(n′) ∩ F = ∅, which implies that (n, n′) 6∈ Q(G).

First of all, we prove that f ′(n0) ⊆ f(n0), for each n0 ∈ N ′. Assume, for the sake of
contradiction, that for some n0 ∈ N ′ there is a state q ∈ f ′(n0) such that q 6∈ f(n0). Since
q ∈ f ′(n0), there is a run of A′ that is of the form

(q0, n)(q1, n1) · · · (qt, nt)(q, n0)

on some word a1a2at · · ·at+1 over Σ. But since q0 ∈ f(n), it must be the case that qj ∈ f(nj),
for each 1 ≤ j ≤ t. This is because f is a homomorphism from Mπ(n, n′) into MQ, and,
thus,

⋃

q′∈f(n) δ(q
′, a1) ⊆ f(n1) and

⋃

q′∈f(nj)
δ(q′, aj+1) ⊆ f(nj+1), for each 0 ≤ j < t. For

the same reason, q ∈ f(n0), which is a contradiction.
Notice that f(n′) ∩ F = ∅ (since f is a homomorphism from Mπ(n, n′) into MQ),

and hence f ′(n′) ∩ F = ∅ (this is because we have just proved that f ′(n′) ⊆ f(n′)). The
latter implies that (n, n′) 6∈ Q(G). Further, since G ∈ JπK, we conclude that (n, n′) 6∈
certain(Q, π).

Many algorithmic techniques for constraint satisfaction for CSP(M1,M2) are based on
exploiting properties of the structureM1, so the extremely simple construction ofMπ(n, n′)
indeed opens up the possibility of using a large body of heuristics developed in that area.

The case of data complexity corresponds to the non-uniform version of CSP, with MQ

fixed. In that case one can immediately conclude (using known results on CSP [Dechter 2003;

Kolaitis and Vardi 2007]) that if we have a class of patterns π ∈ P
nv,lv which, when viewed

as ternary relations E, has bounded treewidth, then the data complexity of RPQs over such
a class is in Ptime (note that this is incompatible with Theorem 7.1 which gives a Ptime
result for a larger class of queries, but under the restriction of the Codd interpretation of
label variables).

An analog of Theorem 7.2 for patterns in P
nv,re was shown in [Calvanese et al. 2000c],

which implies tractability of RPQ evaluation in data complexity over patterns in P
nv,re

whose underlying graph is of bounded treewidth. The idea of the proof in such case is the
following: The domain of the structureMQ will contain, in addition to 2S , where S is the
set of states of the NFA A that recognizes L, each function τ : S → S. We then enlargeMQ

by adding a unary predicate PΓ, for each set Γ of functions from S to S. The interpretation
of PΓ consists of all the functions τ ∈ Γ. The domain ofMπ(n, n′) will contain, in addition
to the set N of node ids of π, each regular expression L′ that labels an edge of π (and if two
edges are labeled by the same regular expression, we see them as different objects in the
domain). We then ensure that L′ is mapped into some function τ : S → S, such that there
is a word w ∈ L′ that realizes τ : S → S; i.e. that there is a run of A over w from state s to
τ(s), for each s ∈ S. In order to do that, we add L′ to the interpretation of PΓ inMπ(n, n′),
where Γ is the set of all functions τ : S → S, such that there is a word w ∈ L′ that realizes
τ : S → S. It is not hard to prove that Mπ(n, n′) can be constructed in polynomial time
(since L, and, thus, A, is fixed). A homomomorphism from Mπ(n, n′) to MQ assigns a
function τ : S → S to each regular expression L′ in the domain of Mπ(n, n′). Intuitively,
this represents the type with respect to A of the word that will replace the regular expression
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L′ in a graph database G that belongs to JπK. This is all the information we need to know
about that word in order to check whether (n, n′) ∈ Q(G).

We have not been able to extend these techniques to the most expressive class of patterns
in P

nv,lv,re. A possible explanation is that data complexity of RPQ evaluation is intractable
even over extremely simple patterns in the class P

lv,re, which difficults the search for well-
behaved fragments:

Proposition 7.3. There is an RPQ Q such that Data complexity(Q) is intractable

even over input patterns in P
lv,re with exactly one edge.

The proof of Proposition 7.3 is by a mild modification of the proof of the second part of
Theorem 9 in [Barceló et al. 2013].

8. CONCLUSIONS

We studied structural properties and querying of graph patterns. We looked at three main
features of patterns: node variables, label variables, and regular expressions specifying paths.
We showed that each of these features strictly increases the expressiveness of patterns. We
looked at data and combined complexity of answering CRPQs and other queries (both
extensions and restrictions of CRPQs). We developed a model of automata that capture
query answering, both for returning nodes and paths, and studied their properties. Finally,
we identified tractable restrictions, as well as classes of reasonable combined complexity for
which query answering is naturally viewed as a constraint satisfaction property.

The main conclusion is that, without carefully chosen restrictions, querying graph pat-
terns is computationally harder than querying relational or XML patterns. In particular,
this has implications for ongoing work on defining schema mappings as well as integration
and exchange techniques for graph-structured data. However, we can identify rather ro-
bust classes with either tractable query answering, or for which one can hope to find good
heuristics by using techniques from other fields. Developing such techniques is a natural
continuation of this work. Another line for further work is to study tractable restrictions
for integrating and exchanging graph data.

Acknowledgments We thank Wenfei Fan and Peter Wood for their comments. Partial support
provided by Fondecyt grant 1110171, EPSRC grant G049165 and FET-Open Project FoX, grant
agreement 233599. Part of this work was done when the first author visited Edinburgh, and the
second and the third author visited Santiago.

REFERENCES

Abiteboul, S., Buneman, P., and Suciu, D. 1999. Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kauffman.

Angles, R. and Gutierrez, C. 2008. Survey of graph database models. ACM Computing Surveys 40, 1.
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Börger, E., Gräedel, E., and Gurevich, Y. 1997. The Classical Decision Problem. Perspectives in
Mathematical Logics. Springer-verlag.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:51

Buneman, P., Davidson, S. B., Hillebrand, G. G., and Suciu, D. 1996. A query language and optimiza-
tion techniques for unstructured data. In SIGMOD Conference. 505–516.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2000a. Answering regular path queries
using views. In 16th International Conference on Data Engineering (ICDE). 389–398.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2000b. Containment of conjunctive regular
path queries with inverse. In 7th International Conference on Principles of Knowledge Representation
and Reasoning (KR). 176–185.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2000c. View-based query processing
and constraint satisfaction. In 15th Annual IEEE Symposium on Logic in Computer Science (LICS).
361–371.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2002. Rewriting of regular expressions
and regular path queries. Journal of Computer and System Sciences 64, 3, 443–465.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2011. Simplifying schema mappings. In
14th International Conference on Database Theory (ICDT). 114–125.

Cheng, J., Yu, J. X., Ding, B., Yu, P. S., and Wang, H. 2008. Fast graph pattern matching. In 24th
International Conference on Data Engineering (ICDE). 913–922.

Cohen, S. and Sagiv, Y. 2005. An abstract framework for generating maximal answers to queries. In 10th
International Conference on Database Theory (ICDT). 129–143.

Consens, M. and Mendelzon, A. 1990. Graphlog: A visual formalism for real life recursion. In 9th ACM
Symposium on Principles of Database Systems (PODS). 404–416.

Cruz, I., Mendelzon, A., and Wood, P. 1987. A graphical query language supporting recursion. In ACM
Special Interest Group on Management of Data 1987 Annual Conference (SIGMOD). 323–330.

De Giacomo, G. and Lenzerini, M. 1997. A uniform framework for concept definitions in description
logics. J. Artif. Intell. Res. (JAIR) 6, 87–110.

Dechter, R. 2003. Constraint Processing. Morgan Kauffman.

Deutsch, A. and Tannen, V. 2001. Optimization properties for classes of conjunctive regular path queries.
In 8th International Workshop on Database Programming Languages (DBPL). 21–39.

Diestel, R. 2005. Graph Theory. Springer.

Fagin, R., Kolaitis, P., Miller, R., and Popa, L. 2005. Data exchange: semantics and query answering.
Theoretical Computer Science 336, 1, 89–124.

Fan, W., Li, J., Ma, S., Tang, N., and Wu, Y. 2010. Graph pattern matching: from intractable to poly-
nomial time. Proceedings of the VLDB Endowment (PVLDB) 3, 1, 264–275.

Fan, W., Li, J., Ma, S., Tang, N., and Wu, Y. 2011. Adding regular expressions to graph reachability and
pattern queries. In 27th International Conference on Data Engineering (ICDE). 39–50.

Fan, W., Li, J., Ma, S., Wang, H., and Wu, Y. 2010. Homomorphism revisited for graph matching.
Proceedings of the VLDB Endowment (PVLDB) 3, 1, 1161–1172.

Glaister, I. and Shallit, J. 1996. A lower bound technique for the size of nondeterministic finite automata.
Information Processing Letters 59, 2, 75–77.

Gottlob, G., Koch, C., and Schulz, K. 2006. Conjunctive queries over trees. Journal of the ACM 53, 2,
238–272.

Gutierrez, C., Hurtado, C., Mendelzon, A. O., , and Pérez, J. 2011. Foundations of semantic web
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A. PROOFS AND INTERMEDIATE RESULTS

Proof of Theorem 5.2

The only thing that is left is to prove Πp
2-hardness for the class P

lv. We reduce from
the problem of ∀∃ positive 1-3 3-SAT, which is known to be Πp

2-hard [Björklund et al.
2007]. This problem is defined as follows: A set of clauses {C1, . . . , Cp} is given, each of
which has exactly 3 distinct Boolean variables from the disjoint union of {x1, . . . , xm} and
{y1, . . . , yt}. No variable is negated. The problem asks whether for each assignment for
{x1, . . . , xm}, there exists an assignment for {y1, . . . , yt} such that each clause Ci contains
exactly one true variable.

Let φ := ∀x1 · · · ∀xm∃y1 . . . ∃yt{C1, . . . , Cp} be an instance of ∀∃ positive 1-3 3-SAT.

From φ we construct in polynomial time an alphabet Σ, a pattern πφ ∈ P
lv and a CRPQ

Qφ, both over Σ, such that for each assignment for {x1, . . . , xm}, there exists an assignment
for {y1, . . . , yt} such that each clause Ci contains exactly one true variable if and only if
certain(Qφ, πφ) = true.

We assume, without loss of generality, that φ contains clauses neither of the form (xj ∨
xk ∨ xℓ), for 1 ≤ j < k < ℓ ≤ m, nor of the form (xj ∨ xk ∨ yℓ), for 1 ≤ j < k ≤ m and
1 ≤ ℓ ≤ t. Indeed, it is clear that if φ contains a clause of any of these forms, then there
exists an assignment for {x1, . . . , xm} such that for no assignment for {y1, . . . , yt} it is the
case that each clause Ci contains exactly one true variable (this is the case, in particular,
for the assignment that makes true each variable in {x1, . . . , xm}). This means that if φ
contains clauses of any if these forms, then it does not belong to ∀∃ positive 1-3 3-SAT.
Further, it is easy to verify in polynomial time whether φ contains clauses of these forms.

The alphabet Σ over which πφ is defined is:

{C1, . . . , Cp, (++), (+−), (−+), (−−), P, N, V, S, 0, 1}.

The pattern πφ uses label variables in the set {X1, . . . , Xm}, and it is defined as follows.

First, πφ contains node ids n⊥ and n⊤ that represent, respectively, the Boolean values
true and false. Intuitively, the fact that the node variable yi (1 ≤ i ≤ t) of Qφ, as defined
below, is assigned to node n⊥ (resp., n⊤) in a graph database G ∈ JπφK, represents a
valuation of φ that assigns value false (resp., true) to yi.

In order to identify n⊥ and n⊤ in πφ, we mark the first node id with a self-loop labeled
N (for Negative value) and the second one with a self-loop labeled P (for Positive value).

Second, for each clause Ci, 1 ≤ i ≤ p, the pattern πφ contains a subpattern πCi
that is

defined by cases.

(1) Assume first that Ci = (yj ∨ yℓ ∨ xk), where 1 ≤ j < ℓ ≤ t and 1 ≤ k ≤ m. Then πCi

consists of pairwise distinct node ids

ni
⊥, n

i
⊤, m

i,1
⊥ , m

i,2
⊥ , m

i,1
⊤ , m

i,2
⊤ , ti.

c© YYYY ACM 0000-0000/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000
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Intuitively, the fact that the variable z1
i of Qφ, as defined below, is mapped into node

id ni
⊥ (resp., ni

⊤) in some graph database G ∈ JπφK, represents a valuation for φ that
assigns value false (resp., true) to the first variable of clause Ci (that is, to yj).
In the same way, the fact that the variable z2

i of Qφ, as defined below, is mapped into

node id mi,1
⊥ (resp., mi,2

⊤ ) in some graph database G ∈ JπφK, represents a valuation for
φ that assigns value false (resp., true) to both the first and the second variable of
clause Ci (that is, to yj and yℓ). And, analogously, the fact that the variable z2

i of Qφ,

as defined below, is mapped into node id mi,2
⊥ (resp., mi,1

⊤ ) in some graph database
G ∈ JπφK, represents a valuation for φ that assigns value true to the first variable,
yj , of clause Ci, and value false to the second one, yℓ (resp., value false to the first
variable of clause Ci and value true to the second one).
The following edges are the only edges that exist in between the node ids of πCi

plus
{n⊥, n⊤}:
— Both ni

⊥, ni
⊤ and ti have a self-loop labeled Ci. This self-loop permits identifying

these nodes as part of the pattern πCi
.

— There are edges labeled V from ni
⊥ into both mi,1

⊥ and mi,1
⊤ . These edges represent

the fact that ni
⊥, mi,1

⊥ , mi,1
⊤ are node ids that encode valuations for φ that assign

value false to the first variable, yj , of clause Ci.

— There are edges labeled V from ni
⊤ into both mi,2

⊥ and mi,2
⊤ . These edges represent

the fact that ni
⊤, mi,2

⊥ , mi,2
⊤ are node ids that encode valuations for φ that assign

value true to the first variable, yj , of clause Ci.

— There are edges labeled S from ni
⊥,m

i,1
⊥ and mi,2

⊥ into n⊥. These edges represent the

fact that ni
⊥ (resp., mi,1

⊥ and mi,2
⊥ ) are node ids that encode valuations for φ that

assign value false to the first (resp., second) variable of clause Ci.

— There are edges labeled S from ni
⊤,m

i,1
⊤ and mi,2

⊤ into n⊤. These edges represent the

fact that ni
⊤ (resp., mi,1

⊤ and mi,2
⊤ ) are node ids that encode valuations for φ that

assign value true to the first (resp., second) variable of clause Ci.

— The node id mi,1
⊥ has a self-loop labeled (−−), that represents that mi,1

⊥ encodes
valuations for φ that assign the value false to the first two variables of Ci (that is,
to yj and yℓ).

— The node id mi,2
⊥ has a self-loop labeled (+−), that represents that mi,2

⊥ encodes
valuations for φ that assign value true to the first variable, yj , of Ci and value
false to the second one, yℓ.

— The node id mi,1
⊤ has a self-loop labeled (−+), that represents that mi,1

⊤ encodes
valuations for φ that assign value false to the first variable, yj, of Ci and value
true to the second one, yℓ.

— The node id mi,2
⊤ has a self-loop labeled (++), that represents that mi,2

⊤ encodes
valuations for φ that assign the value true to the first two variables of Ci (that is,
to yj and yℓ).

— There are edges labeled Xk from each one of mi,1
⊥ ,m

i,2
⊥ ,m

i,1
⊤ and mi,2

⊤ into ti. These
edges represent the fact that the last variable of Ci is xk.

Figure 1 shows how this pattern (together with all the edges that link this pattern to
n⊥ and n⊤) looks.

(2) Assume now that Ci = (yj ∨ yℓ ∨ yk), where 1 ≤ j < k < ℓ ≤ t. Then πCi
is defined

exactly as in the previous case, except that now the node id ti is removed, together with
all the edges that point to it, and the 2 new node ids pi

⊥, p
i
⊤ are added, together with

the edges that link them to the rest of πCi
and the nodes n⊥ and n⊤ that we mention

below.
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CiCi

ni
⊥

m
i,2
⊥

m
i,1
⊥

n⊥n⊤

ni
⊤

m
i,1
⊤

m
i,2
⊤

ti

Xk

Xk

Xk

Xk

−+++ −−+−

S

S

S

S

S

S

V
V

V
V

Ci

Fig. 7. Pattern πCi
for a clause Ci of the form (yj ∨ yℓ ∨ xk).

In this case, the fact that the variable z3
i of Qφ, as defined below, is mapped into node

id pi
⊥ (resp., pi

⊤) in some graph database G ∈ JπφK, represents a valuation for φ that
assigns value false (resp., true) to the third variable of clause Ci (that is, to yk).
The pattern πCi

contains the following edges linking the node ids in {pi
⊥, p

i
⊤} to the

rest of πCi
and to the node ids n⊥ and n⊤:

— The node ida pi
⊥ and pi

⊤ and have a self-loop labeled Ci. This self-loop permits
identifying these nodes as part of the pattern πCi

.
— There is an edge labeled S from pi

⊥ into n⊥. This edge represents the fact that pi
⊥

is the node id that encodes valuations for φ that assign value false to the third
variable, yk, of clause Ci.

— There is an edge labeled S from pi
⊤ into n⊤. This edge represents the fact that pi

⊤ is
the node id that encodes valuations for φ that assign value true to the third variable,
yk, of clause Ci.

— There are edges labeled N from mi,1
⊥ , mi,2

⊥ , mi,1
⊤ and mi,2

⊤ into pi
⊥. This edge also

represents the fact that pi
⊥ is the node id that encodes valuations for φ that assign

value false to the third variable, yk, of clause Ci.
— There are edges labeled P from mi,1

⊥ , mi,2
⊥ , mi,1

⊤ and mi,2
⊤ into pi

⊤. This edge also
represents the fact that pi

⊤ is the node id that encodes valuations for φ that assign
value true to the third variable, yk, of clause Ci.

Figure A shows how this pattern (together with all the edges that link this pattern to n⊥
and n⊤) looks.

Clearly, πφ belongs to P
lv and can be constructed in polynomial time from φ.

Now we construct, from φ, a CRPQ Qφ over alphabet Σ that is defined as the existential
closure of the following conjuncts: First, for each 1 ≤ i ≤ t a conjunct (yi, (P ∪N), yi) that
states that the node variable yi is mapped into either n⊥ or n⊤. Second, for each 1 ≤ i ≤ p,
a conjunction θCi

that is again defined by cases:

(1) Assume first that Ci = (yj ∨ yℓ ∨ xk), where 1 ≤ j < ℓ ≤ t and 1 ≤ k ≤ m. Then θCi
is

(z1
i , S, yj) , (z

2
i , S, yℓ) , (z

1
i , Ci · V, z

2
i ) , (z2

i ,R, z
3
i ),
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Fig. 8. Pattern πCi
for a clause Ci of the form (yj ∨ yℓ ∨ xk).

where the regular language R is defined as follows:

R := (
⋃

a∈Σ\{0,1}

a) · Ci ∪
(

(−−) · 1 ∪ (−+) · 0 ∪ (+−) · 0
)

· Ci.

(2) Assume second that Ci = (yj ∨ yℓ ∨ yk), where 1 ≤ j < ℓ < k ≤ t. Then θCi
is

(z1
i , S, yj) , (z

2
i , S, yℓ) , (z

3
i , S, yk) , (z1

i , Ci · V, z
2
i ) , (z2

i ,R, z
3
i ),

where the regular language R is defined as follows:

R :=
(

(−−) · P ∪ (−+) ·N ∪ (+−) ·N
)

· Ci.

Clearly, Qφ can be constructed in polynomial time from φ.

We prove next that φ belongs to ∀∃ Positive 1-3 3SAT if and only if certain(Qφ, πφ) =
true. Assume first that φ = ∀x1 · · · ∀xm∃y1 . . . ∃yt{C1, . . . , Cp} belongs to ∀∃ Positive 1-3
3SAT. Consider an arbitrary graph database G ∈ JπφK. Then there exists a homomorphism
h : πφ → G. Since πφ does not contain node variables, we assume without loss of generality
that h is a mapping from the label variables of πφ, that is, {X1, . . . , Xm}, into Σ. We prove
next that Qφ holds in G, which shows, in turn, that certain(Qφ, πφ) = true (since G was
arbitrarily chosen).

Let X be the set of label variables in {X1, . . . , Xm} such that h(X) = 1 ⇔ X ∈ X .
(Notice that X can be empty). Consider the assignment κ for the propositional variables
{x1, . . . , xm} of φ into Boolean values true and false, such that κ assigns value true to
variable xi if and only if Xi ∈ X (1 ≤ i ≤ m). Since φ belongs to ∀∃ Positive 1-3 3SAT,
there is an assignment κ′ for the propositional variables {x1, . . . , xm, y1, . . . , yt} of φ into
Boolean values true and false, such that κ′ coincides with κ on {x1, . . . , xm} and κ′ assigns
value true to exactly one propositional variable in each clause Ci, 1 ≤ i ≤ p.

Recall that the set of node variables of Qφ is {y1, . . . , yt, z
1
1 , z

2
1 , z

3
1 , . . . , z

1
p, z

2
p, z

3
p}. We

define σ to be any mapping from {y1, . . . , yt, z
1
1 , z

2
1 , z

3
1 , . . . , z

1
p, z

2
p, z

3
p} into the node ids of G

that satisfies the following:

— For each 1 ≤ i ≤ t, σ(yi) = n⊥ if κ′(yi) is false, and σ(yi) = n⊤ otherwise.
— If Ci is of the form (yj ∨ yℓ ∨ xk), for 1 ≤ j < ℓ ≤ t and 1 ≤ k ≤ m, then:

(1) σ(z1
i ) = ni

⊥ if σ(yj) = n⊥, and σ(z1
i ) = ni

⊤ otherwise;

(2) σ(z2
i ) = mi,1

⊥ if σ(yj) = σ(yℓ) = n⊥, σ(z2
i ) = mi,2

⊥ if σ(yj) = n⊤ and σ(yℓ) = n⊥,

σ(z2
i ) = mi,1

⊤ if σ(yj) = n⊥ and σ(yℓ) = n⊤, and σ(z2
i ) = mi,2

⊤ otherwise;
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(3) σ(z3
i ) = ti.

— If Ci is of the form (yj ∨ yℓ ∨ yk), for 1 ≤ j < ℓ < k ≤ t, then:
(1) σ(z1

i ) = ni
⊥ if σ(yj) = n⊥, and σ(z1

i ) = ni
⊤ otherwise;

(2) σ(z2
i ) = mi,1

⊥ if σ(yj) = σ(yℓ) = n⊥, σ(z2
i ) = mi,2

⊥ if σ(yj) = n⊤ and σ(yℓ) = n⊥,

σ(z2
i ) = mi,1

⊤ if σ(yj) = n⊥ and σ(yℓ) = n⊤, and σ(z2
i ) = mi,2

⊤ otherwise;
(3) σ(z3

i ) = pi
⊥ if σ(yk) = n⊥, and σ(z3

i ) = pi
⊤ otherwise.

It is easy to see that assignment σ is well-defined. We prove next that (G, σ) |= Qφ, and
hence that Qφ holds in G.

Recall that Qφ consists of conjuncts (yi, (P ∪N), yi), for each 1 ≤ i ≤ t, and conjunctions
θCi

, for each 1 ≤ i ≤ p. Clearly, (G, σ) |= (yi, (P ∪ N), yi), for each 1 ≤ i ≤ t. This is
because σ(yi) is either n⊥ and n⊤, which have self-loops labeled N and P , respectively. We
prove next that (G, σ) |= θCi

, for each 1 ≤ i ≤ p.
Assume first that Ci is of the form (yj ∨yℓ∨xk), for 1 ≤ j < ℓ ≤ t and 1 ≤ k ≤ m. Recall

that in this case θCi
is defined as:

(z1
i , S, yj) , (z

2
i , S, yℓ) , (z

1
i , Ci · V, z

2
i ) , (z2

i ,R, z
3
i ),

where the regular language R is defined as follows:

R := (
⋃

a∈Σ\{0,1}

a) · Ci ∪
(

(−−) · 1 ∪ (−+) · 0 ∪ (+−) · 0
)

· Ci.

It is easy to see that, by definition, (G, σ) |= (z1
i , S, yj), (z

2
i , S, yℓ). This is because, in

every possible case, σ(z1
i ) (resp., σ(z2

i )) corresponds to a node id that can access σ(yj)
(resp., σ(yℓ)) through an S-labeled edge. Further, clearly (G, σ) |= (z1

i , Ci · V, z
2
i ). This is

because σ(z1
i ) is either ni

⊥ or ni
⊤, which have Ci-labeled self-loops, and in every possible

case σ(z1
i ) corresponds to a node id that can access σ(z2

i ) through a V -labeled edge. We
prove next by cases that (G, σ) |= (z2

i ,R, z
3
i ):

(1) Assume first that h(Xi) 6∈ {0, 1}. Then clearly (G, σ) |= (z2
i , (

⋃

a∈Σ\{0,1} a) ·Ci, z
3
i ). This

is because σ(z3
i ) = ti, ti has a self-loop labeled Ci, and in every possible case there is

an edge from σ(z2
i ) into σ(z3

i ) = ti labeled with h(Xi) ∈
⋃

a∈Σ\{0,1} a.

(2) Assume second that h(Xi) = 1. Then κ′(xi) is true, and hence since κ′ makes true
exactly one propositional variable in Ci, it must be the case that κ′(yj) = κ′(yℓ) =

false, which implies that σ(yj) = σ(yℓ) = n⊥. This implies that σ(z2
i ) = mi,1

⊥ , and

hence that (G, σ) |= (z2
i , (−−) · 1 · Ci, z3

i ). This is because σ(z2
i ) = mi,1

⊥ has a self-loop
labeled (−−), there is an edge from σ(z2

i ) into σ(z3
i ) = ti labeled with h(Xi) = 1, and

ti has a self-loop labeled Ci.
(3) The case when h(Xi) = 0 is similar and left to the reader.

In any case we conclude that (G, σ) |= (z2
i ,R, z

3
i ).

Assume second that Ci is of the form (yj ∨ yℓ ∨ yk), for 1 ≤ j < ℓ < k ≤ t. Recall that in
this case θCi

is defined as:

(z1
i , S, yj) , (z

2
i , S, yℓ) , (z

3
i , S, yk) , (z1

i , Ci · V, z
2
i ) , (z2

i ,R, z
3
i ),

where the regular language R is defined as follows:

R :=
(

(−−) · P ∪ (−+) ·N ∪ (+−) ·N
)

· Ci.

As in the previous case, it is easy to see that, by definition, (G, σ) |=
(z1

i , S, yj), (z
2
i , S, yℓ), (z

3
i , S, yk). This is because, in every possible case, σ(z1

i ) (resp., σ(z2
i )

and σ(z3
i )) corresponds to a node id that can access σ(yj) (resp., σ(yℓ) and σ(yk)) through

an S-labeled edge. Further, clearly (G, σ) |= (z1
i , Ci · V, z

2
i ). This is because σ(z1

i ) is either
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ni
⊥ or ni

⊤, which have Ci-labeled self-loops, and in every possible case σ(z1
i ) corresponds

to a node id that can access σ(z2
i ) through a V -labeled edge. We prove next by cases that

(G, σ) |= (z2
i ,R, z

3
i ):

(1) Assume first that κ′(xk) = true. This implies that σ(xk) = pi
⊤, and hence that (G, σ) |=

(z2
i , (−−) · P · Ci, z3

i ). Indeed, since κ′ makes true exactly one variable in Ci it must be
the case that κ′(yj) = κ′(yℓ) = false, and hence σ(yj) = σ(yℓ) = n⊥. This implies that

σ(z2
i ) = mi,1

⊥ , and hence that (G, σ) |= (z2
i , (−−)·P ·Ci, z3

i ). This is because σ(z2
i ) = mi,1

⊥

has a self-loop labeled (−−), there is an edge labeled P from σ(z2
i ) into σ(z3

i ) = pi
⊤,

and pi
⊤ has a self-loop labeled Ci.

(2) The case when κ′(xk) = false is similar and left to the reader.

In any case we conclude that (G, σ) |= (z2
i ,R, z

3
i ).

Assume now, on the other hand, that certain(Qφ, πφ) = true. Take an arbitrary
valuation κ from the propositional variables {x1, . . . , xk} into Boolean values true and
false. We prove next that there there is an assignment κ′ for the propositional variables
{x1, . . . , xm, y1, . . . , yt} of φ into Boolean values true and false, such that κ′ coincides with
κ on {x1, . . . , xm} and κ′ assigns value true to exactly one propositional variable in each
clause Ci, 1 ≤ i ≤ p. This is sufficient to prove that φ belongs to ∀∃ Positive 1-3 3SAT
since κ is arbitrarily chosen.

Consider the graph database G over Σ that is obtained from πφ by replacing, for each
1 ≤ i ≤ p, the label variable Xi with 1, if κ(Xi) = true, and with 0 otherwise. Clearly,
G ∈ JπφK and hence Qφ holds in G. Assume then that σ is an assignment for the node
variables {y1, . . . , yt, z

1
1 , z

2
1 , z

3
1 , . . . , z

1
p, z

2
p, z

3
p} of Qφ such that (G, σ) |= Qφ. Let us define κ′

to be the following assignment for the propositional variables {x1, . . . , xm, y1, . . . , yt} of φ:
κ′(xi) = κ(xi), for each 1 ≤ i ≤ m, and for each 1 ≤ j ≤ t it is the case κ′(yj) = true if
σ(yj) = n⊤, and κ′(yj) = false otherwise. We prove next that κ′ makes true exactly one
propositional variable in each clause Ci, for 1 ≤ i ≤ p.

Assume first that Ci is of the form (yj ∨ yℓ ∨ xk), for 1 ≤ j < ℓ ≤ t and 1 ≤ k ≤ m.
Suppose initially that κ(xk) = true. Then every edge that leads from σ(z2

i ) into σ(z3
i ) in G

is labeled with 1 (since it was labeled with Xk in πφ). Since (G, σ) |= Qφ, it is the case that
(G, σ) |= (z2

i ,R, z
3
i ), whereR = (

⋃

a∈Σ\{0,1} a)·Ci ∪
(

(−−)·1∪(−+)·0∪(+−)·0
)

·Ci. But the

only possibility for this to happen in this case is that (G, σ) |= (z2
i , (−−) · 1 · Ci, z3

i ). Notice

that this immediately implies that σ(z2
i ) = mi,1

⊥ , and hence that σ(yj) = σ(yℓ) = n⊥. We
conclude that κ′(yj) = κ′(yℓ) = false, and, therefore, κ′ only makes true one propositional
variable in Ci. The case when κ(xk) = false can be handled analogously.

The case when Ci is of the form (yj ∨ yℓ ∨ xk), for 1 ≤ j < ℓ ≤ t and 1 ≤ k ≤ m is
analogous and left to the reader.

This finishes the proof of the theorem. It is interesting to notice that although the proof
just presented uses a non-fixed alphabet (in particular, dependent on the number of clauses
in the propositional formula φ), one can quite easily come out with a refinement of this
reduction that uses a fixed alphabet. We decided to show here the simpler reduction, with
a non-fixed alphabet, for the sake of presentation and readability. ✷

Proof of Theorem 5.7

We only have to prove the second part. That is, we prove that there exists a Boolean RPQ
Q of the form Ans()← (x,w, y), where w is a single word, such that Data complexity(Q)

is coNP-hard even over input patterns in P
lv
Codd whose underlying graph is a DAG. We

work with the word w = 1011011101111.
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The proof is by a reduction from 3SAT to the complement of Data complexity(Q).
For the sake of readability, we first construct in polynomial time from each proposi-

tional formula φ in 3CNF a pattern π ∈ P
lv,re
Codd over alphabet {0, 1}, and show that

φ is satisfiable if and only certain(Q, π) = false. Afterwards, we show how to con-

struct in polynomial time from π a pattern π′ ∈ P
lv
Codd over alphabet {0, 1}, such that

certain(Q, π) = false iff certain(Q, π′) = false.
Let φ =

∧

1≤j≤m(c1j ∨ c
2
j ∨ c

3
j) be a propositional formula in 3CNF that uses propositional

variables from the set {x1, . . . , xk}; that is, each cij , for 1 ≤ j ≤ m and 1 ≤ i ≤ 3, is either
a variable xℓ, 1 ≤ ℓ ≤ k, or its negation. We associate with each propositional variable xℓ,
1 ≤ ℓ ≤ k, a fresh label variable Xℓ. Also, with each clause (c1j ∨ c

2
j ∨ c

3
j ), 1 ≤ j ≤ m we

associate three fresh label variables C1
j , C2

j and C3
j .

The pattern π over alphabet {0, 1} contains the following edges:

— For each 1 ≤ j ≤ m, π contains the edges (n1
j , 1, n

2
j), (n2

j , C
1
j , n

3
j), (n3

j , 11, n4
j),

(n4
j , C

2
j , n

5
j), (n5

j , 111, n6
j), (n6

j , C
3
j , n

7
j), (n7

j , 1111, n8
j), where n1

j , . . . , n
1
j are fresh node

ids.
— For each 1 ≤ ℓ ≤ k, π contains the edges (p1

ℓ , Xℓ, p
2
ℓ) and (p2

ℓ , 1111, p3
ℓ), where p1

ℓ , p
2
ℓ , p

3
ℓ

are fresh node ids.
— If cij = xℓ, for 1 ≤ j ≤ m, 1 ≤ i ≤ 3 and 1 ≤ ℓ ≤ k, the pattern π contains the edges

(n
(2i+1)
j , 1101110, p1

ℓ) and (n
(2i+1)
j , 0110111, p1

ℓ).

— If cij = ¬xℓ, for 1 ≤ j ≤ m, 1 ≤ i ≤ 3 and 1 ≤ ℓ ≤ k, the pattern π contains the edges

(n
(2i+1)
j , 110111, p1

ℓ) and (n
(2i+1)
j , 01101110, p1

ℓ).

Clearly, π belongs to P
lv,re
Codd and can be constructed in polynomial time from φ. Furthermore,

it is easy to see that the underlying graph of π is a DAG. Figure A shows how this pattern
looks for the case when φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4). We have skipped the names
of node ids since they are all different and can be easily inferred from the context.

We prove next that φ is satisfiable if and only if certain(Q, π) = false.

(⇒) Assume first that φ is satisfiable via assignment γ : {x1 . . . , xk} → {0, 1}. In order
to prove that certain(Q, π) = false, we show the existence of a graph database G over
alphabet {0, 1} such that G 6|= Q but G |= π. To define G, we use again the notion of
canonical graph database for π that we developed in the proof of Proposition 5.6.

Let σ be a canonical assignment for π, and define the following mapping ν from the label
variables of π to {0, 1}:

— For each 1 ≤ ℓ ≤ k, define ν(Xℓ) = 1 if and only if γ(xℓ) = 1.
— For each 1 ≤ j ≤ m and 1 ≤ i ≤ 3 define ν(Ci

j) = 1 if and only if γ(xℓ) = 1, if the i-th

literal of the j-th clause of φ corresponds to xℓ for some 1 ≤ ℓ ≤ k, or ν(Ci
j) = 1 if and

only if γ(xℓ) = 0, if the i-th literal of the j-th clause of φ corresponds to ¬xℓ for some
1 ≤ ℓ ≤ k.

We then define G as the σ-canonical graph for π that is witnessed by ν (it is trivial to
show that such graph always exists). Given that G is canonical for π, we obtain that G |= π.

Next we prove that G 6|= Q. We first claim that there is no path in G labeled w (recall
that w = 1011011101111) that contains some vertex p1

ℓ , for 1 ≤ ℓ ≤ k. Assume for the sake
of contradiction that there exists a path ρ such that λ(ρ) = 1011011101111 and ρ contains
the node id p1

ℓ , for some 1 ≤ ℓ ≤ k. Notice that |ρ| = 14, since |w| = 13. It is not hard to
see that G is a DAG, and, thus, the fourteen node ids in ρ need to be distinct. We consider
several cases:
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Fig. 9. Pattern π for the case when φ = (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4)..

— The path does not use node ids in the set {n1
j , . . . , n

8
j | 1 ≤ j ≤ m}. But from the

properties of G, we know that this case is simply not possible. Indeed, the path in G
from any node in the set {n1

j , . . . , n
8
j | 1 ≤ j ≤ m} to node p1

ℓ contains at most seven

nodes from N (since each of these paths can only be labeled with a word of at most
seven letters). Further, any path starting in p1

ℓ can have at most six nodes (going to p2
ℓ

and then to p3
ℓ). Thus, a path in G that uses no node in the set {n1

j , . . . , n
8
j | 1 ≤ j ≤ m}

but goes through p1
ℓ uses at most thirteen distinct node ids.

— The path does not contains a vertex n
(2i+1)
j , for some 1 ≤ j ≤ m and 1 ≤ i ≤ 3, such

that cij is either xℓ or ¬xℓ. This case is also not possible, given that the only edges that

lead into node p1
ℓ are from nodes of the form n

(2i+1)
j , for some 1 ≤ j ≤ m and 1 ≤ i ≤ 3,

such that cij is either xℓ or ¬xℓ.

— The path contains a vertex n
(2i+1)
j , for some 1 ≤ j ≤ m and 1 ≤ i ≤ 3, such that cij = xℓ.

Then, from the definition of ν, we can check that ν(Ci
j) = ν(Xℓ). From the properties of

G, there are only two paths from n
(2i+1)
j to p1

ℓ : The first one is labeled with 1101110, and

the second one is labeled with 0110111. Thus, either ν(Ci
j) · 1101110 · ν(Xℓ) is a subword

of w = 1011011101111, or ν(Ci
j) · 0110111 · ν(Xℓ) is a subword of w = 1011011101111.

But it is not hard to see that this cannot be the case since ν(Ci
j) = ν(Xℓ).

— The path contains a vertex n
(2i+1)
j , for some 1 ≤ j ≤ m and 1 ≤ i ≤ 3, such that

cij = ¬xℓ. By using the same arguments as the previous case, one can show that in this

case it must hold that ν(Ci
j) · 110111 · ν(Xℓ) is a subword of w = 1011011101111 or
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ν(Ci
j) · 01101110 · ν(Xℓ) is a subword of w = 1011011101111. It is not hard to see that

this cannot be the case, since ν is defined in such a way that ν(Ci
j) = 1 if and only if

ν(Xℓ) = 0

We have proved that ρ does not contain any vertex of the form p1
ℓ , for 1 ≤ ℓ ≤ k. We

prove next that if we assume, for the sake of contradiction, that there is a path ρ in G such
that λ(ρ) = 1011011101111, then it must be the case that ρ contains all nodes n1

j , . . . , n
8
j ,

for some 1 ≤ j ≤ m. First, by a simple counting argument, it is easy to see that ρ cannot
end in a node of the form ns

j , for 1 ≤ s ≤ 7 (because ρ uses at least fourteen distinct node

ids). Thus, since ρ cannot contain any node of the form p1
ℓ , 1 ≤ ℓ ≤ k, the only remaining

option is that ρ ends in a node from G that is in a path that connects a node of the form

n
(2i+1)
j , 1 ≤ j ≤ m and 1 ≤ i ≤ 3, to a node of the form p1

ℓ , for 1 ≤ ℓ ≤ k. But since w ends

with 4 consecutive 1’s, the only possibility is that ρ ends in the first two nodes of a path ρ′

that connects a node of the form n
(2i+1)
j , 1 ≤ j ≤ m and 1 ≤ i ≤ 3, to a node of the form

p1
ℓ , and such that ρ′ is labeled either by 1101110 or 110111. But then this means that there

is a path labeled 01 that leads in G to n2i
j , which clearly cannot happen.

Thus, ρ is a path that goes from node id n1
j to node id n8

j , for some 1 ≤ j ≤ m. From

the construction of G, this implies that ν(C1
j ) = ν(C2

j ) = ν(C3
j ) = 0, which in turn implies

that φ is not satisfied by valuation γ. This is the desired contradiction.

(⇐) Assume, on the other hand, that certain(Q, π) = false. Then there is a graph G
such that G |= π but G 6|= Q. Since G |= π, there is a homomorphism h = (h1, h2) from
π to G, such that h1 is the identity map on the node ids of π, and h2 is a mapping from
the label variables used in π to the alphabet {0, 1}. From h2 we construct a valuation γ
for the propositional variables of φ as follows: γ(xi) = 1 if and only if h2(Xi) = 1, for each
1 ≤ i ≤ k. We show next that φ is satisfied by assignment γ. In order to prove this we use
the following claim (for simplicity, we say that γ(cij) is the valuation of the i-th literal of

the j-th clause of φ):

Claim 9. For each 1 ≤ j ≤ m and 1 ≤ i ≤ 3 it is the case that γ(cij) = 1 if and only if

h2(C
i
j) = 1.

Before proving the claim, we show how it follows from it that valuation γ satisfies the
propositional formula φ. Indeed, assume on the contrary that γ does not satisfy φ, that is,
for some 1 ≤ j ≤ m it is the case that γ(c1j) = γ(c2j) = γ(c3j) = 0. Then, from Claim 9 it

follows that h2(C
1
j ) = h2(C

2
j ) = h2(C

3
j ) = 0, and, thus, it is easy to see that there is a path

ρ from n1
j to n8

j in G that satisfies that λ(ρ) = w = 1011011101111. But this contradicts

the fact that G 6|= Q.
Proof of Claim 9: Assume, for the sake of contradiction, that for some 1 ≤ j ≤ m and
1 ≤ i ≤ 3 it is the case that γ(cij) 6= h2(C

i
j). We consider four cases depending on h2 and

the choices of i and j:

— It holds that h2(C
i
j) = 0 and cij = xℓ for some 1 ≤ ℓ ≤ k. Then γ(cij) = 1, γ(xℓ) = 1 and,

from the definition of γ, h2(Xℓ) = 1. Further, since G |= π, we know that the following

hold: (1) There is a path in G that goes from n
(2i−1)
j to n2i

j that is labeled with a word

with i consecutive 1’s. (2) There is a path in G that goes from n2i
j to n

(2i+1)
j that is

labeled with h2(C
i
j) = 0. (3) There is a path in G from n

(2i+1)
j to p1

ℓ that is labeled with

1101110. (4) There is a path in G from p1
ℓ to p2

ℓ that is labeled h2(Xℓ) = 1. (5) There
is a path in G from p2

ℓ to p3
ℓ that is labeled with 1111. Combining all these paths, it is
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easy to see that there is a path in G that is labeled with w = 1011011101111. This is a
contradiction, as we have assumed that G 6|= Q.

— It holds that h2(C
i
j) = 1, and cij = xℓ for some 1 ≤ ℓ ≤ k. This case is analogous to the

previous one, but this time we use the fact that there is a path in G from n
(2i+1)
j to p1

ℓ

that is labeled with 0110111.
— We have that h2(C

i
j) = 0 and cij = ¬xℓ for some 1 ≤ ℓ ≤ k. Then γ(cij) = 1, γ(xℓ) = 0,

and from the definition of γ, h2(Xℓ) = 0. Further, since G |= π, we know that the

following hold: (1) There is a path in G that goes from n
(2i−1)
j to n2i

j that is labeled with

a word with i consecutive 1’s. (2) There is a path in G that goes from n2i
j to n

(2i+1)
j that

is labeled with h2(C
i
j) = 0. (3) There is a path in G from n

(2i+1)
j to p1

ℓ that is labeled

with 110111. (4) There is a path in G from p1
ℓ to p2

ℓ that is labeled h2(Xℓ) = 0. (5) There
is a path in G from p2

ℓ to p3
ℓ that is labeled with 1111. Combining all these paths, it is

easy to see that there is a path in G that is labeled with w = 1011011101111. This is a
contradiction, as we have assumed that G 6|= Q.

— It holds that h2(C
i
j) = 1, and cij = ¬xℓ for some 1 ≤ ℓ ≤ k. This case is analogous to the

previous one, but this time we use the fact that there is a path in G from n
(2i+1)
j to p1

ℓ

that is labeled with 01101110. ✷

This finishes the proof that φ is satisfiable if and only if certain(Q, π) = false.

To complete the proof, we need to show that there is a polynomial time proce-
dure that, from π, constructs a pattern π′ in P

lv
Codd such that certain(Q, π) =

false iff certain(Q, π′) = false. But this is quite straightforward, since each regu-
lar language that is used to label an edge in π consists of a single word, and, thus, we can
obtain an equivalent pattern π′ by replacing each edge labeled with the word w with a path
ρ of fresh node ids such that λ(ρ) = w. This finishes the proof of the theorem. ✷

Proof of Theorem 6.6

Only the first part is missing. Let Q = Ans(x, y, ρ)← (x, ρ : L, y) be an RPQ with a path
output. Also, let π = (N,E) be a graph pattern, W the set of label variables mentioned in
π, and n1, n2 two of its nodes from N . We prove that (n1, n2) ∈ certain(Q, π) if and only
if L is weakly accepted by Aπ(n1, n2).

(⇒): Assume that (n1, n2) ∈ certain(Q, π). We prove that L is weakly accepted by
Aπ(n1, n2). Let ν = (η, θ) be an arbitrary valuation for Aπ(n1, n2); that is, η is a mapping
from W into Σ and θ : (N × REG(Σ ∪ W) × N) → (N × Σ∗ × N) assigns to each edge
(p, r, q) ∈ E a transition (p, w, q), where w is a word that belongs to η(r). Next we show
that L ∩ L(ν(Aπ(n1, n2))) 6= ∅.

Let σ be the assignment from the nodes of π into N that is the identity on node ids and
maps each node variable x into a different node id nx. Then we define a graph database
G as the unique (up to isomorphism) σ-canonical graph database for π that satisfies the
following: For every edge e = (p, r, q) of π, the path ρ that is associated with e in G is such
that λ(ρ) = w, where θ(e) = (p, w, q). Notice that G is, indeed, a σ-canonical assignment
via η. This is because for each edge e = (p, r, q) in E it is the case that if θ(e) = (p, w, q)
then w ∈ η(r).

It is immediately clear that G ∈ JπK (since G is σ-canonical for π), and that σ(n1) = n1

and σ(n2) = n2. Furthermore, since (n1, n2) ∈ certain(Q, π), it is the case that (n1, n2) ∈
Q(G). Thus, there is a path ρ in G from n1 to n2 such that λ(ρ) ∈ L. It is now easy to show
that there is a run of ν(Aπ(n1, n2)) that accepts a word in L (namely, the word λ(ρ)). This
is because the transitions of ν(Aπ(n1, n2)) are precisely the paths of G that are associated
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with the edges of π; that is, if (p, u, q) is a transition in ν(Aπ(n1, n2)) then there is a path
in G from p to q labeled u.

Thus, L ∩L(ν(Aπ(n1, n2))) 6= ∅. Since ν is an arbitrary valuation, we conclude that L is
weakly accepted by Aπ(n1, n2).

(⇐): Assume that L is weakly accepted by Aπ(n1, n2). We prove that (n1, n2) ∈
certain(Q, π). From Claim 2 we only need to show that for every canonical graph database
G for π, it is the case that (n1, n2) ∈ Q(G). This is what we do next.

Let G be an arbitrary graph database G ∈ JπK, and assume that G is σ-canonical for π
via assignment η : W → Σ. (Recall that σ is an assignment from the nodes of π into N
that is the identity on node ids and maps each node variable x into a different node id nx).
Clearly, both node ids n1 and n2 belong to G. For each edge e in π, let us denote by ρe the
path of G that is associated with e.

Let us define now a mapping θ : (N ×REG(Σ∪W)×N)→ (N×Σ∗×N) that assigns to
each edge e = (p, r, q) ∈ E a transition (p, w, q), where w is the word λ(ρe). This is clearly
well-defined, since, by definition, λ(ρe) satisfies η(r).

Since L is weakly accepted by Aπ(n1, n2), it is the case that L ∩ L(ν(Aπ(n1, n2))) 6= ∅.
Thus, there is a word w ∈ L that is accepted by ν(Aπ(n1, n2)). It is not hard to prove then
that there is a path in G from n1 to n2 that is labeled w. This is because the transitions of
ν(Aπ(n1, n2)) are precisely the paths of G that are associated with the edges of π; that is,
if (p, u, q) is a transition in ν(Aπ(n1, n2)) then there is a path in G from p to q labeled u.

This implies that (n1, n2) ∈ Q(G). SinceG is an arbitrary graph database that is canonical
for π, we conclude that (n1, n2) ∈ certain(Q, π). ✷

Proof of Theorem 6.8

We provide the complete proof of the fact that Ls(A1) ∩
⋂

A∈A2,A3,A4
L(A) is not empty if

and only ifM accepts on input ā.

(=⇒) Assume that there is a word w that belongs to Ls(A1) ∩
⋂

A∈A2,A3,A4
L(A). We

show that M accepts in input ā by constructing an accepting run forM, as follows.
Since w belongs to

⋂

A∈A2,A3,A4
L(A) it must be of the form:

(

000(0 | 1)n
)∗

(

001(0 | 1)n001(0 | 1)n(010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]

)∗

111(0 | 1)n.

Let us then divide w into xu1 · · ·upy, where each ui belongs to to the language represented
by the expression

001(0 | 1)n001(0 | 1)n(010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1].

It is clear that there is only one possible to split w in this way, as each ui begins with two
(n+ 3)-subwords with prefix 001 and contains no more (n+ 3)-subwords with this prefix.

Since w belongs to Ls(A1) it must also belong to νj(A1), for each 0 ≤ j ≤ 2n − 1. Let
ρ0, . . . , ρ2n−1 be accepting runs over the word w for ν0(A1), . . . , ν2n−1(A1), respectively.
We are interested in the states assigned by the runs ρ0, . . . , ρ2n−1 only to those positions
of w that immediately precced one of the subwords of w of the form ui, for 1 ≤ i ≤ p. For
simplicity, we denote each such state by ρj(ui); that is, ρj(ui) is the state that is assigned
by ρj to the subword x, if i = 1, and to xu1 · · ·ui−1, if 1 < i ≤ p.

Consider the following sequence d1, . . . , dp of configurations of M: The j-th position of
the tape in a given di contains a symbol a ∈ Σ ∪ {B} if and only if ρj(ui) = qa. Further,
it contains a symbol a ∈ Σ ∪ {B} and the head is in position j in state s if and only if
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ρj(ui) = qa,s. In any other case it contains the symbol B. All that is left to do is to show
that each di is, indeed, a configuration of M (for instance, that the head is not assigned
to two different positions of the tape by di), and that d1, . . . , dp represents an accepting
computation ofM on input ā. This follows from the following claim:

Claim 10. The following hold:

(1 ) The configuration d1 corresponds the initial configuration of M on input ā.
(2 ) For each 1 ≤ i < p, di+1 is a configuration of M that can be obtained from di by

applying the transition rules of M.
(3 ) The configuration dp is a final configuration for M.

Proof. We start by proving (1): The configuration d1 corresponds to the initial config-
uration ofM. That is, we need to prove the following: (i) ρ0(u1) = qa0,s0 , (ii) ρj(u1) = qaj

,
for each 1 ≤ j ≤ k − 1, and (iii) ρj(u1) = qB, for each k ≤ j ≤ 2n − 1.

We start by showing that ρ0(u1) = qa0,s0 . Since w belongs to the language defined by
each NFA in A2, the first 2n (n + 3)-subwords of w must begin with the prefix 000, and,
in particular, the 2n-th (n + 3)-subword of w is precisely 000[2n − 1]. We then know from
the construction of A1 that ρ0(u1) = qa0,s0 holds if and only if ρ0 assigns state q′0 to some
position in w before reading word 000[2n − 1].

Again, since w belongs to
⋂

A∈A2
L(A), we know that the first 2n (n+ 3)-subwords of w

are of the form:

000[1]000[2] · · ·000[2n − 1].

Then notice that from the construction of A1, it is only possible to reach a final state
of ν0(A1) by using a transition labeled with 000[0] (corresponding to the transitions
ν0((qr, 000X̄, q′r)) = (qr, 000ν0(X̄), q′r) = (qr, 000[0], q′r) for each 0 ≤ r ≤ k). But notice
that the only (n + 3)-subword of w the form 000[0] is the very first one. We conclude that
the only way of reaching a final state from q0 is to use the (n+ 3)-subword 000[0], present
at the beginning of w, to go from state q0 into state q′0. We conclude that ρ0(u1) = qa0,s0 .

That ρj(u1) = qaj
, for each 1 ≤ j ≤ k − 1 can be proved using esentially the same

argument, together with the fact that, for each 1 < j ≤ k, νj(A1) can only reach a final
state by means of the transition (qj , 000νj(X̄), q′j).

Finally, notice that w starts with 000[0]000[1] · · ·000[k − 1], and thus each νj(A1), for
j ≥ k, can only advance to state qk when reading the prefix 000[0]000[1] · · ·000[k− 1] of w.
This proves that ρj(u1) = qB for each j ≥ k.

We continue by proving (2): For each 1 ≤ i < p, di+1 is a configuration that can be
obtained from di by applying the transition rules ofM.

For an arbitrary i ∈ [1, p − 1], assume for each 0 ≤ j ≤ 2n−1 that the j-th cell of di

contains the symbol cj ∈ Σ ∪ {B}, and the head of M is in state sℓ, 0 ≤ ℓ ≤ m, reading
position t of the tape (0 ≤ t ≤ 2n − 1). Then by definition of di, ρj(ui) = qcj

, for each

0 ≤ j ≤ 2n−1, except for ρt(ui), that is equal to qct,sℓ
. We need to show that di+1 can differ

from di exclusively in positions t − 1, t and t + 1, and that this change is consistent with
δM.

We begin by showing that the change in the t-th cell is consistent with δM. It is easy to
see from the construction of A1 that the only transitions that advance from a state of form
qct,sℓ

lead to state of form qb, for some b ∈ Σ ∪ {B}. Assume then that ρt(ui+1) = qb, for
some b ∈ Σ ∪ {B}. Recall that the only possible transitions leaving from state qct,sℓ

into qb
in A1 are of the form:

— (qct,sℓ
, 001[ℓ′]001X̄

(

010(0 | 1)n
)∗

100(0 | 1)n
(

010(0 | 1)n
)∗
, qb), or

— (qct,sℓ
, 001[ℓ′]001X̄

(

010(0 | 1)n
)∗

101(0 | 1)n
(

010(0 | 1)n
)∗
, qb),
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for some 0 ≤ ℓ′ ≤ m, depending on whether there are transitions in δM of the form
δ(sℓ, ct) = (b, sℓ′ , L) or δ(sℓ, ct) = (b, sℓ′ , R), respectively.

But since ρt leads, over ui, from state qct,sℓ
into qb, it must be the case that ui belongs

to either one of the languages that label these transitions (notice that it cannot belong to
both since the first one allows for the existence of an (n+3) subword with prefix 100, while
the second one does not). Assume that the word ui belongs to the language:

001[ℓ′]001X̄
(

010(0 | 1)n
)∗

100(0 | 1)n
(

010(0 | 1)n
)∗
,

the other case is completely symmetrical.
Then, a transition of the form:

(qct,sℓ
, 001[ℓ′]001X̄

(

010(0 | 1)n
)∗

100(0 | 1)n
(

010(0 | 1)n
)∗
, qb),

exists in A1. From the construction of A1 it must be the case that δM contains a transition
δ(sℓ, ct) = (b, sℓ′ , L). This shows that the change in the t-th cell of M is consistent with
δM.

Next we prove that the only other cell (that is, besides the t-th cell) that changes from
di to di+1 is the m− 1-th cell. The symbol written in this cell remains unchanged from di

(that is, it continues being ct−1), but we must reflect now the fact that in di+1 the head of
M should be reading t− 1 in state sℓ′ .

We start by proving that the content of each cell other than t and t−1 remains unchanged
from di into di+1. To that extent, notice that since w belongs to the language given by the
intersection of all automata in A4, we can be much more precise about the form of ui.
Indeed, we can assume that ui is of the form:

001[ℓ′]001[t]
(

010(0 | 1)n
)∗

100[t− 1]
(

010(0 | 1)n
)∗
.

Then, it is easy to see that each ρj , for j 6∈ {t, t− 1}, can use the transition

(qcj
, 001[ℓ′]001(0 | 1)n

(

(010 | 100 | 101)(0 | 1)n
)∗

010X̄
(

(010 | 100 | 101)(0 | 1)n
)∗
, qcj

)

to stay in the same state as before (namely, qcj
). Moreover, they cannot use any of the

transitions:

(qcj
, 001[ℓ′]001(0 | 1)n

(

010(0 | 1)n
)∗

(100 | 101)X̄
(

010(0 | 1)n
)∗
, qcj ,sℓ′

),

for 0 ≤ ℓ′ ≤ m, as the only (n + 3)-subword of ui that starts with 100 or 101 is 100[t− 1].
We conclude that each ρj(ui+1) = ρj(ui), for each j 6∈ {t, t− 1}, which entails that di and
di+1 are exactly the same in all positions except for the t-th and the (t− 1)-th positions.

Finally, notice that state qct−1 cannot be reached with ui using the self loop transition:

(qct−1 , 001[ℓ′]001(0 | 1)n
(

(010 | 100 | 101)(0 | 1)n
)∗

010X̄
(

(010 | 100 | 101)(0 | 1)n
)∗
, qct−1),

form some 0 ≤ ℓ′ ≤ m, because there is no (n+ 3) subword of ui of the form 010[t]. Indeed,
if this was the case then ui must contain both 010[t− 1] and 100[t− 1] as (n+ 3)-subwords,
which contradicts the fact that w belongs to the language given by the intersection of
all NFAs in A3. Thus, since ui begins with 001[ℓ′], the only state reachable from qct−1 in
νt−1(A1) is qct−1,sℓ′

, by using the transition

(qct−1 , 001[ℓ′]001(0 | 1)n
(

010(0 | 1)n
)∗

(100 | 101)X̄
(

010(0 | 1)n
)∗
, qct−1,sℓ′

).

We then have that ρt−1(ui+1) = qct−1,sℓ′
. This proves that the (t− 1)-th symbol in di+1 is

equal to ct−1, and that the head is in the (t− 1)-th position in state sℓ′ . Further, the head
is in no other position in di+1.

We finally prove (3): dp is a final configuration for M. This follows easily from the fact
that dp must be a valid configuration of M, no transition is given from state qf , and the
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only states that can reach the final state qf of A are states of the form qa or qa,sf
, for

a ∈ Σ ∪ {B}. This finishes the proof of the claim.

(⇐=) Assume, on the other hand, that there is an accepting computation d1, . . . , dp of
M on input ā. That is, d1, . . . , dp is a sequence of configurations of M such that: (i) d1

is the initial configuration of M on input ā, (2) dp is a final configuration for M, and (3)
for each 1 ≤ i < p, di+1 is a configuration that can be obtained from di by applying the
transition rules ofM. We show that Ls(A1) ∩

⋂

A∈A2,A3,A4
L(A) is nonempty.

Construct a word w = xu1 · · ·upy over Σ as follows:

— x = 000[0] · · ·000[2n − 1].
— Assume that in the final configuration dp the head ofM is in position j (1 ≤ j ≤ 2n−1).

Then y := 111[j].
— The word ui, for 1 ≤ i ≤ p, is constructed as follows. Assume that in di, 1 ≤ i ≤ p, M

is in state sj , 0 ≤ j ≤ m, and with its head pointing to the ℓ-th position of the tape
(0 ≤ ℓ ≤ 2n−1). Further, assume that in di the ℓ′-th cell of the tape contains the symbol
cℓ′ ∈ Σ∪ {B}, for each 0 ≤ ℓ′ ≤ 2n − 1, and that di+1 is obtained from di by applying a
transition of the form δ(sj , a) = (sj′ , b,D), where 0 ≤ j′ ≤ m, a ∈ Σ ∪ {B}, b ∈ Σ, and
D is either L or R. Then ui is:
— 001[ℓ]001[j′]010[0] · · ·010[ℓ− 2]100[l− 1]010[ℓ] · · ·010[2n − 1], if D = L, and
— 001[ℓ]001[j′]010[0] · · ·010[ℓ]101[ℓ+ 1]010[l+ 2] · · · 010[2n − 1], if D = R.

We prove next that w ∈ Ls(A1) ∩
⋂

A∈A2,A3,A4
L(A). We only give the proof for A1, as

the rest is straightforward. We split the proof in several parts.

Claim 11. The following hold:

(1 ) State qa0,s0 is reachable from q0 in ν0(A1) using x.
(2 ) For each 1 ≤ j ≤ k − 1, state qaj

is reachable from q0 in νj(A1) using x.
(3 ) For each k ≤ j ≤ 2n − 1, state qB is reachable from q0 in νj(A1) using x.

Proof. For the first statement we run the automaton ν0(A1) as follows. Start in q0,
then, by reading 000[0] advance to q′0 using transition (q0, 0000n, q′0), then loop in q′0 using
transition (q′0, 000(0 | 1)n, q′0) until the (n+ 3) subword 0001n is reached, in which case we
advance to qa0,s0 using transition (q′0, 0001n, qa0,s0).

For the second statement, let j ∈ [1, k − 1]. Then, run νj(A1) as follows. Advance from
q0 to qj using words 000[0] to 000[j − 1] and transitions

(q0, 000(0 | 1)n, q1)(q1, 000(0 | 1)n, q2) · · · (qj−1, 000(0 | 1)n, qj).

Then move from qj to q′j using word 000[j] and transition (qj , 000[j], q′j) (recall that νj(X̄) =

[j]), loop in qj using transition (q′j , 000(0 | 1)n, q′j) until the (n+3) subword 0001n is reached,

in which case we advance to qaj
using transition (q′j , 0001n, qaj

).
For the last statement, let j ∈ [k, 2n − 1]. Starting from q0 in νj(A1), advance from q0 to

qk (as in the previous case) until the (n + 3) subword 000[j] is reached, then if j 6= 2n − 1
move into state q′k using word 000[j] and transition (qk, 000[j], q′k), looping in q′k until word
word 0001n is seen, in which we case we move into qB. If j = 2n − 1 move directly from qk
into qB using transition (qk, 0001n, qB) and word 0001n.

Claim 12. Assume that in configuration di, 1 ≤ i ≤ p, M is in state sℓ, 0 ≤ ℓ ≤ m,
with the head pointing to the t-th position of the tape (0 ≤ t ≤ 2n − 1), and the j-th cell of
the tape contains symbol cj ∈ Σ ∪ {B}, for each 0 ≤ j ≤ 2n − 1. Further, di+1 is obtained
fromM by applying a transition of the form δ(sℓ, ct) = (sℓ′ , b,D), where 0 ≤ ℓ′ ≤ m, b ∈ Σ
and D is either L or R. Then
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(1 ) State qb is reachable from qct,s in νt(A1) using ui.
(2 ) If D = L, for each j 6∈ {t, t− 1}, state qcj

is reachable from qcj
in νj(A1) using ui.

(3 ) If D = R, for each j 6∈ {t, t + 1}, state qcj
is reachable from qcj

in νj(A1) using ui.
using ui.

(4 ) If D = L, then state qb,s′ is reachable from qct−1 in νt−1(A1) using ui.
(5 ) If D = R, then state qb,s′ is reachable from qct+1 in νt+1(A1) using ui.

Proof. Assume that D = L (the other case is completely symmetric). Then, by defini-
tion of w, ui is of the form:

001[t]001[ℓ′]010[0] · · ·010[t− 2]100[t− 1]010[t] · · ·010[2n − 1].

Then clearly the following hold: (1) The automaton νt(A1) can reach qb from qct,sℓ
using

(qct,sℓ
, 001[ℓ] [t]

(

010(0 | 1)n
)∗

100(0 | 1)n
(

010(0 | 1)n
)∗
, qb).

(2) Each νj(A1), j 6∈ {t, t− 1} can use transition

(qcj
, 001[ℓ′] 001(0 | 1)n ((010 | 100 | 101)(0 | 1)n)∗ 010[j] ((010 | 100 | 101)(0 | 1)n)∗, qcj

)

to stay in state qcj
. (3) Finally, νt−1(A1) uses transition

(qct−1 , 001[ℓ′] 001(0 | 1)n (010(0 | 1)n)∗ (100 | 101)[t− 1] (010(0 | 1)n)∗, qct−1,sℓ′
)

to advance from qct−1 to qb,sℓ′
.

Claim 13. The following hold:

(1 ) State qf is reachable from qa using y, for each a ∈ Σ ∪ {B}.
(2 ) Assume that the machine halts with the head in the t-th position of the tape (0 ≤ t ≤

2n − 1). Then state qf is reachable from qa,sm
in νt(A1) using y, for each ∈ Σ ∪ {B}.

Proof. Easy since A1 contains transitions (qa, 111(0 | 1)n, qf ), for every a ∈ Σ ∪ {B};
and (qa,sm

, 111X̄, qf ) for every a ∈ Σ ∪ {B}.

Using these three claims and the fact that d1, . . . , dp is valid compution for M on input
ā, it is now easy to prove that νj(A1) accepts w, for each 0 ≤ j ≤ 2n − 1. This finishes the
proof of the theorem. ✷

Proof of Theorem 6.8 using Codd wildcard automata

In the proof of Theorem 6.8 we constructed, given a turing machine M and a word ā
in {0, 1}∗, a wildcard automaton A1 and sets A2,A3,A4 of NFAs such that Ls(A1) ∩
⋂

A∈A2,A3,A4
L(A) is not empty if and only if M accepts on input ā.

We now briefly discuss how to modify this reduction so that A1 uses each variable exactly
once. More precisely, we describe how to construct an incomplete automaton B1 and sets
B2,B3,B4,B5 of NFAs such that B1 uses each variable only once in its transitions, and
Ls(B1) ∩

⋂

A∈B2,B3,B4,B5
L(A) is not empty if and only ifM accepts on input ā.

We begin by recalling some definitions and facts from the proof of Theorem 6.8. Recall
that we assumed for convenience that the transitions of A1 could be defined using words,
i.e., they were defined over Q× (Σ∪W)∗×Q. In this proof it is convenient to work instead
with an equivalent automaton A′1 whose transitions are defined over Q× (Σ∪W)×Q, that
is, over symbols of Σ ∪ W . Clearly this automata can be constructed in polynomial time
from A1. Assume that A′1 is of the form A′1 = (Q′,Σ,W , q′0, F

′, δ′), and note also that the
label variables of A′1 are the same than those of A1, and more precisely,W = {X1, . . . , Xn}.
From the construction of the automaton A1 in the previous proof, we can assume that all
of the transitions in δ′ that are labelled with a variable from W are of the following form
(†):
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XnXn−1 qn+1qnq1q1
X2X1

and where no other transition was defined for any of the states {q1, . . . , qn}. Finally, in
this proof we let [q] denote the unary codification of a given state q ∈ Q′.

Next we continue with the description of automata B1 and B2,B3,B4,B5. Let us begin
with the construction of B1.

Consider first the incomplete automaton B′1 defined as

B′1 = (Q′ ∪ {pX
1 , . . . p

X
n+1},Σ,W , q′0, F

′, δB),

where δB is defined as follows:

— δB contains transitions (pX
1 , X1, p

X
2 ), (pX

2 , X2, p
X
3 ), . . . , (pX

n , Xn, p
X
n+1);

— if (q, a, q′) ∈ δ′, for some a /∈ W , then (q, a, q′) ∈ δB; and
— For every set of transitions in δ′ that are labelled with X̄ (that is, every set of n transitions

of the form (†) above, for some set of states {q1, . . . , qn+1} in Q′), add the transitions
(q1, [qn+1], p

X
1 ) and (pX

n+1, [qn+1], qn+1) to δB.

Note that B′1 uses variables X1, . . . , Xn in a single transition in δB, and that this con-
struction can clearly performed in polynomial time.

The intuition behind this construction is the following.
Since B′1 can only use variables only once, all the transitions that used X̄ in A′1 need now

to go through the same set (pX
1 , X1, p

X
2 ), (pX

2 , X2, p
X
3 ), . . . , (pX

n , Xn, p
X
n+1) of transitions.

The idea is to direct all of the transitions in A′1 that used variables X1, . . . , Xn onto the
single path that starts in state pX

1 and ends in pX
n+1. Of course, since NFAs have no memory,

if we do this in the naive way we automatically loose the information of which particular
transition in A′1 we were using. Thus, we need to remember to which of the transitions of
A1 we were using. This is achieved by the extra bits used to code states q ∈ Q as a binary
string [q]. For example, if for states {q1, . . . , qn+1} and {q′1, q

′
n+1} in A′1 one has transitions

of form

Xn

Xn−1X2X1 Xnq′1 q′1 q′n q′n+1

q1
Xn−1 qn+1qnq1

X2X1

Then we shall transform them into transitions over B′1 as follows:

[q′n+1]

q1

q′1

X2X1

[qn+1]

pX
1 pX

2

Xn−1 Xn
pX

n
pX

n+1

q′n+1

qn+1[qn+1]

[q′n+1]

Our only problem now is how to tell the transitions to remember where they were orig-
inally going in A1, i.e., is one starts in q1 then one can only go to qn+1, and if one starts
in q′1 then one can only go to q′n+1. We can achieve this by adding to our set of NFAs an
additional set of automata that ensures that, whenever one goes to this types of transitions,
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then the incoming and outgoing states should be the same. In other words, if c is the num-
ber of states in A′1, we now need to accepts words of form

(

(0|1)n+2c+3
)∗

, where each such

(n+ 2c+ 3)-subword of this expression matches (0|1)3[q](0|1)n[q], for some q ∈ Q. This set
can clearly be constructed in polynomial time using the same techniques as the previous
version of the reduction.

Denote then by B5 the sets of automata such that their intersection accepts such lan-
guage. In addition, let us define B2,B3,B4 as the automaton obtained by modifying the sets
A2,A3,A4 so that they now work under our coding of (n + 2c + 3)-subwords (instead of
(n+ 1)-subwords).

Finally, we need to modify the rest of the transitions of B′1 so that they work under this
modified coding (for example, those corresponding to the initial state). But it is not difficult
to define them using the techniques presented in the proof of Theorem 6.8. We denote the
resulting automata by B1. This finishes our description of automata B2,B3,B4,B5 and B1.

Proof of Claim 7

Let s1, . . . , sp be an arbitrary enumeration of the states in S, f be a mapping from S to
2S, S′ ⊆ S and S ⊆ 2S . In order to determine whether (f, S′,S) is realized in A2 we do
the following. First, construct in constant time a deterministic NFA A3 that is equivalent
to A1 using the standard powerset construction. Thus, the states of A3 are precisely the
subsets S′ of S. Assume that δ′ : 2S ×Σ→ 2S is the transition function of A3. Then, from
A3 we construct, in constant time, two deterministic NFAs A4 (without initial/final states)
and A5 as follows:

— The set of states of A4 is the disjoint union between {S′ | S′ ⊆ S} and {S′∪{saux} | S′ ⊆
S}, where saux is a new auxiliary state. The transition function of A4 is constructed from
the transition function δ′ of A3 using the following rules: (1) If transition from S′1 ⊆ S
into S′2 ⊆ S labeled a exists in A3, add the same transition to A4, and add also a
transition labeled a from S′1∪{saux} into S′2∪{saux}. (2) Delete every transition labeled
a from a state S′1 ⊆ S, such that S′1 ∩ F = ∅, into a state S′2 ⊆ S such that S′2 ∩ F 6= ∅,
and replace it by a transition labeled a from S′1 into S′2 ∪ {saux}.

Intuitively, saux works as a flag for states of A3 that contain some final state in F . Thus,
the transition function of A4 leads from a state {s} to a state f(s)∪ {saux} over a word
w if and only if δ′({s}, w) = f(s), and there is a prefix w′ of w such that δ′({s}, w′)
contains some state in F . On the contrary, the transition function of A4 leads from a
state {s} to a state f(s) over a word w if and only if δ′({s}, w) = f(s), and there is no
prefix w′ of w such that δ′({s}, w′) contains some state in F .

— The set of states of A5 is 22S

. Its initial state is {{}} and its final state is S. There
is a transition labeled a from {S1, . . . , Sℓ} into {S′1, . . . , S

′
ℓ′} if and only {S′1, . . . , S

′
ℓ′} is

precisely the set that contains (1) all states of A3 of the form δ′(Si, a), for 1 ≤ i ≤ ℓ,
and (2) state δ({s0}, a).
Intuitively, the transition function of A5 leads from state {{}} into state S over a word
w if and only if the set S consists of exactly those states S′′ of A3 such that for some
suffix w′ of w it is the case that δ′({s0}, w′) = S′′.

Then we construct, in constant time, p copies A1
4, . . . ,A

p
4 of A4, and set the initial state

of Ai
4 (1 ≤ i ≤ p) to be {si} and its final state to be f(si) ∪ {saux}, if si ∈ S′, and f(si)

otherwise. Afterwards, we construct in polynomial time the NFA A6 := A2 × A1
4 × · · · ×

Ap
4 × A5. Clearly, the tuple (f, S′,S) is realized in A1 if and only if A6 is nonempty. But

the latter can be checked in polynomial time in the size of A6, and, thus, in the size of A2.
Now the claim follows from the fact that there is a constant number of tuples of the form
(f, S′,S). ✷
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