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Abstract. Data words assign to each position a letter from a finite
alphabet and a data value from an infinite set. Introduced as an ab-
straction of paths in XML documents, they recently found applications
in querying graph databases as well. Those are actively studied due to
applications in such diverse areas as social networks, semantic web, and
biological databases. Querying formalisms for graph databases are based
on specifying paths conforming to some regular conditions, which led to
a study of regular expressions for data words.
Previously studied regular expressions for data words were either rather
limited, or had the full expressiveness of register automata, at the ex-
pense of a quite unnatural and unintuitive binding mechanism for data
values. Our goal is to introduce a natural extension of regular expres-
sions with proper bindings for data values, similar to the notion of freeze
quantifiers used in connection with temporal logics over data words, and
to study both language-theoretic properties of the resulting class of lan-
guages of data words, and their applications in querying graph databases.

1 Introduction

Data words, unlike the usual words over finite alphabet, assign to each position
both a letter from a finite alphabet and an element of an infinite set, referred
to as a data value. An example of a data word is

(
a
1

)(
b
2

)(
a
3

)(
b
1

)
. This is a data

word over the finite alphabet {a, b}, with data elements coming from an infinite
domain, in this case, N. Investigations of data words picked up recently due to
their importance in the study of XML documents. Those are naturally modeled
as ordered unranked trees in which every node has both a label and a datum
(these are referred to as data trees). Data words then model paths in data trees,
and as such are essential for investigations of many path-based formalisms for
XML, for instance, its navigational query language XPath. We refer the reader
to [30, 7, 14, 29] for recent surveys.

While the XML data format dominated the data management landscape for
a while, primarily in the 2000s, over the past few years the focus started shifting
towards the graph data model. Graph-structured data appears naturally in a
variety of applications, most notably social networks and the Semantic Web (as



it underlies the RDF format). Its other applications include biology, network
traffic, crime detection, and modeling object-oriented data [13, 20, 23, 25–28].
Such databases are represented as graphs in which nodes are objects and the
edge labels specify relationships between them; see [1, 4] for surveys.

Just as in the case of XML, a crucial building block in queries against graph
data deals with properties of paths in them. The most basic formalism is that
of regular path queries, or RPQs, which select nodes connected by a path de-
scribed by a regular language over the labeling alphabet [11]. There are multiple
extensions with more complex patterns, backward navigation, regular relations
over paths, and non-regular features [3, 5, 6, 8–10]. In real applications we deal
with both navigational information and data, so it is essential that we look at
properties of paths that also describe how data values change along them. Since
such paths (as we shall explain later) are just data words, it becomes necessary
to provide expressive and well-behaved mechanisms for describing languages of
data words.

One of the most commonly used formalisms for describing the notion of
regularity for data words is that of register automata [18]. These extend the
standard NFAs with registers that can store data values; transitions can compare
the currently read data value with values stored in registers.

However, register automata are not convenient for specifying properties –
ideally, we want to use regular expressions to define languages. These have been
looked at in the context of data words (or words over infinite alphabets), and are
based on the idea of using variables for binding data values. An initial attempt
to define such expressions was made in [19], but it was very limited. Another
formalism, called regular expressions with memory, was shown to be equivalent
to register automata [21, 22]. At the first glance, they appear to be a good
formalism: these are expressions like a ↓x (a[x=])∗ saying: read letter a, bind
data value to x, and read the rest of the data word checking that all letters are a
and the data values are the same as x. This will define data words

(
a
d

)
· · ·
(
a
d

)
for

some data value d. This is reminiscent of freeze quantifiers used in connection
with the study of data word languages [12].

The serious problem with these expressions, however, is the binding of vari-
ables. The expression above is fine, but now consider the following expression:
a ↓x (a[x=]a ↓x)∗a[x=]. This expression re-binds variable x inside the scope of
another binding, and then crucially, when this happens, the original binding of
x is lost! Such expressions really mimic the behavior of register automata, which
makes them more procedural than declarative. (The above expression defines
data words of the form

(
a
d1

)(
a
d1

)
· · ·
(
a
dn

)(
a
dn

)
.)

Losing the original binding of a variable when reusing it inside its scope goes
completely against the usual practice of writing logical expressions, programs,
etc., that have bound variables. Nevertheless, this feature was essential for cap-
turing register automata [21]. So natural questions arise:

– Can we define regular expressions for data words that use the acceptable
scope/binding policies for variables? Such expressions will be more declara-
tive than procedural, and more appropriate for being used in queries.



– Do these fall short of the full power of register automata?
– What are their basic properties, and what is the complexity of querying

graph data with such expressions?

Contributions Our main contribution is to define a new formalism of regular
expressions with binding, or REWBs, to study its properties, and to show how
it can be used in the context of graph querying. The binding mechanism of
REWBs follows the standard scoping rules, and is essentially the same as in
LTL extensions with freeze quantifiers [12]. We also look at some subclasses of
REWBs based on the types of conditions one can use: in simple REWBs, each
condition involves at most one variable (all those shown above were such), and
in positive REWBs, negation and inequality cannot be used in conditions.

We show that the class of languages defined by REWBs is strictly contained
in the class of languages defined by register automata. The separating example
is rather intricate, and indeed it appears that for most reasonable languages one
can think of, if they are definable by register automata, they would be definable
by REWBs as well. At the same time, REWBs lower the complexity of some
key computational tasks related to languages of data words. For instance, non-
emptiness is Pspace-complete for register automata [12], but we show that it is
NP-complete for REWBs (and trivializes for simple and positive REWBs).

We consider the containment and universality problems for REWBs. In gen-
eral they are undecidable, even for simple REWBs. However, the problem be-
comes decidable for positive REWBs.

We look at applications of REWBs in querying graph databases. The prob-
lem of query evaluation is essentially checking whether the intersection of two
languages of data words is nonempty. We use this to show that the complexity of
query evaluation is Pspace-complete (note that it is higher than the complexity
of nonemptiness alone); for a fixed REWB, the complexity is tractable.

At the end we also sketch some results concerning a model of data word
automaton that uses variables introduced in [15]. We also comment on how
these can be combined with register automata to obtain a language subsuming
all the previously used ones while still retaining good query evaluation bounds.

Organization We define data words and data graphs in Section 2. In Section 3 we
introduce our notion of regular expression with binding (REWB) and study their
nonemptiness and universality problems in Section 4 and Section 5, respectively.
In Section 6 we study REWBs as a graph database query language and in Section
7 we consider some possible extensions that could be useful in graph querying.
Due to space limitations, complete proofs of all the results are in the appendix.

2 Data words and data graphs

Let Σ be a finite alphabet and D a countable infinite set of data values. A data
word is simply a finite string over the alphabet Σ×D. That is, in each position
a data word carries a letter from Σ and a data value from D. We will denote
data words by

(
a1
d1

)
. . .
(
an
dn

)
, where ai ∈ Σ and di ∈ D.



A data graph (over Σ) is pair G = (V,E), where

– V is a finite set of nodes;
– E ⊆ V ×Σ ×D × V is a set of edges where each edge contains a label from
Σ and a data value from D.

We write V (G) and E(G) to denote the set of nodes and edges of G, respectively.
An edge e from a node u to a node u′ is written in the form (u,

(
a
d

)
, u′), where

a ∈ Σ and d ∈ D. We call a the label of the edge e and d the data value of the
edge e. We write D(G) to denote the set of data values in G.

The following is an example of a data graph, with nodes u1, . . . , u6 and edges
(u1,

(
a
3

)
, u2), (u3,

(
b
1

)
, u2), (u2,

(
a
3

)
, u5), (u6,

(
a
5

)
, u4), (u2,

(
a
1

)
, u4), (u4,

(
a
4

)
, u3) and

(u5,
(
c
7

)
, u6).

u1

u2

u3

u4

u5 u6

(
a
3

)
(
b
1

)(
a
3

)
(
c
7

)

(
a
4

) (
a
5

)
(
a
1

)

A path from a node v to a node v′ in G is a sequence

π = v1

(
a1
d1

)
v2

(
a2
d2

)
v3

(
a3
d3

)
· · · vn

(
an
dn

)
vn+1

such that each (vi,
(
ai
di

)
, vi+1) is an edge for each i ≤ n, and v1 = v and vn+1 = v′.

A path π defines a data word w(π) =
(
a1
d1

)(
a2
d2

)(
a3
d3

)
· · ·
(
an
dn

)
.

Remark Note that we have chosen a model in which labels and data values appear
in edges. Of course other variations are possible, for instance labels appearing
in edges and data values in nodes. All of these easily simulate each other, very
much in the same way as one can use either labeled transitions systems or Kripke
structures as models of temporal or modal logic formulae. In fact both models –
with labels in edges and labels in nodes – have been considered in the context of
semistructured data and, at least from the point of view of their expressiveness,
they are viewed as equivalent. Our choice is dictated by the ease of notation
primarily, as it identifies paths with data words.

3 Regular expressions with binding

We now define regular expressions with binding for data words. As explained
already, expressions with variables for data words were previously defined in [22]



but those were really designed to mimic the transitions of register automata, and
had very procedural, rather than declarative flavor. Here we define them using
proper scoping rules.

Variables will store data values; those will be compared with other variables
using conditions. To define them, assume that, for each k > 0, we have variables
x1, . . . , xk. Then the set of conditions Ck is given by the grammar:

c := > | ⊥ | x=i | x
6=
i | c ∧ c | c ∨ c | ¬c, 1 ≤ i ≤ k.

The satisfaction of a condition is defined with respect to a data value d ∈ D and
a (partial) valuation ν : {x1, . . . , xk} → D of variables as follows:

– d, ν |= > and d, ν 6|= ⊥;
– d, ν |= x=i iff d = ν(xi);

– d, ν |= x 6=i iff d 6= ν(xi);
– the semantics for Boolean connectives ∨,∧, and ¬ is standard.

Next we define regular expressions with binding.

Definition 1. Let Σ be a finite alphabet and {x1, . . . , xk} a finite set of vari-
ables. Regular expressions with binding (REWB) over Σ[x1, . . . , xk] are defined
inductively as follows:

r := ε | a | a[c] | r + r | r · r | r∗ | a ↓xi
(r) (1)

where a ∈ Σ and c is a condition in Ck.

A variable xi is bound if it it occurs in the scope of some ↓xi operator and free
otherwise. More precisely, free variables of an expression are defined inductively:
ε and a have no free variables, in a[c] all variables occurring in c are free, in
r1 + r2 and r1 · r2 the free variables are those of r1 and r2, the free variables of
r∗ are those of r, and the free variables of a ↓xi

(r) are those of r except xi. We
will write r(x1, . . . , xl) if x1, . . . , xl are the free variables in r.

A valuation on the variables x1, . . . , xk is a partial function ν : {x1, . . . , xk} 7→
D. We denote by F(x1, . . . , xk) the set of all valuations on x1, . . . , xk. For a
valuation ν, we write ν[xi ← d] to denote the valuation ν′ obtained by fixing
ν′(xi) = d and ν′(x) = ν(x) for all other x 6= xi. Likewise, we write ν[x̄ ← d̄]
for a simultaneous substitution of values from d̄ = (d1, . . . , dl) for variables
x̄ = (x1, . . . , xl). Also notation ν(x̄) = d̄ means that ν(xi) = di for all i ≤ l.

Semantics Let r(x̄) be an REWB overΣ[x1, . . . , xk]. A valuation ν ∈ F(x1, . . . , xk)
is compatible with r, if ν(x̄) is defined.

A regular expression r(x̄) overΣ[x1, . . . , xk] and a valuation ν ∈ F(x1, . . . , xk)
compatible with r define a language L(r, ν) of data words as follows.

– If r = a and a ∈ Σ, then L(r, ν) = {
(
a
d

)
| d ∈ N}.

– If r = a[c], then L(r, ν) = {
(
a
d

)
| d, ν |= c}.

– If r = r1 + r2, then L(r, ν) = L(r1, ν) ∪ L(r2, ν).



– If r = r1 · r2, then L(r, ν) = L(r1, ν) · L(r2, ν).

– If r = r∗1 , then L(r, ν) = L(r1, ν)∗.

– If r = a ↓xi
(r1), then L(r, ν) =

⋃
d∈D

{(a
d

)}
· L(r1, ν[xi ← d]).

A REWB r defines a language of data words as follows.

L(r) =
⋃

ν compatible with r

L(r, ν).

In particular, if r is without free variables, then L(r) = L(r, ∅). We will call such
REWBs closed.

Register automata and expressions with memory As mentioned earlier, regis-
ter automata extend NFAs with the ability to store and compare data values.
Formally, an automaton with k registers is A = (Q, q0, F, T ), where:

– Q is a finite set of states;

– q0 ∈ Q is the initial state;

– F ⊆ Q is the set of final states;

– T is a finite set of transitions of the form (q, a, c) → (I, q′), where q, q′ are
states, a is a label, I ⊆ {1, . . . , k}, and c is a condition in Ck.

Intuitively the automaton traverses a data word from left to right, starting in
q0, with all registers empty. If it reads

(
a
d

)
in state q with register configuration

τ : {1, . . . , k} → D, it may apply a transition (q, a, c) → (I, q′) if d, τ |= c; it
then enters state q′ and changes contents of registers i, with i ∈ I, to d. For
more details on register automata we refer reader to [18, 22].

Expressions introduced in [21] had a similar syntax but rather different se-
mantics. They were built using a ↓x, concatenation, union and Kleene star. That
is, no binding was introduced with a ↓x; rather it directly matched the operation
of putting a value in a register. In contrast, we use proper bindings of variables;
expression a ↓x appears only in the context a ↓x (r) where it binds x inside the
expression r only. This corresponds to the standard binding policies in logic, or
in programs.

Example 1. We list several examples of languages expressible with our expres-
sions. In all cases below we have a singleton alphabet Σ = {a}.

– The language that consists of data words where the data value in the first
position is different from the others is given by: a ↓x ((a[x 6=])∗).

– The language that consists of data words where the data values in the first
and the last position are the same is given by: a ↓x (a∗ · a[x=]).

– The language that consists of data words where there are two positions with
the same data value: a∗ · a ↓x (a∗ · a[x=]) · a∗.



Note that in REWBs in the above example the conditions are very simple:
they are either x= or x 6=. We will call such expressions simple REWBs.

We shall also consider positive REWBs where negation and inequality are
disallowed in conditions. That is, all the conditions c are constructed using the
following syntax: c := > | x=i | c ∧ c | c ∨ c,, where 1 ≤ i ≤ k.

We finish this section by showing that REWBs are strictly weaker than reg-
ister automata (i.e., proper binding of variables has a cost – albeit small – in
terms of expressiveness).

Theorem 1. The class of languages defined by REWBs is strictly contained in
the class of languages accepted by register automata.

That the class of languages defined by REWBs is contained in the class of
languages defined by register automata can be proved by using a similar inductive
construction as in [21, Proposition 5.3]. The idea behind the construction of the
separating example follows the intuition that defining scope of variables restricts
the power of the language, compared to register automata where once stored,
the value remains in the register until rewritten. As the proof is rather technical
and lengthy, we present it in the appendix.

We note that the separating example is rather intricate, and certainly not a
natural language one would think of. In fact, all natural languages definable with
register automata that we used here as examples – and many more, especially
those suitable for graph querying – are definable by REWBs.

4 The nonemptiness problem

We now look at the standard language-theoretic problem of nonemptiness:

Nonemptiness for REWBs

Input: A REWB r over Σ[x1, . . . , xk].

Task: Decide whether L(r) 6= ∅.

More generally, one can ask if L(r, ν) 6= ∅ for a REWB r and a compatible
valuation ν.

Recall that for register automata, the nonemptiness problem is Pspace-
complete [12] (and the same bound applied to regular expressions with memory
[22]). Introducing proper binding, we lose little expressiveness and yet can lower
the complexity.

Theorem 2. The nonemptiness problem for REWBs is NP-complete.

The proof is in the appendix. Note that for simple and positive REWBs the
problem trivializes.

Proposition 1. – For every simple REWB r over Σ[x1, . . . , xk], and for ev-
ery valuation ν compatible with r, we have L(r, ν) 6= ∅.

– For every positive REWB r over Σ[x1, . . . , xk], there is a valuation ν such
that L(r, ν) 6= ∅.



5 Containment and universality

We now turn our attention to language containment. That is we are dealing with
the following problem:

Containment for REWBs

Input: Two REWBs r1, r2 over Σ[x1, . . . , xk].

Task: Decide whether L(r1) ⊆ L(r2).

When r2 is a fixed expression denoting all data words, this is the universality
problem. We show that both are undecidable.

In fact, we show a stronger statement, that universality of simple REWBs
that use just a single variable is already undecidable.

Universality for one-variable REWBs

Input: An REWB r over Σ[x].

Task: Decide whether L(r) = (Σ ×D)∗.

Theorem 3. Universality for one-variable REWBs is undecidable. In
particular, containment for REWBs is undecidable too.

While restriction to simple REWBs does not make the problem decidable,
the restriction to positive REWBs does: as is often the case, static analysis tasks
become easier without negation.

Theorem 4. The containment problem for positive REWBs is decidable.

Proof. It is rather straightforward to show that any positive REWB can be
converted into a register automaton without inequality [19]. The decidability of
the language containment follows from the fact that the containment problem
for register automata without inequality is decidable [31].

6 REWBs as a query language for data graphs

Standard mechanisms for querying graph databases are based on regular path
queries, or RPQs: those select nodes connected by a path belonging to a given
regular language [4, 11, 9, 10]. For data graphs, we follow the same idea, but now
paths are specified by REWBs, since they contain data. In this section we study
the complexity of this querying formalism.

We first explain how the problem of query evaluation can be cast as a problem
of checking nonemptiness of language intersection.

Note that a data graph G can be viewed as an automaton, generating data
words. That is, given a data graph G = (V,E), and a pair of nodes s, t, we let
L(G, s, t) be {w(π) | π is a path from s to t in G}; this is a set of data words.

Let r(x̄) be a REWB over Σ[x1, . . . , xk]. For ν compatible with r, we let
L(G, s, t, r, ν) be L(G, s, t)∩L(r, ν). Then for a graph G = (V,E), we define the



answer to r over G as the set Q(r,G) of triples (s, t, d̄) ∈ V × V ×Dk, such that
L(G, s, t, r, ν[x̄ ← d̄])) 6= ∅. In other words, there is a path π in G from s to t
such that w(π) ∈ L(r, ν), where ν(x̄) = d̄.

If r is a closed REWB, we do not need a valuation in the above definition.
That is, Q(r,G) is the set of pairs of nodes (s, t) such that L(G, s, t)∩L(r) 6= ∅,
i.e., there is a path π in G from s to t such that w(π) ∈ L(r).

In what follows we are interested in the query evaluation and query contain-
ment problems. For simplicity we will work with closed REWBs only. We start
with query evaluation.

Query Evaluation for REWB

Input: A data graph G, two nodes s, t ∈ V (G) and a REWB r.

Task: Decide whether (s, t) ∈ Q(r,G).

Note that in this problem, both the data graph and the query, given by r,
are inputs; this is referred to as the combined complexity of query evaluation. If
the expression r is fixed, we are talking about data complexity.

Recall that for the usual graphs (without data), the combined complexity of
evaluating RPQs is polynomial, but if conjunctions of RPQs are taken, it goes
up to NP (and could be NP-complete, in fact [11, 10]). When we look at data
graphs and specify paths with register automata, combined complexity jumps
to Pspace-complete [21].

However, we have seen that REWBs are less expressive than register au-
tomata, so perhaps a lower NP bound would apply to them? One way to try to
do it is to find a polynomial bound on the length of a minimal path witnessing
a REWB in a data graph. The next proposition shows that this is impossible,
since in some cases the shortest witnessing path will be exponentially long, even
if the REWB uses only one variable.

Proposition 2. Let Σ = {$, ¢, a, b} be a finite alphabet. There exists a family
of data graphs {Gn(s, t)}n>1 with two distinguished nodes s and t, and a family
of closed REWBs {rn}n>1 such that

– each Gn(s, t) is of size O(n);
– each rn is a closed REWB over Σ[x] of length O(n); and
– every data word in L(Gn, s, t, rn) is of length Ω(2bn/2c).

The proof of this is rather involved and can be found in the appendix.
Next we describe the complexity of the query evaluation problem. It turns

out that it matches that for register automata.

Theorem 5. – The complexity of query evaluation for REWB is Pspace-
complete.

– For each fixed r, the complexity of query evaluation for REWB is in NLogspace.

In other words, the combined complexity of queries based on REWBs is
Pspace-complete, and their data complexity is in NLogspace (and of course it



can be NLogspace-complete even for very simple expressions, e.g., Σ∗, which
just expresses reachability). Note that the combined complexity is acceptable
(it matches, for example, the combined complexity of standard relational query
languages such as relational calculus and algebra), and that data complexity is
the best possible for a language that can express the reachability problem.

We prove Pspace membership by showing how to transform REWBs into
regular expressions when only finitely many data values are considered. Since the
expression in question is of length exponential in the size of the input, standard
on-the-fly construction of product with the input graph (viewed as an NFA)
gives us the desired bound. Details of this construction, as well as the proof of
hardness, can be found in the appendix. The same proof, for a fixed r, gives us
the bound for data complexity.

Note that the upper bound follows from the connection with register au-
tomata. In order to make our presentation self contained we opted to present a
different proof in the appendix.

By examining the proofs of Theorem 5 and Theorem 3 we observe that lower
bounds already hold for both simple and positive REWBs. That is we get the
following.

Corollary 1. The following holds for simple REWBs.

– Combined complexity of simple (or positive) REWB queries is Pspace-
complete.

– Data complexity of simple (or positive) REWB queries is NLogspace-complete.

Another important problem in querying graphs is query containment. In gen-
eral, the query containment problem asks, for two REWBs r1, r2 overΣ[x1, . . . , xk],
whether Q(r1, G) ⊆ Q(r2, G) for every data graph G. For REWB-based queries
we look at, this problem is easily seen to be equivalent to language containment.
Using this fact and the results of Section 5 we obtain the following.

Corollary 2. Query containment is undecidable for REWBs and simple REWBs.
It becomes decidable if we restrict our queries to positive REWBs.

7 Conclusions and Extensions

After conducting an extensive study of their language-theoretic properties and
their ability to query graph data we conclude that REWBs can serve as a highly
expressive language that still retains good query evaluation properties. Although
weaker than register automata and their expression counterpart – regular ex-
pressions with memory, REWBs come with a more natural and declarative syn-
tax and have a lower complexity of some language-theoretic properties such as
nonemptiness. They also complete a picture of expressions that relate to register
automata – a question that often came up in the discussions about the connec-
tion of regular expressions with memory (REMs) and register automata [21, 22],
as they can be seen as a natural restriction of REMs with proper scoping rules.



As we have seen, both in this paper and in previous work on graph querying,
all of the considered formalisms have a combined complexity of query evaluation
that is either a low degree polynomial, or Pspace-complete. A natural question
to ask is if there is a formalism whose combined complexity lies between these
two classes.

An answer to this can be given using a model of automata that extends
NFAs in a similar way that REWBs extend regular expressions – by allowing
usage of variables. These automata, called variable automata, were introduced
in [15] and although originally defined for words over an infinite alphabet, they
can easily be modified to handle data words. Intuitively, they can be viewed
as NFAs with a guess of data values to be assigned to variables, with the run
of the automaton verifying correctness of the guess. An example of a variable
automaton recognizing the language of all words where the last data value is
different from all others is given in the following image.

qastart qb

(
a
x

)
(
a
?

)

Here we observe that variable automata use two sorts of variables – an ordi-
nary bound variable x that is assigned a unique value, and a special free variable
?, whose every occurrence is assigned a value different from the ones assigned to
the bound variables.

It can be show that variable automata, used as a graph querying formalism,
have NP-complete combined complexity of query evaluation and that their de-
terministic subclass [15] has coNP query containment. Due to space limitations
we defer the technical details of these results to the appendix.

The somewhat synthetic nature of variable automata and their usage of the
free variable makes them incomparable with REWBs and register automata, as
the example above demonstrates. A natural question then is whether there is a
model that encompasses both and still retains the same good query evaluation
bounds. It can be shown that by allowing variable automata to use the full power
of registers we get a model that subsumes all of the previously studied models
and whose combined complexity is no worse that the one of register automata. As
the details of the construction are rather lengthy we defer them to the appendix.
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6. P. Barceló, L. Libkin, A. W. Lin, P. Wood. Expressive languages for path queries
over graph-structured data. ACM TODS, 37(4) (2012).

7. M. Bojanczyk. Automata for Data Words and Data Trees. In RTA 2010, pages
1–4.

8. D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Containment of con-
junctive regular path queries with inverse. In KR’00, pages 176–185.

9. D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting of regular
expressions and regular path queries. JCSS, 64(3):443–465 (2002).

10. M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for real life recur-
sion. In PODS’90, pages 404–416.

11. I. Cruz, A. Mendelzon, P. Wood. A graphical query language supporting recursion.
In SIGMOD’87, pages 323–330.
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APPENDIX
Proofs

Proof of Theorem 1

To prove the Theorem we define the language P that will separate register
automata from REWBs.

For a positive integer m ≥ 1, we define a language Pm over the unary alpha-
bet Σ = {a} which consists of data words of the form:(
a
d0

)(
a
d1

)(
a
e0

)(
a
e1

)
· · ·︸︷︷︸
v1

(
a
d1

)(
a
d2

)
· · ·︸︷︷︸
w1

(
a
e1

)(
a
e2

)
· · ·︸︷︷︸
v2

(
a
d2

)(
a
d3

)
· · ·︸︷︷︸
w2

(
a
e2

)(
a
e3

)
· · · · · ·

· · · · · ·
(

a
em−2

)(
a

em−1

)
· · ·︸︷︷︸
vm−1

(
a

dm−1

)(
a
dm

)
· · ·︸︷︷︸
wm−1

(
a

em−1

)(
a
em

)
where m ≥ 1 and for each i = 1, . . . ,m, the data value di does not appear in vi
and the data value ei does not appear in wi.

We then define the language P as

P :=
⋃
m≥1

Pm

Now Theorem 1 follows immediately from Lemmas 1 and 2 below.

Lemma 1. The language P is accepted by a two-register automaton.

Proof. It is rather straightforward to show that the language P is accepted by
two-register automaton. One register is to take care of the di’s and the other the
ei’s.

Lemma 2. The language P is not definable by REWBs.

Next we prove Lemma 2. Note that for simplicity we prove the Lemma for
the case of simple REWBs. It is straightforward to see that the same proof works
in the case of REWBs that use multiple comparisons in one condition.

The proof is rather technical and will require a few auxiliary notions.
Let r be an REWB over Σ[x1, . . . , xk]. A derivation tree t with respect to r is

a tree whose internal nodes are labeled with (r′, ν) where r′ is an subexpression
of r and ν ∈ F [x1, . . . , xk] constructed as follows. The root node is labeled with
(e, ∅). The other nodes are labeled as follows. For a node u labeled with (e′, ν),
its children are labeled as follows.

– If r′ = a, then u has only one child: a leaf node labeled with
(
a
d

)
for some

d ∈ D.



– If r′ = a[x=], then u has only one child: a leaf node labeled with
(
a

ν(x)

)
.

– If r′ = a[x6=], then u has only one child: a leaf node labeled with
(
a
d

)
for some

d 6= ν(x).
– If r′ = r1 + r2, then u has only one child: a leaf node labeled with either

(r1, ν) or (r2, ν).
– If r′ = r1 · r2, then u has only two children: the left child is labeled with

(r1, ν) and the right child is labeled with (r2, ν).
– If r′ = r∗1 , then u has either only one child: a leaf node labeled with ε; or at

least one child labeled with (r1, ν).
– If r′ = a ↓x ·(r1), then u has only two children: the left child is labeled with(

a
d

)
and the right child is labeled with (r1, ν[x ← d]), for some data value

d ∈ D.

A derivation tree t defines a data word w(t) as the word read on the leaf nodes
of t from left to right.

Proposition 3. A data word w ∈ L(r, ∅) if and only if there exists a derivation
tree t such that w = w(t).

Proof. We start with the “only if” direction. Suppose that w ∈ L(r, ∅). By
induction on the length of e, we can construct the derivation tree t such that
w = w(t). It is a rather straightforward induction, where the induction step is
based on the recursive definition of REWB, where r is either a, a[x=], a[x 6=],
r1 + r2, r1 · r2, r∗1 or a ↓x .(r1).

Now we prove the “if” direction. We are going to show that for every node
u in t, if u is labeled with (r′, ν), then wu(t) ∈ L(r′, ν). This can be proved by
induction on the height of the node u, which is defined as follows.

– The height of a leaf node is 0.
– The height of a node u is the maximum between the heights of its children

nodes.

It is a rather straightforward induction, where the base case is the nodes with
zero height and the induction step is carried on nodes of height h with the
induction hypothesis assumed to hold on nodes of height < h.

For a node u in a derivation tree t, the word induced by the node u is the
subword made up of the leaf nodes in the subtree rooted at u. We denote such
subword by wu(t). Suppose w(t) = w1wu(t)w2, the index pair of the node u is
the pair of integers (i, j) such that i = length(w1) + 1 and j = length(w1wu(t)).

A derivation tree t induces a binary relation Rt as follows.

Rt = {(i, j) | (i, j) is the index pair of a node u in t labeled with a ↓ xi · (r′)}.

Note that Rt is a partial function from the set {1, . . . , length(w(t))} to itself,
where if Rt(i) is defined, then i < Rt(i).

For a pair (i, j) ∈ Rt, we say that the variable x is associated with (i, j), if
(i, j) is the index pair of a node u in t labeled with a label of the form a ↓ x · (r′).
Two binary tuples (i, j) and (i′, j′), where i < j and i′ < j′, cross each other if
either i < i′ < j < j′ or i < i′ < j < j′.



Proposition 4. For any derivation tree t, the binary relation Rt induced by it
does not contain any two pairs (i, j) and (i′, j′) that cross each other.

Proof. Suppose (i, j), (i′, j′) ∈ Rt. Then let u and u′ be the nodes whose index
pairs are (i, j) and (i′, j′), respectively. There are two cases.

– The nodes u and u′ are descendants of each other.
Suppose u is a descendant of u′. Then, we have i′ < i < j < j′.

– The nodes u and u′ are not descendants of each other.
Suppose the node u′ is on the right side of u, that is, wu′(t) is on the right
side of wu(t) in w. Then we have i′ < j′ < i < j.

In either case (i, j) and (i′, j′) do not cross each other. This completes the proof
of our claim.

Now we are ready to prove Lemma 2.

Proof of Lemma 2. Suppose to the contrary that there is an REWB r over
Σ[x1, . . . , xk] such that L(r) = P, where Σ = {a}. Consider the following word
w ∈ Pm, where m = k + 2:

w =
(
a
d0

)(
a
d1

)(
a
e0

)(
a
e1

)
· · ·︸︷︷︸
v1

(
a
d1

)(
a
d2

)
· · ·︸︷︷︸
w1

(
a
e1

)(
a
e2

)
· · ·︸︷︷︸
v2

(
a
d2

)(
a
d3

)
· · ·︸︷︷︸
w2

(
a
e2

)(
a
e3

)
· · · · · ·

· · · · · ·
(

a
em−2

)(
a

em−1

)
· · ·︸︷︷︸
vm−1

(
a

dm−1

)(
a
dm

)
· · ·︸︷︷︸
wm−1

(
a

em−1

)(
a
em

)
where

– each of the data values in v1, w1, . . . , vm−1, wm−1 appear exactly once in w;
– d0, d1, . . . , dm, e0, e1, . . . , em are pairwise different.

Let t be the derivation tree of w. Consider the binary relation Rt and the
following sets A and B.

A = {length(w′) | w′ is the prefix
(
a
d0

)(
a
d1

)
· · ·
(
a

dl−1

)(
a
dl

)
of w where 1 ≤ l ≤ m− 1}

B = {length(w′) | w′ is the prefix
(
a
d0

)(
a
d1

)
· · ·
(
a

el−1

)(
a
el

)
of w where 1 ≤ l ≤ m− 1}

Claim. The relation Rt is a function on A ∪ B. That is, for every h ∈ A ∪ B,
there is h′ such that (h, h′) ∈ Rt.

Proof. Suppose there exists h ∈ A ∪ B such that Rt(h) is not defined. Assume
that h ∈ A. Let l be the index 1 ≤ l ≤ m − 1 where h = length(w′) and w′ is
the prefix

(
a
d0

)(
a
d1

)
· · ·
(
a

dl−1

)(
a
dl

)
.

If Rt(h) is not defined, then for any valuation ν found in the nodes in t,
dl /∈ Image(ν). So, the word

w′′ =
(
a
d0

)(
a
d1

)(
a
e0

)(
a
e1

)
· · · · · ·

(
a

dl−1

)(
a
f

)
· · ·
(
a

el−1

)(
a
el

)
· · ·
(
a
dl

)(
a

dl+1

)
· · · · · ·



is also in L(r), where f is a new data value. That is, the word w′′ is obtained
by replacing the first appearance of dl with f . This contradicts the fact that
P = L(r), since w′′ /∈ P. The same reasoning goes for the case if h ∈ B. This
completes the proof of our claim.

Remark 1. Without loss of generality, we can assume that each variable in the
REWB r is introduced only once. Otherwise, we can rename the variable.

Claim. There exist (h1, h2), (h′1, h
′
2) ∈ Rt such that h1 < h2 < h′1 < h′2 and

h1, h
′
1 ∈ A and both (h1, h2), (h′1, h

′
2) have the same associated variable.

Proof. The cardinality |A| = k + 1. So there exists a variable x ∈ {x1, . . . , xk}
and (h1, h2), (h′1, h

′
2) ∈ Rt such that (h1, h2), (h′1, h

′
2) are associated with the

variable x. By Remark 1, no variable is written twice in e, so the nodes u, u′

associated with (h1, h2), (h′1, h
′
2) are not descendants of each other, so we have

h1 < h2 < h′1 < h′2, or h′1 < h′2 < h1 < h2. This completes the proof of our
claim.

¿From the following claim we immediately get that P 6= L(r).

Claim. There exists a word w′′ /∈ P, but w′′ ∈ L(r).

Proof. The word w′′ is constructed from the word w. By Claim 7, there exist
(h1, h2), (h′1, h

′
2) ∈ Rt such that h1 < h2 < h′1 < h′2 and h1, h

′
1 ∈ A and both

h1, h
′
1 have the same associated variable.

By definition of the language P, between h1 and h′1, there exists an index
l ∈ B such that h1 < l < h′1. (Recall that the set A contains the positions of the
data values d′s, and the set B the positions of the data values e′s.)

Let h be the maximum of such indices. The index h is not the index of the
last e, hence Rt(h) exists and Rt(h) < h2, by Proposition 4. Now the data value
in Rt(h) is different from the data value in position h. To get w′′, we change the
data value in the position h with a new data value f , and it will not change the
acceptance of the word w′′ by the REWB r.

However, the word w′′ given by

w′′ =

(
a

d0

)(
a

d1

)(
a

e0

)(
a

e1

)
· · · · · ·

(
a

el−1

)(
a

f

)
· · ·
(
a

el

)(
a

el+1

)
· · · · · ·

is not in P, by definition.
Thus, this completes the proof of our claim.

This completes the proof of Lemma 2.

Proof of Theorem 2

To prove the NP-upper bound we will need the following Proposition.



Proposition 5. For every REWB r over Σ[x1, . . . , xk] and every valuation ν
compatible with r, if L(r, ν) 6= ∅, then there exists a data word w ∈ L(r, ν) of
length O(|r|).

Proof. The proof is by induction on the length of r. The basis is when the length
of r is 1. There are two cases: a[c] and a; and it is trivial that our proposition
holds.

Let r be an REWB and ν a valuation compatible with r. For the induction
hypothesis, we assume that our proposition holds for all REWBs of shorter
length than r. For the induction step, we prove our proposition for r. There are
four cases.

– Case 1: r = r1 + r2.
If L(r, ν) 6= ∅, then by the induction hypothesis, either L(r1, ν) or L(r2, ν)
are not empty. So, either
• there exists w1 ∈ L(r1, ν) such that |w1| = O(|r1|); or
• there exists w2 ∈ L(r2, ν) such that |w2| = O(|r2|).

Thus, by definition, there exists w ∈ L(r, ν) such that |w| = O(|r|).
– Case 2: r = r1 · r2.

If L(r, ν) 6= ∅, then by the definition, L(r1, ν) and L(r2, ν) are not empty.
So by the induction hypothesis
• there exists w1 ∈ L(r1, ν) such that |w1| = O(|r1|); and
• there exists w2 ∈ L(r2, ν) such that |w2| = O(|r2|).

Thus, by definition, w1 · w2 ∈ L(r, ν) and |w1 · w2| = O(|r|).
– Case 3: r = (r1)∗.

This case is trivial since ε ∈ L(r, ν).
– Case 4: r = a ↓xi (r1).

If L(r, ν) 6= ∅, then by the definition, L(r1, ν[xi ← d]) is not empty, for some
data value d. By the induction hypothesis, there exists w1 ∈ L(r1, ν[xi ← d])
such that |w1| = O(|r1|). By definition,

(
a
d

)
w1 ∈ L(r, ν).

This completes the proof of Proposition 5.

The NP membership follows from Proposition 5, where given a REWB r,
we simply guess a data word w ∈ L(r) of length O(|r|). The verification that
w ∈ L(r) can be done deterministically in polynomial time.

Note that the data values here can be made small as well. It is well known
that in a word accepted by a register automaton one can replace the data values
with the ones from the set 1, . . . k + 1, where k is the number of registers [18,
22], while retaining the acceptance condition. Thus we can always assume that
the values appearing in our word are not bigger than the number of variables in
our expression plus one.

We prove NP hardness via a reduction from 3-SAT.
Assume that ϕ = (`1,1 ∨ `1,2 ∨ `1,3) ∧ · · · ∧ (`n,1 ∨ `n,2 ∨ `n,3) is the given

3-CNF formula, where each `i,j is a literal. Let x1, . . . xk denote the variables
occurring in ϕ. We say that the literal `i,j is negative, if it is a negation of a
variable. Otherwise, we call it a positive literal.



We will define a REWB r over Σ[y1, z1, y2, z2, . . . , yk, zk] of length O(n) such
that ϕ is satisfiable if and only if L(r) 6= ∅.

Let r be the following REWB.

r := a ↓y1 (a ↓z1 (a ↓y2 (a ↓z2 (· · · (a ↓yk (a ↓zk (

(r1,1 + r1,2 + r1,3) · · · (rn,1 + rn,2 + rn,3) . . .),

ri,j :=


b[y=k ∧ z=k ] if `i,j = xk

b[y=k ∧ z
6=
k ] + b[z=k ∧ y

6=
k ] if `i,j = ¬xk

Obviously, |r| = O(n). We are going to prove that ϕ is satisfiable if and only if
L(r) 6= ∅.

Assume first that ϕ is satisfiable. Then there is an assignment f : {x1, . . . , xk} 7→
{0, 1} making ϕ true. We define the evaluation ν : {y1, z1, . . . yn, zn} 7→ {0, 1} as
follows.

– If f(xi) = 1, then ν(yi) = ν(zi) = 1.
– If f(xi) = 0, then ν(yi) = 0 and ν(zi) = 1.

We define the following data word.

w :=

(
a

ν(y1)

)(
a

ν(z1)

)
· · ·
(

a

ν(yk)

)(
a

ν(zk)

)(
b

1

)
· · ·
(
b

1

)
︸ ︷︷ ︸

n times

To see that w ∈ L(r), we observe that the first 2k labels are parsed to bind
values y1, z1, . . . yk, zk to corresponding values determined by ν. To parse the
remaining

(
b
1

)
· · ·
(
b
1

)
, we observe that for each i ∈ {1, . . . , n}, `i,1 ∨ `i,2 ∨ `i,3 is

true according to the assignment f if and only if
(
b
1

)
∈ L(ri,1 + ri,2 + ri,3, ν).

Conversely, assume that L(r) 6= ∅. Let

w =

(
a

dy1

)(
a

dz1

)
· · ·
(
a

dyk

)(
a

dzk

)(
b

d1

)
· · ·
(
b

dn

)
∈ L(r).

We define the following assignment f : {x1, . . . , xk} 7→ {0, 1}.

f(xi) =

{
1 if dyi = dzi
0 if dyi 6= dzi

We are going to show that f is a satisfying assignment for ϕ. Now since w ∈ L(r),
we have(

b

d1

)
· · ·
(
b

dn

)
∈ L((r1,1 + r1,2 + r1,3) · · · (rn,1 + rn,2 + rn,3), ν),

where ν(yi) = dyi and ν(zi) = dzi . In particular, we have for every j = 1, . . . , n,(
b

dj

)
∈ L(rj,1 + rj,2 + rj,3, ν).

W.l.o.g, assume that
(
b
dj

)
∈ L(rj,1). There are two cases.



– If rj,1 = b[y=i ∧z=i ], then by definition, `j,1 = xi, hence the clause `j,1∨ `j,2∨
`j,3 is true under the assignment f .

– If rj,1 = b[y=i ∧ z
6=
i ] + b[z=i ∧ y

6=
i ], then by definition, `j,1 = ¬xi, hence the

clause `j,1 ∨ `j,2 ∨ `j,3 is true under the assignment f .

Thus, the assignment f is a satisfying assignment for the formula ϕ. This com-
pletes the proof of our theorem.

Proof of Proposition 1

First we consider the case of simple REWBs.
The proof is by induction on the length of r. The basis is when the length

of r is 1. There are three cases: a[x=i ], a[x 6=i ] and a; and it is trivial that our
proposition holds.

Let r be an REWB and ν a valuation compatible with r. For the induction
hypothesis, we assume that our proposition holds for all REWBs of shorter
length than r. For the induction step, we prove our proposition for r. There are
four cases.

– Case 1: r = r1 + r2.
By the induction hypothesis, both L(r1, ν) and L(r2, ν) are not empty, thus,
by definition, L(r, ν) is also not empty.

– Case 2: r = r1 · r2.
By the induction hypothesis, both L(r1, ν) and L(r2, ν) are not empty, thus,
by definition, L(r, ν) is also not empty.

– Case 3: r = (r1)∗.
This case is trivial, since ε ∈ L(r, ν), thus, L(r, ν) 6= ∅.

– Case 4: r = a ↓xi (r1).
By the induction hypothesis, L(r1, ν[xi ← d]) is not empty for some arbitrary
data value d. Thus, by definition, L(r, ν) is also not empty.

Next we prove the claim for positive REWBs.
Namely what we show is that if for any d ∈ D we define νd(x) := d, with x

a variable in our expression, we will have L(r, νd) 6= ∅.
The proof is by induction on the length of r. The basis is when the length

of r is 1. There are two cases: a[c] and a; and it is trivial that our proposition
holds.

Let r be a positive REWB. For the induction hypothesis, we assume that
our proposition holds for all REWBs of shorter length than r. For the induction
step, we prove our proposition for r. There are four cases.

– Case 1: r = r1 + r2.
By the induction hypothesis, L(r1, νd) and L(r2, νd) are nonempty, thus, by
definition, L(r, νd) is also not empty.

– Case 2: r = r1 · r2.
By the induction hypothesis, both L(r1, νd) and L(r2, νd) are not empty,
thus, by definition, L(r, νd) is also not empty.



– Case 3: r = (r1)∗.
This case is trivial, since ε ∈ L(r, νd), thus, L(r, νd) 6= ∅.

– Case 4: r = a ↓xi
(r1).

By the induction hypothesis, for any d we have L(r1, νd) is not empty. Take
any w ∈ L(r1, νd). Then by the definition we have that

(
a
d

)
·w ∈ L(r, νd), so

we have that L(r, νd) 6= ∅.

This completes the proof of Proposition 1.

Proof of Theorem 3

We are first going to prove that given an REWB r over Σ[x1, . . . , xk], checking
whether L(e) = (Σ × D)∗ is undecidable. This immediately implies that given
r1, r2, checking whether L(r1) ⊆ L(r2) is undecidable, hence, the second item of
our theorem.

The proof is similar to the proof of the universality of register automata
in [24]. The reduction is via Post Correspondence Problem (PCP), which is
defined as follows. An instance of PCP is a set of of pair of strings

I = {(u1, v1), . . . , (un, vn)},

where ui, vi ∈ Σ∗. A solution of the instance I is a sequence l1, . . . , lm such that
ul1 · · ·ulm = vl1 · · · vlm .

Let $,# be two special symbols not in Σ. Now a solution l1, . . . , lm of the
PCP instance I can be encoded into data word w1

(
#
h

)
w2 over Σ ∪{$,#}, where

w1 =
(
$
e1

)(
a1
d1

)
· · ·
(a`1
d`1

)(
$
e2

)(a`1+1

d`1+1

)
· · ·
(a`1+`2
d`1+`2

)(
$
e3

)
· · · · · ·

(
$
em

)(a`1+···+`m−1

d`1+···+`m−1

)
· · ·
(
a`
d`

)
w2 =

(
$
g1

)(
b1
f1

)
· · ·
(b`1
f`1

)(
$
g2

)(b`1+1

f`1+1

)
· · ·
(b`1+`2
f`1+`2

)(
$
g3

)
· · · · · ·

(
$
gm

)(b`1+···+`m−1

f`1+···+`m−1

)
· · ·
(
b`
f`

)
where ` = `1 + `2 + · · ·+ `m, and

(C1) The symbol # appears only once.
(C2) ProjΣ(w1) ∈ ($ · u1 + · · ·+ $ · un)∗.
(C3) ProjΣ(w2) ∈ ($ · v1 + · · ·+ $ · vn)∗.
(C4) The data values ei’s and di’s are pairwise different.
(C5) The data values gi’s and fi’s are pairwise different.
(C6) e1 = g1 and em = gm.
(C7) d1 = f1 and d`m = f`m .
(C8) For all i ∈ {1, . . . ,m− 1}, there exists j ∈ {1, . . . ,m− 1} such that ei = gj

and ei+1 = gj+1.
(C9) For all i ∈ {1, . . . , `m− 1}, there exists j ∈ {1, . . . , `m− 1} such that di = fj

and di+1 = fj+1.
(C10) For all i, j ∈ {1, . . . , `m}, if di = fj , then ai = bj .
(C11) For all i, j ∈ {1, . . . ,m}, if ei = gj , then (a`i−1+1 · · · a`i , b`j−1+1 · · · b`j ) ∈ I.



Now it is straightforward to show that there exists a solution to the PCP in-
stance I if and only if there exists a data word over Σ ∪ {$,#} that satisfies
Conditions (C1)–(C11) above.

We now construct an REWB e over Σ1[x1, . . . , xk] where Σ1 = Σ ∪ {$,#}
that accepts a data word w that does not satisfies at least one of the Condi-
tions (C1) to (C11) above. Such REWB e can be constructed by taking the
union of the negation of each of Conditions (C1) to (C11), and it is a rather
straightforward observation that the negation of each of them can be stated as
an REWB. Hence, we have that the PCP instance I has no solution if and only
if L(r) = (Σ1 ×D)∗. This concludes our proof in the case of multiple variables.

We now prove that we get undecidability even when using expressions with
only one variable. The proof is a slight modification of the proof in multi-variable
case and for completeness we present it here.

Let r be an REWB over Σ[x].
Let $,# be two special symbols not in Σ. Let Γ = Σ∪{$,#}. Now a solution

l1, . . . , lm of the PCP instance I can be encoded into data word w1

(
#
h

)
REV(w2)

over Σ ∪{$,#}, where w1, w2 are defined as above and REV(w2) is the reversal
of w2.

We then construct an REWB r over Γ [x1, . . . , xk] that accepts a data word
w = w1#REV(w2) such that w1#w2 does not satisfies at least one of the Con-
ditions (C1) to (C11) above. The REWB r is obtained by taking the union of
the following.

– The negations of each (C1), (C2), (C3) which can be written in a standard
regular expression without variables.

– The negation of (C4) which can be written as:(
Γ ∗$ ↓x (Γ ∗$[x=]) + Γ ∗

⋃
a∈Σ

(
a ↓x (Γ ∗a[x=])

))
#Γ ∗

The negation of (C5) can be written in a similar manner.
– The negation of (C6) which can be written as:

$ ↓x (Γ ∗ · $[x 6=]) + Γ ∗$ ↓x (# ·Σ∗$[x 6=])Γ ∗.

The negation of (C7) can be written in a similar manner.
– The negation of (C8) which can be written as:

Γ ∗$ ↓x

(
Γ ∗#($[x 6=]Σ)∗ +Σ∗$ ↓x (Γ ∗#Γ ∗ $[x 6=])Σ∗$[x=]

)
.

Note that here we use the fact that (C8) can be paraphrased as follows:
1. For all i ∈ {1, . . . ,m− 1} exists j ∈ {1, . . . ,m− 1} such that ei = gj
2. For all i ∈ {1, . . . ,m − 1} and for all j ∈ {1, . . . ,m − 1} if ei = gj then
ei+1 = gj+1.

(Recall that by (C6) we have that e1 = g1.)
The negation of (C9) can be written in a similar manner.



– The negation of (C10) and the negation of (C11), which can be written in a
straightforward manner using only one variable.

It is straightforward to see that the PCP instance I has no solution if and only
if L(r) = (Σ1 ×D)∗. This concludes our proof of Theorem 3.

Proof of Proposition 2

To make the proof more precise we will introduce some additional notation. For
the sake of readability, we will first prove it for REWB using multiple variables.

We write Path(G, r, ν) for the set of all paths π in G such that w(π) ∈ L(r, ν)
and ν is compatible with r; and Path(G, r, s, t, ν) for the set of all paths π in G
from s to t such that w(π) ∈ L(r, ν) and ν is compatible with r. Similarly, for a
closed expression r, we can write Path(G, r) to denote the set of all paths π in
G such that w(π) ∈ L(r); and Path(G, r, s, t) the set of all paths π in G from s
to t such that w(π) ∈ L(r).

We can now continue with the proof.
For n ≥ 2, the graph G is defined as follows, where 0, d1, . . . , dn, d

′
1, . . . , d

′
n

are pairwise different.

v0 v1 v2 v3 vn−1 vn vn+1

(
$
0

)
(
$
0

)
(
a
d1

)
(
b
d′1

)
(
a
d2

)
(
b
d′2

)
(
a
dn

)
(
b
d′n

)
(¢
0

)
(¢
0

)· · · · · · · · ·

Obviously, G has n+ 2 vertices and 2n+ 2 edges.
We define the following auxiliary REWBs rk,a and rk,b for each k = 0, 1, . . . , n

as follows.

r0,a := a

r0,b := b

rk,a := a ↓xk

(
(rk−1,b)

∗ · $ · $ · a∗ · a[x=k ]
)

rk,b := b ↓xk

(
(rk−1,a)∗ · ¢ · ¢ · b∗ · b[x=k ]

)
The REWB r is defined as $ · ϕ∗n,a · ¢. The two nodes s and t are v0 and vn+1,
respectively. Note that the length of rk,a and rk,b is O(n).

We claim that every path π ∈ Path(G, r, s, t) is of length Ω(2bn/2c). For this,
we need a few auxiliary claims.

Claim. For every k ∈ {0, 1, . . . , n} and for every node vi, vj ∈ {v1, . . . , vn} and
for every valuation ν, the following holds.

1. There exists a path π from vi to vj such that w(π) ∈ L(rk,a, ν) if and only
if j = i+ 1.



2. There exists a path π from vi to vj such that w(π) ∈ L(rk,b), ν if and only
if i = j + 1.

Proof. The proof is by induction on k. The basis k = 0 is trivial, due to the
definition that r0,a = a and r0,b = b, Thus,

– there exists a path π from vi to vj such that w(π) ∈ L(a, ν) if and only if
the path is of consists of one edge labeled with a, which means j = i + 1;
and

– there exists a path π from vi to vj such that w(π) ∈ L(b, ν) if and only if
the path is of consists of one edge labeled with b, which means i = j + 1.

For the induction hypothesis we assume that our claim holds for the case of k.
For the induction step, we prove item (1) for the case of k + 1. Item (2) can

be proved in a similar manner. The “only if” direction is as follows. Suppose
there exists a path π from vi to vj such that w(π) ∈ L(rk+1,a). By definition of
rk+1,a, we have

rk+1,a = a ↓xk+1

(
(rk,b)

∗ · $ · $ · a∗ · a[x=k+1]
)

This means that the variable xk+1 is assigned with the data value di. Since the
last step of the expression ϕk+1,a is a[x=k+1], and all the data values 0, d1, . . . , dn,

d′1, . . . , d
′
n are all different, the last edge in the path π must be vi

(
a
di

)
vi+1, which

means j = i+ 1.
The “if” direction is as follows. We want to show that there exists a path π

from vi to vi+1 such that w(π) ∈ L(rk+1,a, ν). By definition,

rk+1,a = a ↓xk+1

(
(rk,b)

∗ · $ · $ · a∗ · a[x=k+1]
)

We claim that there are the following paths for any valuation ν.

– There is a path π1 from vi to vi+1 such that w(π1) ∈ L(a, ν[xk+1 ← di]).
– There is a path π2 from vi+1 to v1 such that w(π2) ∈ L(r∗k,b, ν[xk+1 ← di]).
– There is a path π3 from v1 to v0 such that w(π3) ∈ L($, ν[xk+1 ← di]).
– There is a path π4 from v0 to v1 such that w(π4) ∈ L($, ν[xk+1 ← di]).
– There is a path π5 from v1 to vi such that w(π5) ∈ L(a∗, ν[xk+1 ← di]).
– There is a path π6 from vi to vi+1 such that w(π6) ∈
L(a[x=k+1], ν[xk+1 ← di]).

The existence of all the paths, except π2, are trivially established. The existence
of the path π2 follows from the induction hypothesis that there exists a path
π(l+1,l) from vl to vl+1 such that w(π(l+1,l)) ∈ L(rk,b, ν[xk+1 ← di]), for every
l = i+1, . . . , 2. Thus, we establish the existence of a path π from vi to vi+1 such
that w(π) ∈ L(ϕk+1,a, ν). This completes the proof of the “if” direction, hence
the proof of our claim.

Now Claim 7 immediately implies the following claim.



Claim. For every k ∈ {0, 1, . . . , n} and for every node vi, vj ∈ {v1, . . . , vn} and
for every valuation ν, the following holds.

1. There exists a path π from vi to vj such that w(π) ∈ L(r∗k,a, ν) if and only
if j ≥ i.

2. There exists a path π from vi to vj such that w(π) ∈ L(r∗k,b, ν) if and only
if i ≥ j.

We are going to need the following inequality. For any integer k ≥ 1, for any
integer m ≥ 1, ∑

1≤i≤m

ik ≥ mk+1

k + 1
. (2)

It can be proved by induction on m. The base case when m = 1 is trivial. Assume
now that the claim holds for m ≥ 1. For m+ 1 we have∑

1≤i≤m+1

ik =
∑

1≤i≤m

ik + (m+ 1)k ≥ mk+1

k + 1
+ (m+ 1)k =

mk+1 + (k + 1)(m+ 1)k

k + 1
≥ (m+ 1)k+1

k + 1

The first inequality follows from the induction hypothesis. The second inequality
is obtained from the binomial expansion of (m + 1)k and from the fact that
(k + 1)

(
k
l

)
≥
(
k+1
l

)
.

Claim. For every k ∈ {0, 1, . . . , n}, for every node vi, vj ∈ {v1, . . . , vn} where
i ≤ j and for every valuation ν, the following holds.

1. Every path π in G from vi to vj such that w(π) ∈ L(r∗a,k, ν) has length

≥ (j−i)k+1

(k+1)! .

2. Every path π in G from vj to vi such that w(π) ∈ L(r∗b,k, ν) has length

≥ (j−i)k+1

(k+1)! .

Proof. The proof is by induction on k. The basis k = 0 is trivial. For the induc-
tion hypothesis, we assume that our claim holds for the case of k.

For the induction step, we prove item (1) for the case of k + 1. Item (2) can
be proved in exactly the same manner. Let π be a path from vi to vj such that
w(π) ∈ L(r∗a,k+1, ν). By Claim 7, the path π consists of the path πl,l+1 from the
vl to vl+1 such that w(πl,l+1) ∈ L(ra,k+1, ν) for every l = i, . . . , j − 1.

Now for every l = i, . . . , j− 1, the path πl,l+1 consists of the following paths.

– A path π1 from vl to vl+1 such that w(π1) ∈ L(a, ν[xk+1 ← dl]).
The length of this path is 1.

– A path π2 from vl+1 to v1 such that w(π2) ∈ L(r∗k,b, ν[xk+1 ← dl]).

By induction hypothesis, the length of this path is ≥ lk+1

(k+1)! .

– A path π3 from v1 to v0 such that w(π3) ∈ L($, ν[xk+1 ← dl]).
The length of this path is 1.



– A path π4 from v0 to v1 such that w(π4) ∈ L($, ν[xk+1 ← dl]).
The length of this path is 1.

– A path π5 from v1 to vl such that w(π5) ∈ L(a∗, ν[xk+1 ← dl]).
The length of this path is l − 1.

– A path π6 from vl to vl+1 such that w(π6) ∈ L(a[x=k+1], ν[xk+1 ← dl]).
The length of this path is 1.

Thus, the length of the path πl,l+1 is ≥ lk+1

(k+1)! + l + 3. Hence,

the length of the path π ≥
∑

i≤l≤j−1

lk+1

(k + 1)!
+ l + 3

≥
∑

i≤l≤j−1

lk+1

(k + 1)!

≥
∑

1≤l≤j−i

lk+1

(k + 1)!

≥ (j − i)k+2

(k + 2)!

The last inequality is obtained by applying Formula (2).

Recall that the REWB r is defined as $ · r∗n,a · ¢ and that the two nodes s
and t are v0 and vn+1, respectively. The following claim establishes that every
path π from s to t such that w(π) ∈ L(e) have exponential length.

Claim. Every path π ∈ Path(G, r, s, t) is of length Ω(2bn/2c).

Proof. It is immediate from Claim 7 that every path π ∈ Path(G, r, s, t) is of
length Ω(n

n

n! ). Since nn

n! ≥ 2bn/2c for n ≥ 2, our claim follows immediately.

This completes our proof of Proposition 2 for the case of multiple variables.

Now we remark that the proof above can be easily modified for the case
of one variable. We simply modify the definition of rk,a’s and rk,b’s for each
k = 0, 1, . . . , n as follows.

r0,a := a

r0,b := b

rk,a := a ↓x
(

(rk−1,b)
∗ · $ · $ · a∗ · a[x=]

)
rk,b := b ↓x

(
(rk−1,a)∗ · ¢ · ¢ · b∗ · b[x=]

)
The REWB r is defined as $ · ϕ∗n,a · ¢. Now all the claims above still hold, and
hence Proposition 2.



Proof of Theorem 5

We first prove Pspace membership. Let r be a REWB over Σ[x1, . . . , xk] and
G be a data graph. We write D(G) to denote the set of data values appearing
in G.

For a valuation ν : {x1, . . . , xk} 7→ D(G), we define a standard regular ex-
pression NG,ν(r) over the alphabet Σ×D(G), called the normalization of r with
respect to G and D, as follows.

– If r = a, then NG,ν(r) =
⋃

d∈D(G)

(
a

d

)
.

– If r = a[c], then NG,ν(r) =
⋃

d∈D(G) and d,ν|=c

(
a

d

)
.

– If r = a ↓x (r), then NG,ν(r) =
⋃

d∈D(G)

(a, d) ·NG,ν[x←d](r).

– If r = r1 · r2, then NG,ν(r) = NG,ν(r1) ·NG,ν(r2).
– If r = r1 + r2, then NG,ν(r) = NG,ν(r1) +NG,ν(r2).
– If r = r∗1 , then NG,ν(r) = (NG,ν(r1))∗.

First we show that NG,ν(r) captures the desired semantics of the REWB r.

Claim. For every valuation ν and for every path π, w(π) ∈ L(r, ν) if and only if
w(π) ∈ L(NG,ν(r)).

Proof. We show this by induction on the length of the REWB r.
The base cases: r = a and r = a[c] are straightforward.
For the induction hypothesis, we assume the claim holds for all REWB r′ of

shorter length than r.
The induction step is as follows. There are a few cases. For the cases where

r = r1 + r2, or r = r1 · r2 and r = r∗1 , the induction step is straightforward. We
consider the case when r = a ↓x (r′).

We will show that our claim holds for r. We start with the “only if” part.
Let π be a path such that

w(π) =
(
a1
d1

)(
a2
d2

)
· · ·
(
an
dn

)
∈ L(r, ν).

By definition of L(r, ν),

w′ =
(
a2
d2

)
· · ·
(
an
dn

)
∈ L(r′, ν[x← d1]).

Then by the induction hypothesis,(
a2
d2

)
· · ·
(
an
dn

)
∈ L(NG,ν[x←d1](r

′)).

By the definition of NG,ν , we have w(π) ∈ L(NG,ν(r)).
Now we prove the “if” part. Assume that w(π) ∈ L(NG,ν(r)), where

w(π) =
(
a1
d1

)(
a2
d2

)
· · ·
(
an
dn

)
.



It follows from the definition of NG,ν(r) that(
a2
d2

)
· · ·
(
ak
dk

)
∈ L(NG,ν[x←d1](r

′)).

By the induction hypothesis,(
a2
d2

)
· · ·
(
ak
dk

)
∈ L(r′, ν[x← d1]).

By the definition of L(r, ν), we obtain that w(π) ∈ L(r, ν). This completes the
proof of our claim.

Observation 1 It is readily checked that |NG,∅(r)| is bounded by O(|D||r|),
which is exponential in the length of the input for combined complexity (any
polynomial for data complexity).

The Pspace upper bound now follows from simple reachability argument
for regular expressions (that is answering RPQs in graph databases). Assume
we are given G, s, t, a tuple d̄ = (d1, . . . , dl) and a REWB r with free variables
x1, . . . , xl. Let ν be a valuation such that ν(x1) = d1, . . . , ν(xl) = dl.

To find a path connecting s and t we check reachability in the product au-
tomaton of NG,ν(r) and G, where we view G and an automaton over Σ × D
with the initial state s and the final state t. ¿From Observation 1 and standard
on-the fly argument for reachability we get the desired upper bound. This also
proves the NLogspace bound in case of data complexity, since the length of
normalization is now polynomial in the size of the input.

Now we prove the Pspace-hardness of our theorem. The reduction is form
QBF.

Let

Ψ = ∀xn∃yn . . . ∀x1∃y1 ϕ
ϕ = (`1,1 ∨ `1,2 ∨ `1,3) ∧ (`2,1 ∨ `2,2 ∨ `2,3) ∧ · · · ∧ (`m,1 ∨ `m,2 ∨ `m,3)

where each `i,j is a literal. We call a literal `i,j a negative literal, if it is a negation
of a variable. Otherwise, we call it a positive literal.

For each i ∈ {0, 1, . . . , n}, we will denote Ψi = ∀xi∃yi . . . ∀x1∃y1ϕ. Hence,
Ψ0 = ϕ and Ψn = Ψ . We are going to construct (in polynomial time) a graph G,
two nodes s, t ∈ V (G) and an REWB r such that

Ψ is true if and only if (s, t) ∈ Q(r,G).

The construction of graph G and the two nodes s, t ∈ V (G): The graph G is
a data graph over Σ = {a, b,#, $}. Its construction is done inductively on i ∈
{0, 1, . . . , n}, where Gi, si, ti are constructed from Ψi. The desired graph G and
the two nodes s, t ∈ V (G) is the following graph.

s sn tn t

# $Gn

· · · · · · · · ·



The construction of Gi, si, ti is constructed inductively on i. The graph G0

and the two vertices s0, t0 are as follows.

s0 v1 v2 v3 v3k−3 v3k−2 v3k−1 t0

(
a
e1,1

) (
a
e1,2

) (
a
e1,3

) (
a

em,1

) (
a

em,2

) (
a

em,3

)
· · · · · · · · ·

where

ei,j =

{
1 if the literal `i,j is positive
0 if the literal `i,j is negative

Now we show the construction of Gi, si, ti . Suppose we already constructed
Gi−1, si−1, ti−1. Then Gi, si, ti is as follows.

si si−1 ti−1 ti

(
b
0

) (
b
1

)
(
b
0

)
(
b
1

)
(
b
0

)(
b
1

)

Gi−1

· · · · · · · · ·

The construction of the REWB r: In the following we are going to show the
construction of the REWB r. We first show how to construct the auxiliary
REWB ri, for each i = 0, 1, . . . ,m, which is based on the formula Ψi. The
desired REWB r is defined as r = # · rn · $.

The REWB ri is defined inductively on k = i. First we set

r0 = clause1 · clause2 · · · clausem,

where each clausei is defined as follows.

clausei = a[x=i,1] · a · a+ a · a[x=i,2] · a+ a · a · a[x=i,3]

and xi,1, xi,2, xi,3 are the variables in the literals `i,1, `i,2, `i,3, respectively.
Now, assuming we have the REWB ri−1, we define ri as follows.

ri =
(
b ↓xi

(
b ↓yi (ri−1) · b[x=i ]

))∗
.

Finally we set r = # · rn · $.
It is straightforward to verify that the construction of both the data graph

G and the REWB r runs in time polynomial in the length of the formula Ψ .

Remark 2. For every i = 0, 1, . . . , n,



– the formula Ψi has the free variables xi+1, yi+1, . . . , xn, yn;
– the REWB ri has the free variables xi+1, yi+1, . . . , xn, yn.

Moreover, for a tuple d̄ ∈ {0, 1}2(n−i), we write Ψi(d̄) to denote the formula Ψi
in which the variables xi+1, yi+1, . . . , xn, yn are assigned with d̄.

To prove that Ψ is true if and only if (s, t) ∈ Q(r,G), we prove the following
claim.

Claim. For each i = 0, 1, . . . , n and for every tuple d̄ ∈ {0, 1}2(n−i), Ψi(d̄) is true
if and only if ((si, ti), d̄) ∈ Q(ri, Gi),

Proof. The proof is by induction on i. The basis is i = 0. We have to prove that
Ψi(d̄) is true if and only if ((s0, t0), d̄) ∈ Q(r0, G0).

Let for each i = 1, . . . ,m and j = 1, 2, 3, we write di,j to denote the 0-1 value
assigned to the variable in the literal `i,j . Let ν denote the valuation where
ν(x1), ν(y1), . . . , ν(xn), ν(yn) are assigned with d̄, respectively. Then, we have

Ψ0(d̄) is true

m
every clause (`i,1 ∨ `i,2 ∨ `i,3) is true under the assignment ν

m
for each i = 1, . . . ,m, there exists j ∈ {1, 2, 3} such that

di,j =

{
1 if `i,j is positive
0 if `i,j is negative

m
for each i = 1, . . . ,m,w(πi) ∈ L(clausei, ν) where

πi = v3i+0

(
a
di,1

)
v3i+1

(
a
di,2

)
v3i+2

(
a
di,3

)
v3i+3

m
((s0, t0), d̄) ∈ Q(r0, G0)

For the induction hypothesis, we assume that Ψi(d̄) is true if and only if
((si, ti), d̄) ∈ Q(ri, Gi). For the induction step, we prove the claim for i + 1,
which follows from the following equality.

Ψi+1(d̄) is true

m
there exist e0, e1 ∈ {0, 1} such that Ψi(d̄0e0) and Ψi(d̄1e1) are true

m
there exist e0, e1 ∈ {0, 1} such that ((si, ti), d̄0e0), ((si, ti), d̄1e1) ∈ Q(ri, Gi).

m
there exists a path π from si+1 to ti+1 such that w(π) ∈ L(ri+1, d̄)

The last inequality follows from the definition of ri+1, where

ri+1 =
(
b ↓xi+1

(
b ↓yi+1

(ri) · b[x=i+1]
))∗



and to go from the vertex si+1 to ti+1, the path π has to go thorough Gi at least
twice: once when the variable xi+1 is assigned with 0 and at least once when
the variable xi+1 is assigned with 1. Thus, we have Ψi+1(d̄) is true if and only if
((si+1, ti+1), d̄) ∈ Q(ri+1, Gi+1).

This completes the proof of our claim.

This concludes the proof of the hardness part, hence, our theorem.

8 Variable automata for querying graphs

In this section we continue our search for query formalisms suitable for data
graphs. As we have seen before, both in the previous sections and in e.g. [21],
query languages tend to have either polynomial or Pspace combined complexity
when evaluated on graph databases. A natural question to ask is if we can find
a reasonable formalism whose combined complexity will be between these two
classes.

Here we do so by using variable automata introduced in [15]. These automata
can be viewed as less procedural than register automata; in fact they can be seen
as NFAs with a guess of values to be assigned to variables, with the run of the
automaton verifying correctness of the guess. Thus, they are more likely to be
usable as a querying mechanism than register automata. Originally they were
defined on words over infinite alphabets [15], but it is straightforward to extend
them to the setting of data words. In what follows we define variable automata
as a query language, give examples of some queries one can post using them
and show that they can be evaluated in NP-time. At the end we look at some
restrictions that will allow decidable query containment.

We begin by defining variable automata formally.

Definition 2. Let Σ be a finite alphabet and D an infinite domain of data val-
ues. We will also assume that we have a countable set V of variables. A variable
finite automaton (or VFA for short) over Σ ×D is a pair A = (Γ,A), where A
is an NFA over the alphabet Σ × Γ , and Γ = C ∪X ∪ {?} such that:

– C ⊆ D is a finite set of data values called constants
– X ⊆ V is a finite set of bound variables, and
– ? is a symbol for the free variable.

Next we define when a VFA accepts a data word w = w1w2 . . . wn ∈ (Σ×D)∗.
For each letter u =

(
a
d

)
in Σ×D, we let λ(u) = a (label projection) and δ(u) = d

(data projection).
Let v = v1v2 . . . vn ∈ (Σ × Γ )∗ be a word accepted by A. We will say that v

is a witnessing pattern for w (or that w is a legal instance of v) if the following
holds:

1. λ(vi) = λ(wi), for i = 1, . . . , n,
2. δ(vi) = δ(wi) whenever δ(vi) ∈ C,



3. if δ(vi), δ(vj) ∈ X, then δ(wi) = δ(wj) iff δ(vi) = δ(vj) and δ(wi), δ(wj) /∈ C,
4. δ(vi) = ? and δ(vj) 6= ?, then δ(wi) 6= δ(wj).

Intuitively the definition states that in a legal instance constants and finite
alphabet part will remain unchanged (conditions 1 and 2), while every bound
variable is assigned with the same unique data value from D − C (condition 3)
and every occurrence of the free variable ? is freely assigned any data value from
D − C that is not assigned to any of the bound variables (condition 4). Note
that the condition 4 is a lot stronger that saying that ? is just a wild card.

We now define the language of A, or simply L(A) for short, as the set of all
data words w for which there exists a witnessing pattern v ∈ L(A). That is a
word is accepted by A if there is a witnessing pattern for it that is accepted by
the underlying NFA A.

Note that it is straightforward to define regular expressions for VFAs that
will simply inherit the associated semantics.

Example 2. Here we give a few examples of languages accepted by VFAs.

1. The language where the first data value is equal to the last and all other
values are different from them (but can be equal among themselves).

qastart qb qc

(
a
x

)
(
a
?

)
(
a
x

)
2. The language where the first data value is different from all other data values.

qastart qb

(
a
x

)
(
a
?

)

3. The language where the last data value differs from all other data values.

qastart qb

(
a
x

)
(
a
?

)

Note that the last example is not expressible by register automata [18].
It was shown in [16] that the language L = {

(
a
d1

)(
a
d1

)(
a
d2

)(
a
d2

)
. . .
(
a
dk

)(
a
dk

)
|

k ≥ 1} is not expressible by VFAs. However, it is straightforward to show that
it is expressible by REWBs. Thus, we obtain:

Proposition 6. VFAs are incomparable in terms of expressive power with reg-
ister automata and REWBs.



Query evaluation We now show how to use VFAs as a query language for
data graphs and study the complexity of the query evaluation problem.

As before, given a data graph G and a VFA A we define the relation A(G) ⊆
V × V that consists of all pairs (s, t) of nodes in G such that there is a path π
between them with the property that w(π) ∈ L(A).

Now we study the following problem.

Query Evaluation for VFAs

Input: A data graph G, two nodes s, t ∈ V (G) and a VFA A.

Task: Decide whether (s, t) ∈ A(G).

Note that this corresponds to the combined complexity of query evaluation;
if the automaton A is fixed, we deal with data complexity.

Theorem 6. – Query Evaluation for VFAs is NP-complete.

– For each fixed A, the problem Query Evaluation for VFAs is solvable
in NLogspace.

As the proof is rather lengthy we present it in the following two sections.

Note that the combined complexity dropped from Pspace to NP, which
is viewed as much more acceptable for query evaluation, at least over large
databases. This is the complexity of relational conjunctive queries, for instance
[2], or conjunctive regular path queries over graphs [10].

Query containment Here we study the query containment problem for vari-
able automata. It is known that the language containment problem for VFAs is
undecidable [15]. Hence, the problem of checking, for two VFAs A1,A2, whether
A1(G) ⊆ A2(G) for every data graph G, is undecidable too.

To get a decidable subcase of the query containment problem, we turn to
restriction based on deterministic variable automata – DVFAs. These are the
VFAs with the property that for every word in their language there is only one
run accepting it. Note that these are not the same as the ones with underlying
deterministic automaton. We can use results from [15] to show

Proposition 7. The containment problem for queries posted by deterministic
VFAs is in coNP.

Although testing if a VFA is deterministic can be done in NLogspace, prob-
lem of determinizing VFAs is undecidable. There is however a nice class of deter-
minizable VFAs – the ones with no free variable mentioned in their automaton.
It is easy to see that this fragments corresponds to regular expressions with
backreferencing – that is grep specifications from the unix systems.



Proof of Theorem 6, data complexity

Here we will use the standard automata product construction used for RPQs
and register automata [21].

Assume now that we have fixed a VFA A. We are given G and s, t ∈ G as
input. We can view G as a VFA that uses only constants and with s as initial
and t as the final state.

Using Theorem 1 in [15] we build the product of our graph, viewed as a VFA
and our fixed VFA A. Theorem 2 in [16] counts the number of states in the

product construction as O(n1 · n2 (d1+d2+c1+c2)!
(c1+c2)!

) and the number of transitions

as O( (d1+d2+c1+c2)!
(c1+c2)!

), where ni is the number of states, di the number of bounded

variables and ci the number of constants from D in each of our automatons.
Note now that since A is fixed n2, d2 and c2 are constants. Let M = n2 +

d2 + c2. Also notice that our graph, viewed as an automaton has d1 = 0 and
n1 and c1 are both bounded by the size of the graph |G|. Thus the size of our

product automaton is O(M · |G| (M+|G|)!
(c1+|G|)! ) ≤ O(M · |G| · (M + |G|)M ), that is

polynomial in the size of G and the same calculation applies to the number of
transitions.

Using standard on-the-fly technique we check the product automaton for
nonemptiness in NLogspace. It is straightforward to see that (s, t) is in the
answer to our query A on G if and only if this product is nonempty. Thus we
get the desired upper bound.

Lower bound follows from the same result for RPQs (without data values).

Proof of Theorem 6, combined complexity

Note that the product automaton in the proof of data complexity is exponential
in size of the input, so the above algorithm would give us a Pspace upper bound
for combined complexity. Next we show that we can do better.

First we prove membership. Assume we are given a graph G, two nodes
s, t ∈ G and a VFA A. We show that if w ∈ L(A) and w is label of a path in G
from s to t, then there is a path in G from s to t, with label w′ and of length at
most |G| · |A|+ 1 such that w′ ∈ L(A), where |A| denotes the number of states
in A.

Assume that w = w1 . . . wl ∈ L(A) is label of a path of length greater
than |G| · |A| + 1 as above. Let v = v1 . . . vl be a witnessing pattern for w
that is accepted by A. Then there is a sequence q0, q1, . . . ql of states of A such
that (qi, vi+1, qi+1) is a transition in A, with ql a final state. There is also an
assignment of variables in v to values in D that witness w (as in the definition
of a witnessing sequence).

By the assumption there is a path n0, . . . , nl of nodes in G with the label w
and such that n0 = s and nl = t.

By the pigeon hole principle there exists i, j ≤ n such that ni = nj and
qi = qj . Observe that n0, . . . , ni, nj+1, . . . , nl is still a path in G from s to t with



the label w′ = w1 . . . wiwj+1 . . . wl and that q0 . . . qiqj+1 . . . ql is an accepting run
on v′ = v1 . . . vivj+1 . . . vl. Also note that v′ is a witnessing pattern for w′, as
witnessed by the same assignment of data values to variables in v′ as it was in
v.

By repeating this cutting procedure we get the desired result. Now for the
NP-algorithm we simply guess a path of length at most |G|·|A|+1–a polynomial
in the size of the input and verify that it belongs to our language in Ptime.

To show NP-hardness we do a reduction from k-CLIQUE. This problem asks,
given a graph G and a number k, to determine if G has a clique of size at least
k.

Suppose we are given an undirected graph G and a number k. We will con-
struct a graph G′ with |G| + 2 nodes , select two nodes s, t ∈ G′ and construct
a VFA A of size O(k2) such that G contains a k-clique if and only if there is a
path from s to t in G′ whose label belongs to L(A).

Take Σ = {a, b} and make G directed by adding edges in both directions for
every edge in G. Assume that every vertex v is given an unique data value dv.
Label the edges (v, v′) ∈ G by

(
a
dv′

)
and add two more nodes s and t. Add an

edge from s to every other node v except s, t and label them with
(
b
dv

)
. Also add

an edge from every node in G to t and label them by
(
b
dt

)
, with dt a new unique

data value. We call the resulting graph G′. (The idea is that every node has a
unique data value – its id.)

We define our VFA as a linear path with transitions:

– (q0,
(
b
x1

)
, q1), (q1,

(
a
x2

)
, q2) (this collect the first two nodes in the clique),

– (qi−1,
(
a
xi

)
, q′i), (q

′
i,
(
a
x1

)
, qi1), (qi1,

(
a
xi

)
, p1i ), (p

1
i ,
(
a
x2

)
, qi2), (qi2,

(
a
xi

)
, p2i ), . . . ,

(pi−2i ,
(

a
xi−1

)
, qii−1), (qii−1,

(
a
xi

)
, qi), for 3 ≤ i ≤ k and

– (qk,
(
b
dt

)
, qk+1) (to get the target node).

Note that here we add a new state for each transition of the automaton.
Next we show that there is a k-clique in G iff there is a data path form s to

t in G′ whose label belongs to L(A).
Suppose first that there is a k-clique in G. Then we simply move from s to

arbitrary point in that clique using the b Labelled edge and traverse the clique
back and forth until we reach the k-th element of the clique. Note that starting
from the third element, whenever we select a different node in the clique we have
to move back and forth between this node and all previously selected ones to
match the transitions (we check that they are interconnected), but since we have
a clique this is possible. Finally, after selecting the last node and verifying that
it is connected to all the others we move to t using a b Labelled edge.

Now suppose that there is a path from s to t in G′ whose label belongs to
L(A). This means that we will be able to select k different nodes n1, . . . , nk in
G with data values stored in x1, . . . , xk. Since all data values in the graph are
different they also act as ids. Now take any two nl, nm with l < m ≤ k. Then we



know that nl and nm are connected in G because after selecting nm we have to
go through the transitions stating (pl−1m ,

(
a
xl

)
, qml ), (qml ,

(
a
xm

)
, plm) and similarly

for when l,m are at the beginning or end of the transition chain. Since no two
data values in G are the same this means that we have an edge between nl and
nm. This completes the proof.

9 Putting the formalisms together

We know that variable automata are incomparable in expressive power with
register automata and regular expressions with binding. In particular we showed
that they can express a property that all data values differ from the last. On the
other hand, bound variables in variable automata behave like a limited version
of registers that are capable of storing a data value only once. As the result,
variable automata are not able to express some simple properties definable by
REWBs.

In this section we define a general model that will encompass both register
and variable automata and study its query evaluation problem over graphs. The
model is essentially a variable automaton that can use the full power of regis-
ters in a same way that an ordinary register automaton would. It will subsume
both models, but we shall see that it does not increase the complexity of query
evaluation beyond that of only register automata.

Definition 3. Let Σ be a finite alphabet, k a natural number and C a finite set
of data values. A k-register automaton with variables (or varRA for short) is a
tuple A = (Q, q0, F, T, {?}, Σ,C), where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q is the set of final states;
– T ⊆ Q×Σ× (Ck∪C∪{?})×2{1,...,k}×Q is a finite set of transitions, which

could be of the following form:

• (q, a, c, I, q′) with c ∈ Ck, or
• (q, a, d, ∅, q′) with d ∈ C, or
• (q, a, ?, ∅, q′).

We now define the notion of acceptance. We refer to transitions (q, a, ?, ∅, q′)
as ?-transitions. A k-register automaton A with variables accepts a data word
w = w1 · · ·wn if there is a sequence q0, . . . qn of states in Q with qn ∈ F , a
sequence t1, . . . tn such that ti is a transition from qi−1 to qi, and a sequence
τ0, . . . τn of register assignments such that for each i ∈ {1, . . . , n}, we have:

– If ti = (qi−1, a, c, I, qi) then: τi, δ(wi) |= c, λ(wi) = a, and τi+1 is obtained
from τi by putting δ(wi) in registers from I;

– If ti = (qi−1, a, d, ∅, qi), then λ(wi) = a, δ(wi) = d and τi+1 = τi;
– If ti = (qi−1, a, ?, ∅, qi) then δ(wi) = δ(wj) iff tj is a ?-transition.



Notice that register automata with variables extend both register and vari-
able automata in a natural way. Moreover, if we restrict the registers by allowing
them to store values only once and restrict conditions to single equality tests
only, we get variable automata. On the other hand if we disallow the usage of
the free variable ? we get register automata (note here that constants can be
easily simulated by additional registers).

Next we study complexity of the query evaluation problem for our automata.
Given such an automaton A, and a data graph G, we write (s, t) ∈ A(G) if there
is a path π from s to t such that w(π) is accepted by A.

Query Evaluation for varRAs

Input: A data graph G, two nodes s, t ∈ V (G) and a varRA A.

Task: Decide whether (s, t) ∈ A(G).

Surprisingly, despite the increased expressive power, this model still retains
the complexity of register automata.

Theorem 7. – Query Evaluation for varRAs is Pspace-complete.

– For each fixed A, the problem is in NLogspace.

To prove this we use a similar construction to the one in [22]. That is for
a finite set of data values D and a k-register automaton with variables A we
produce a variable automaton AD that accepts precisely the same words as A
does when both use only data values from D.

Let A = (Q, q0, F, T, {?}, Σ,C) be a k-register automaton with variables and
D a finite set of data values.

Next we define our VFA AD = (Γ,A) with Γ = {C∪D}∪X ∪{?}. The NFA
A = (Q′, q′0, F

′, T ′) over Σ × Γ is defined as follows:

– Q′ = Q×Dk
⊥, where ⊥ is a new data value not in D and D⊥ = D ∪ {⊥}

– q′0 = (q0,⊥k)

– F ′ = F ×Dk
⊥

– For the transitions:

• If (q, a, c, I, q′) ∈ T we add

((q, τ),

(
a

d

)
, (q′, τ ′))

to T ′ iff τ, d |= c and τ ′ = τ [I ← d]

• If (q, a, d, ∅, q′) ∈ T , with d a constant in C we add

((q, τ),

(
a

d

)
, (q′, τ ′))

to T ′



• If (q, a, ?, ∅, q′) ∈ T we add

((q, τ),

(
a

?

)
, (q′, τ ′))

to T ′

Next we prove that the variable automaton obtained in this construction
indeed accepts the same class of data words over D as the original register
automaton with variables does.

Claim. Let w be a data word whose data values come from D. Then w ∈ L(AD)
if and only if w ∈ L(A).

Proof. Assume first that w =
(
a1
d1

)
· · ·
(
an
dn

)
, where d1, . . . dn are from D is ac-

cepted by AD.
Since AD is a VFA with constants and free variable only (and no bound

variables), this means that there is a word v = v1 · · · vn ∈ (Σ × Γ )∗, accepted
by the underlying NFA A, such that for 1 ≤ i ≤ n it holds:

– λ(vi) = λ(wi) (finite labels match)
– δ(vi) = δ(wi) , for vi = d, a constant of AD (constants match)
– δ(vi) = ? and δ(vj) 6= ? implies that δ(wi) 6= δ(wj) (free variable condition

is true).

This in turn means that there is a sequence (q0, τ0), . . . (qn, τn) of states in
AD and appropriate transitions that accept v as the witnessing pattern of w. But
this same sequence of states and transitions of AD can be easily transformed into
an accepting run of A on w (follows from the construction of AD), thus implying
that w ∈ L(A).

To see that the reverse is true we simply transform the accepting run of A on
w into the matching run of AD. The witnessing pattern for w will be obtained
by converting every data value matched with ? in w by ? itself. All the details
easily follow from the definition of acceptance and the construction of AD.

To complete the proof of Theorem 7 we use the same technique as in the
proof of Theorem 6.

That is we are given our k-varRA A, a data graph G and s, t in G. Let
D = D(G) be the set of all data values appearing inG. Note that |D| ≤ |G|2×|Σ|,
since each edge can have a distinct data value.

We again view our graph as a VFA (with the initial state s and final state
t) and denote it by AG. We next build a product of AG and AD. Testing his
automaton for nonemptiness is the same as answering our query evaluation prob-
lem.

Note that the number n1 of states of AD is |A|× |D|k, the number of bound
variables d1 = 0 and the number of constants c1 at most |D|+ |A|.

For AG we have n2 = |G|, while d2 = 0 and c2 = |D|.



By the construction in [16] we know that the size of the product is O(n1 ·
n2 · (c1+c2+d1+d2)!(c1+c2)!

) = O(n1 · n2).

Using the values above we get that the size is O(|A| × |D|k × |G|).
Note that this is polynomial in |G| if the automaton is fixed and exponential

if it is part of the input (as the number of registers gets into the exponent).
Thus using the standard on-the-fly method for testing nonemptiness we obtain
the desired result.


