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Efficient Approximations of Conjunctive Queries

Pablo Barceló1 Leonid Libkin2 Miguel Romero1

1 Department of Computer Science, Universidad de Chile
2 School of Informatics, University of Edinburgh

Abstract

When finding exact answers to a query over a large database is infeasible, it is natural
to approximate the query by a more efficient one that comes from a class with good bounds
on the complexity of query evaluation. In this paper we study such approximations for con-
junctive queries. These queries are of special importance in databases, and we have a very
good understanding of the classes that admit fast query evaluation, such as acyclic, or bounded
(hyper)treewidth queries.

We define approximations of a given query Q as queries from one of those classes that dis-
agree with Q as little as possible. We concentrate on approximations that are guaranteed to
return correct answers. We prove that for the above classes of tractable conjunctive queries,
approximations always exist, and are at most polynomial in the size of the original query. This
follows from general results we establish that relate closure properties of classes of conjunctive
queries to the existence of approximations. We also show that in many cases, the size of approx-
imations is bounded by the size of the query they approximate. We establish a number of results
showing how combinatorial properties of queries affect properties of their approximations, study
bounds on the number of approximations, as well as the complexity of finding and identifying
approximations.

The technical toolkit of the paper comes from the theory of graph homomorphisms, as we
mainly work with tableaux of queries and characterize approximations via preorders based on
the existence of homomorphisms. In particular, most of our results can be also interpreted as
approximation or complexity results for directed graphs.

1 Introduction

The idea of finding approximate solutions to problems for which computing exact solutions is im-
possible or infeasible is ubiquitous in computer science. It is common in databases too: approximate
query answering techniques help evaluate queries over extremely large databases or queries with
very high inherent complexity, see, e.g., [14, 15, 18, 29, 34]. By analyzing the structure of both the
database and the query one often finds a reasonable approximation of the answer, sometimes with
performance guarantees. Approximate techniques are relevant even for problems whose complex-
ity is viewed as acceptable for regular-size databases, since finding precise answers may become
impossible for large data sets we often deal with these days.

To approximate a query, we must have a good understanding of the complexity of query eval-
uation, in order to find an approximation that is guaranteed to be efficient. For one very common
class of queries – conjunctive, or select-project-join queries – we do have a very good understanding
of their complexity. In fact, we know which classes of conjunctive queries (CQs from now on) are
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easy to evaluate [11, 19, 20, 23, 30, 43]. Given the importance of CQs, and our good understanding
of them, we would like to initiate a study of their approximations. We do it from the static analysis
point of view, i.e., independently of the input database: for a query Q, we want to find another
query Q′ that will be much faster than Q, and whose output would be close to the output of Q
on all databases. Such analysis is essential when a query is repeatedly evaluated on a very large
database (say, in response to frequent updates), and when producing approximations based on both
data and queries may be infeasible.

The complexity of checking whether a tuple ā belongs to the output of a CQ Q on a database
D is of the order |D|O(|Q|), where | · | measures the size of a database or a query [3, 42]. In fact,
the problem is known to be NP-complete, when its input consists of D as well as Q (even for
Boolean CQs). In other words, the combined complexity of CQs is intractable [10]. Of course the
data complexity of CQs is low (more precisely, it belongs to the circuit complexity class AC0), but
having O(|Q|) as the exponent may be prohibitively high for very large datasets. This observation
led to an extensive study of classes of CQs for which the combined complexity is tractable. The
first result of this kind by Yannakakis [43] showed tractability for acyclic CQs. That was later
extended to queries of bounded treewidth [11, 16, 30]; this notion captures tractability for classes of
CQs defined in terms of their graphs [23]. For classes of CQs defined in terms of their hypergraphs,
the corresponding notions guaranteeing tractability are bounded hypertree width [20] and bounded
generalized hypertree width [21], which include acyclicity as a special case. All these conditions can
be tested in polynomial time [8, 17, 20], except for bounded generalized hypertree width [22].

The question we address is whether we can approximate a CQ Q by a CQ Q′ from one of such
classes so that Q and Q′ would disagree as little as possible. Assume, for example, that we manage
to find an approximation of Q by an acyclic CQ Q′, for which checking whether ā ∈ Q′(D) is done
in time O(|D| · |Q′|) [43]. Then we replaced the original problem of complexity |D|O(|Q|) with that
of complexity

O
(
f(|Q|) + |D| · s(|Q|)

)
where s(·) measures the size of the resulting approximation, and f(·) is the complexity of finding
one.

Thus, assuming that the complexity measures f and s are acceptable, the combined complexity
of running Q′ is much better than for Q. Hence, if the quality of the approximation Q is good too,
then we may prefer to run the much faster query Q′ instead of Q, especially in the case of very
large databases. Thus, we need to answer the following questions:

• What are the acceptable bounds for constructing approximations, i.e., the functions f and s
above?

• What types of guarantees do we expect from approximations?

For the first question, if Q′ is of the same size as Q, or even if it polynomially increases the
size, this is completely acceptable, as the exponent O(|Q|) is now replaced by the factor s(|Q|).
For the complexity f of static computation (i.e., transforming Q to Q′), a single exponential is
typically acceptable. Indeed, this is the norm in many static analysis and verification questions
[35, 39], and modest exponential functions (like 2O(|Q|) or 2O(|Q| log |Q|) we shall mainly encounter)
are significantly smaller than |D||Q| if |D| is large. Thus, in terms of their complexity, our desiderata
for approximations are:

1. the approximating query should be at most polynomially larger than Q – and ideally, bounded
by the size of Q; and
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Class of Type of Existence of Size of Time to compute
queries approximation approximation approximation approximation

CQs in terms of Treewidth 1 at most

underlying graph Treewidth k always |Q| single-

CQs in terms of Acyclic exists polynomial exponential

underlying hypergraph Hypertreewidth k in |Q| in |Q|

Figure 1: Summary of results on approximations for conjunctive queries Q

2. the complexity of finding an approximating query should not exceed single-exponential.

As for the guarantees we expect from approximations, in general they can be formulated in two
different ways. By doing it qualitatively we state that an approximation is a query that cannot
be improved in terms of how much it disagrees with the query it approximates. Alternatively,
to do it quantitatively, we define a measure of disagreement between two queries, and look for
approximations whose measure of disagreement with the query they approximate is below a certain
threshold.

Here we develop the qualitative approach to approximating CQs. For a given Q, we compare
queries from some good (tractable) class C by how much they disagree with Q: to do so, we define
an ordering Q1 �Q Q2 saying, intuitively, that Q2 disagrees with Q less often than Q1 does. Then
the best queries with respect to the ordering are our approximations from the class C.

Furthermore, we require the approximations to return correct results. This is standard in
databases; for instance, the standard approximation of query results in the settings of query an-
swering using views and data integration is the notion of maximally contained rewriting [2, 24, 32].

Our goal is to explore approximations of arbitrary CQs by tractable CQs. We shall see that
approximations are guaranteed to exist for all the tractable classes of CQs mentioned earlier, which
makes the notion worth studying.

The structure of approximations depends heavily on combinatorial properties of the
(tableau of the) query Q we approximate. Consider, for instance, a Boolean query
Q1():–E(x, y), E(y, z), E(z, x) over graphs. Its best acyclic approximation is Q′

1():–E(x, x), which
is contained in every Boolean graph query and thus provides us with little information. It turns out
that this will be the case whenever the tableau of the query is not bipartite. Let Pm(x0, . . . , xm)
be the CQ stating that x0, . . . , xm form a path of length m, i.e., E(x0, x1), . . . , E(xm−1, xm). If we
now look at

Q2() :– P3(x, y, z, u), P3(x
′, y′, z′, u′), E(x, z′), E(y, u′)

which has a cycle with variables x, y, z′, u′, then it has a nontrivial acyclic approximation

Q′
2():–P4(x

′, x, y, z, u)

What changed is that the tableau of Q2 is bipartite, which guarantees the existence of nontrivial
approximations.

Going beyond graph vocabularies allows us to find more approximations. Consider again Q1

above, replace binary relation E with a ternary relation R, and introduce fresh variables in the
middle positions, i.e., look at the query Q():–R(x, u, y), R(y, v, z), R(z,w, x). This query does have
several nontrivial acyclic approximations: for instance, Q′():–R(x, u, y), R(y, v, u), R(u,w, x) is one.
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These examples provides a flavor of the results we establish. We now provide a quick summary
of the results of the paper. Recall that there are two ways of getting tractable classes of CQs over
arbitrary vocabularies, depending on whether one formulates conditions in terms of the graph of a
query Q, or its hypergraph. We first study approximations in tractable classes of CQs defined in
terms of its graph, and then in those defined in terms of its hypergraph.

Results for classes of CQs in terms of its graph For a query Q, we are interested in
approximations Q′ from a good class C defined in terms of its underlying graph. The classes we
consider are queries of bounded treewidth k, which capture the notion of tractability of CQs in
the case of graph-based classes [23]. The first two rows in Figure 1 summarize some of our results:
approximations exist for all queries (this will follow from a general existence result that relates
closure properties of classes of graphs to the existence of approximations), they do not increase the
complexity of the query, and can be constructed in single-exponential time (Corollary 4.2 and 4.3),
thus satisfying all our desiderata for approximating queries.

We also show that there are at most exponentially many non-equivalent approximations of
treewidth-k for a CQ Q, and that the exponential number of approximations can be witnessed even
for CQs over graphs (Proposition 4.4).

We then provide further complexity analysis, showing that if the problem of computing a
treewidth-k approximation can be solved in polynomial time then P = NP (Proposition 4.11).
We also study the decision problem of checking whether Q′ is a treewidth-k approximation of
Q. We show that this problem is complete for the class DP (this class, defined formally later, is
“slightly” above both NP and coNP [37]), and that DP-hardness holds even for treewidth-1 and
queries over graphs (Theorem 4.12). DP-completeness results appeared in the database literature
in connection with computing cores of structures [13]; our result is of different nature because it
holds even when both Q and Q′ are minimized (i.e., their tableaux are cores).

Finally, in Section 5, we study the structure of approximations over graphs. We show a close
relationship between (k +1)-colorability of the tableau and the existence of interesting treewidth-k
approximations. For Boolean queries, we prove a finer trichotomy result for acyclic approximations
(recall that for CQs over graphs, acyclicity and treewidth-1 coincide), which also shows that such
approximations are guaranteed to reduce the number of joins.

Results for classes of CQs in terms of its hypergraph For hypergraph-based notions, we
have the original notion of acyclicity from [43] and its more recent extensions to the notions of
bounded hypertree width [20] and bounded generalized hypertree width [21]. It is known that
hypertree width 1 coincides with acyclicity, and that both are contained in generalized hypertree
width 1. We again prove a general existence result for approximations. However, the closure
conditions imposed on classes of hypergraphs are becoming more involved, and it actually requires
an effort to prove that they hold for classes of bounded hypertree width. We show that it is
still possible to find approximations in single exponential time. As for their sizes, they need not
be bounded by |Q|, but they remain polynomial in |Q|, with polynomial depending only on the
vocabulary (Corollary 6.5). Thus, as the summary table in Figure 1 shows, in this case too, our
desiderata for approximations are met.

Regarding techniques required to prove these results, we mainly work with tableaux of queries,
and characterize approximations via preorders based on the existence of homomorphisms. Thus, we
make a heavy use of techniques from the theory of graphs and homomorphisms [25]. In particular
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we heavily use the notion of core: a graph G that cannot be homomorphically mapped into a
proper subgraph. Besides graph theory and combinatorics, techniques from graph homomorphisms
are commonly used in constraint satisfaction [31], but recently they were applied in database theory
as well [9, 13, 33].

Many of our results therefore can be interpreted as results about directed graphs (digraphs) and
their homomorphisms. We say that an acyclic digraph T is an acyclic approximation of a digraph
G if there is a homomorphism from G to T , but whenever this homomorphism goes via another
acyclic digraph T ′ (i.e., we have homomorphisms from G to T ′ and from T ′ to T ) then there is also
a homomorphism from T to T ′. Our results then imply the following, that might be of independent
interest in graph theory:

• Every digraph G has an acyclic approximation.

• The size of the core of an acyclic approximation does not exceed the size of G (hence there
could be at most exponentially many of those).

• There are examples of digraphs witnessing exponential number of nonisomorphic cores of
acyclic approximations.

• Testing whether T is an acyclic approximation of G is DP-complete (even if both T and G
are cores).

• In fact, even checking for the existence of an exact homomorphism from G to T (i.e., such
that there is no homomorphism from G to a proper subgraph of T ) is DP-complete.

Organization Basic notations are given in Section 2. In Section 3 we define the notion of ap-
proximations. Section 4 studies approximations in graph-based classes of queries, concentrating
on bounded treewidth CQs. Section 5 concentrates on queries on graphs and studies important
structural properties of approximations in such scenario. In Section 6 we look at approximations in
hypergraph-based classes of queries, concentrating on acyclic and bounded (generalized) hypertree
width CQs. Conclusions are in Section 7. This paper is a full version based on two conference
papers [6] and [7].

2 Notations

Graphs and digraphs Both graphs and digraphs are defined as pairs G = 〈V,E〉, where V is a
set of nodes (nodes) and E is a set of edges. For graphs, an edge is a set {u, v}, where u, v ∈ V ;
for digraphs, an edge is a pair (u, v), i.e., it has an orientation from u to v. If u = v, we have a
(undirected or directed) loop.

If G = 〈V,E〉 is a directed graph, then Gu is the underlying undirected graph: Gu =
〈V, {{u, v} | (u, v) ∈ E}〉. We denote by Km the complete graph on m nodes: Km =
〈{u1, . . . , um}, {{ui, uj} | i �= j, i, j ≤ m}〉, and by K�

m the complete digraph on m nodes, i.e.,

K�
m = 〈{u1, . . . , um}, {(ui, uj) | i �= j, i, j ≤ m}〉, so that edges go in both directions. Note that

(K�
m )u = Km.

Databases (relational structures) A vocabulary (often called a schema in the database context)
is a set σ of relation names R1, . . . , Rl, each relation Ri having an arity ni. A relational structure,
or a database, of vocabulary σ is D = 〈U,RD

1 , . . . , RD
l 〉, where U is a finite set, and each RD

i is an
ni-ary relation over U , i.e., a subset of Uni . We usually omit the superscript D if it is clear from
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the context. We also assume (as is normal in database theory) that U is the active domain of D,
i.e., the set of all elements that occur in relations RD

i ’s.
Both directed and undirected graphs, for example, are relational structures of the vocabulary

that contains a single binary relation E. For digraphs, it is the edge relation; for graphs, it contains
pairs (u, v) and (v, u) for each edge {u, v}. We usually do not distinguish between a (di)graph and
the structure that it represents it.

We often deal with databases together with a tuple of distinguished elements, i.e., (D, ā), where
ā is a k-tuple of elements of the active domain, for some k > 0. Technically, these are structures of
vocabulary σ expanded with k extra constant symbols, interpreted as ā.

Homomorphisms and cores Given databases D1 = 〈U1, (R
D1

i )i≤l〉 and D2 = 〈U2, (R
D2

i )i≤l〉, a

homomorphism h : D1 → D2 is a map from U1 to U2 so that h(t̄) ∈ RD2

i for every ni-ary tuple

t̄ ∈ RD1

i , for all i ≤ l. The image of h is the structure Im(h) = 〈h(U1), (R
′
i)i≤l〉, where R′

i = {h(t̄) |

t̄ ∈ RD1

i }, for each i ≤ l. If there is a homomorphism h from D1 to D2, we write D1 → D2 or

D1
h

−→ D2. For databases with tuples of distinguished elements we have (D1, ā1) → (D2, ā2) if the
homomorphism h in addition satisfies h(ā1) = ā2.

The database D1 is contained in D2 if RD1

i ⊆ RD2

i for each i ≤ �. It is strictly contained if

RD1

i ⊂ RD2

i for some i ≤ �. A database D is a core if there is no homomorphism D → D′ into a
database D′ that is strictly contained in D. A database D′ that is strictly contained in D is a core of
D if D′ is a core and D → D′. It is well known that all cores of a database are isomorphic [25] and
hence we can speak of the core of a database D, denoted by core(D). We say that two databases
D and D′ are homomorphically equivalent if both D → D′ and D′ → D hold. Homomorphically
equivalent databases have the same core, i.e., core(D) and core(D′) are isomorphic.

We write D �� D′ if D → D′, but D′ → D does not hold. (i.e., when D → D′ but D and D′ are
not homomorphically equivalent).

Conjunctive queries and tableaux A conjunctive query (CQ) over a relational vocabulary σ
is a logical formula in the ∃,∧-fragment of first-order logic, i.e., a formula of the form Q(x̄) =
∃ȳ

∧m
j=1 Rij (x̄ij ), where each Rij is a symbol from σ, and x̄ij a tuple of variables among x̄, ȳ whose

length is the arity of Rij . These are often written in a rule-based notation

Q(x̄) :– Ri1(x̄i1), . . . , Rim(x̄im). (1)

The number of joins in the CQ (1) is m − 1. Given a database D, the answer Q(D) to Q is
{ā | D |= Q(ā)}. If Q is a Boolean query (a sentence), the answer true is, as usual, modeled by the
set containing the empty tuple, and the answer false by the empty set.

A CQ Q is contained in a CQ Q′, written as Q ⊆ Q′, if Q(D) ⊆ Q′(D) for every database D.
As usual, we write Q ⊂ Q′ if Q ⊆ Q′ but it is not the case that Q′ ⊆ Q. The queries Q and Q′ are
equivalent, denoted by Q ≡ Q′, if both Q ⊆ Q′ and Q′ ⊆ Q.

With each CQ Q(x̄) of the form (1) we associate its tableau (TQ, x̄), where TQ is the body of Q
viewed as a σ-database; i.e., it contains tuples x̄ij ’s in relations Rij ’s, for j ≤ m. If Q is a Boolean
CQ, then its tableau is just the σ-structure TQ.

Many key properties of CQs can be stated in terms of homomorphisms of tableaux. For example,
ā ∈ Q(D) iff (TQ, x̄) → (D, ā). For CQs Q(x̄) and Q′(x̄′) with the same number of free variables, Q ⊆
Q′ iff (TQ′ , x̄′) → (TQ, x̄). Hence, the combined complexity of CQ evaluation and the complexity of
CQ containment are in NP (in fact, both are NP-complete [10]).
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a query view a tableau view

Figure 2: C-approximations: an illustration

3 The Notion of Approximation

We now explain the main idea of approximations. Suppose C is a class of conjunctive queries (e.g.,
acyclic, or of bounded (hyper)treewidth). We are given a query Q not in this class, and we want to
approximate it within C. As explained earlier, we are interested in queries that are guaranteed to
return correct results only. Thus, we are looking for a CQ in C that is maximally contained in Q.

Definition 3.1 (Approximations) Given a class C of CQs and a query Q, a query Q′ ∈ C such
that Q′ ⊆ Q is a C-approximation of Q if there is no Q′′ ∈ C such that Q′ ⊂ Q′′ ⊆ Q.

In other words, Q′ is an approximation of Q in C if it is guaranteed to return correct results
and no other query in C approximates Q better than Q′. It can be equivalently proved that Q′ is a
C-approximation of Q if Q′ ⊆ Q and no query Q′′ ∈ C “agrees” with Q more than Q′ does [6]. The
latter means that for every database D and tuple ā of elements of D, if ā ∈ Q(D) but ā �∈ Q′(D)
then also ā �∈ Q′′(D).

Before describing the classes in which we shall try to approximate CQs, we present a useful
view of approximations via orderings on queries and tableaux.

Approximations via ordering Both CQs and their tableaux come naturally equipped with two
preorders: containment of CQs, and the existence of homomorphisms between tableaux. These
preorders are dual to each other [10]: Q ⊆ Q′ ⇔ TQ′ → TQ. These relations are reflexive and
transitive but not antisymmetric (as we may have different equivalent queries), hence they are
preorders. They become partial orders when restricted to cores, or minimized CQs. Indeed, if both
TQ′ → TQ and TQ → TQ′ hold, then TQ′ and TQ are homomorphically equivalent and thus have the
same core (which happens to be the tableau of the minimized version of Q). The preorder → and
its restriction to cores have been actively studied over graphs, digraphs, and relational structures
[25], and we shall heavily use their properties in our proofs.

With this view, we can visualize Definition 3.1 as shown in Fig. 2. The C-approximations of
Q are the “closest” elements of class C that are below Q in the ⊆ ordering. If we switch to the
tableau view, then approximations are the closest elements of C which are above the tableau of Q
in the → ordering.

Good classes of queries We look for approximations within tractable classes of CQs, which
include acyclic queries, as well as queries of bounded treewidth and (generalized) hypertree width
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[11, 16, 20, 21, 23, 30, 43]. We now define the first two (hypertree width is defined in Section 6).
We first need the notion of tree decompositions of hypergraphs of queries. Recall that a hy-

pergraph H = 〈V, E〉 has a set of nodes V and a set of hyperedges E ; each hyperedge is a subset
of V . For a CQ Q, its hypergraph H(Q) has all the variables used in Q as nodes; the hyperedges
are sets of variables that appear in the same atom. For example, for the query with the body
R(x, y, z), R(x, v, v), E(v, z), the hyperedges are {x, y, z}, {x, v}, and {v, z}.

A tree decomposition of a hypergraph H = 〈V, E〉 is a tree T together with a map f : T → 2V

that associates a set of nodes in V with each node of T such that

1. each hyperedge from E is contained in one of the sets f(u) for u ∈ T ; and

2. for every v ∈ V , the set {u ∈ T | v ∈ f(u)} is a connected subset of T .

The width of a decomposition is maxu∈T |f(u)|−1, and the treewidth of H is the minimum width of
its tree decompositions. If H is a tree (or a forest) to start with, then its treewidth is 1. We refer to
the classes of hypergraphs of treewidth at most k as TW(k), and, slightly abusing notation, we use
TW(k) to also denote the classes of CQs (and their tableaux) whose hypergraphs have treewidth
at most k.

A hypergraph is acyclic if there is a tree decomposition (T, f) of it such that every f(u) is
a hyperedge. A CQ is acyclic if its hypergraph is acyclic. We use AC to denote the class of
acyclic hypergraphs (and also acyclic CQs, and their tableaux). For queries over graphs, we have
AC = TW(1). In general the notions of bounded treewidth and acyclicity are incompatible (see,
e.g., [16]).

4 Graph-based Approximations

We start by looking for approximations within classes of CQs defined in terms of its graph, which
include queries of bounded treewidth [11, 16, 23]. This condition fully characterizes tractability
of CQ answering with respect to graph-based classes of queries [23] (under a certain complexity-
theoretic assumption): given a class C, query answering for graph-based C-queries is tractable iff
C ⊆ TW(k) for some k.

For the graph-based notions, one deals with the graph of query Q, denoted by G(Q). The nodes
of G(Q) are variables used in Q. If there is an atom R(x1, . . . , xn) in Q, then G(Q) has undirected
edges {xi, xj} for all 1 ≤ i < j ≤ n. We define classes of queries in terms of classes C of graphs: a
CQ Q is a graph-based C-query if and only if G(Q) is in C.

The standard tractable classes of treewidth-k CQs do arise in this way. Indeed, TW(k) is the
class of queries defined by the class C of graphs that have treewidth at most k (when viewed as a
hypergraph). We call a CQ Q′ a graph-based C-approximation of Q if it is an approximation of Q
in the class of graph-based C-queries.

Several results from this section apply even for queries over graphs and treewidth 1 (e.g, size
and complexity lower bounds). Recall that in such context it is the case that AC = TW(1), and
hence those results apply as well for the hypergraph-based notion of acyclicity.

4.1 Existence of approximations

We prove a very general result on the existence of approximations, which shows good behavior of
those for many classes of queries. For this, we shall need two mild conditions only: The class C
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of graphs is closed under taking subgraphs, and there is at least one graph-based C-query that is
contained in the query Q that is being approximated.

Theorem 4.1 1. Let C be a class of graphs closed under taking subgraphs. Then every CQ
Q that has at least one graph-based C-query contained in it also has a graph-based C-
approximation.

2. Moreover, the number of non-equivalent graph-based C-approximations of Q is at most ex-
ponential in the size of Q, and every graph-based C-approximation of Q is equivalent to one
which has at most as many joins as Q.

Proof: Given a query Q(x̄), let HC(Q) be the set of all graph-based C-queries whose tableaux are
of the form (Im(h), h(x̄)), where h is a homomorphism defined on (TQ, x̄). All such queries are con-
tained in Q. Up to equivalence there are finitely many elements in HC(Q). Moreover, it is nonempty.

Indeed, there is a graph-based C-query Q′(x̄′) with Q′ ⊆ Q and hence (TQ, x̄)
h

−→ (T ′
Q, x̄′) for some

h (thus h(x̄) = x̄′). By the closure under subgraphs we know that (Im(h), x̄′) is a tableau of a
graph-based C-query.

Now consider minimal elements, with respect to the preorder →, in the (tableaux of) set HC(Q).
We claim that they are graph-based C-approximations of Q. Indeed let (Im(h0), x̄

′) be the tableau
of one such element, with x̄′ = h0(x̄). If it is not a graph-based C-approximation, then there exists

a graph-based C-query, whose tableau is (T, x̄′′), such that (TQ, x̄)
g

−→ (T, x̄′′)
g1
−→ (Im(h0), x̄

′)

for some homomorphisms g and g1 such that (Im(h0), x̄
′) �→ (T, x̄′′). Hence we have (TQ, x̄)

g
−→

(Im(g), x̄′′)
g1
−→ (Im(h0), x̄

′), as well as (Im(h0), x̄
′) �→ (Im(g), x̄′′), and (Im(g), x̄′′) is the tableau

of a graph-based C-query since C is closed under taking subgraphs. Hence, (Im(g), x̄′′) is the tableau
of a CQ in HC(Q) and (Im(g), x̄′′) �� (Im(h0), x̄

′), which contradicts the minimality of (Im(h0), x̄
′).

If Q′(x̄′) is a graph-based C-approximation, then (TQ, x̄)
h

−→ (TQ′ , x̄′) and thus

(TQ, x̄)
h

−→ (Im(h), x̄′), with Im(h) being a substructure of TQ′ , and (Im(h), x̄′) the tableau
of a graph-based C-query. It follows that (Im(h), x̄′) and (TQ′ , x̄′) are homomorphically equivalent,
and the CQ with tableau (Im(h), x̄′) is a graph-based C-approximation equivalent to Q′. Hence,
all graph-based C-approximations can be chosen to have a tableau of the form (Im(h), x̄′), which
shows that there are at most exponentially many of them, and that they need not have more joins
than Q. �

Approximations for treewidth-k queries There is a trivial query that belongs to all TW(k)’s
that every other CQ Q contains. Indeed, let Qtrivial be the query on a single variable x that is
obtained by taking the conjunction of all atoms of the form R(x, . . . , x), for R a relation symbol
in the vocabulary. Then, for each query Q(x̄) with m free variables, we have, via a constant
homomorphism: (TQ, x̄) → (TQtrivial

, (x, . . . , x)), and thus Qtrivial is contained in Q.
This, together with Theorem 4.1 and the closure of TW(k) under taking subgraphs, gives us

the following:

Corollary 4.2 Every CQ Q has a TW(k)-approximation, for each k > 0.
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4.2 Size and number of approximations

Let C-APPR(Q) be the set of all graph-based C-approximations of Q. For each k ≥ 1, this set is
nonempty when C is TW(k). It is also infinite, but for a simple reason: each CQ has infinitely
many equivalent CQs.

It is well known though [10] that each CQ Q(x̄) has a unique (up to renaming of variables)
equivalent minimal query: in fact, this is the query whose tableau is core(TQ, x̄). It is obtained
by the standard process of minimization of CQs. We thus denote by C-APPRmin(Q) the set of all
minimizations of graph-based C-approximations of Q.

From Corollary 4.2 and Theorem 4.1 we obtain:

Corollary 4.3 For every CQ Q and k ≥ 1, TW(k)-APPRmin(Q) is a finite nonempty set of queries.
The number of queries in those sets is at most exponential in the size of Q, and each one has at
most as many joins as Q. Moreover, a query from TW(k)-APPRmin(Q) can be constructed in
single-exponential time in |Q|.

Hence, treewidth-k approximations fulfill the criteria from the introduction: they always ex-
ist, they are not more complex than the original query, and they can be found with reasonable
complexity.

Note that the exponential bound in Corollary 4.3 is not due to the minimization procedure
which actually happens to be polynomial for queries of fixed treewidth. In general, there is a
simple algorithm for finding approximations that just checks homomorphisms on TQ and selects
one whose image is minimal with respect to →; it runs in time 2O(n·log n), where n is the number
of variables in Q. We shall discuss the complexity in more detail in Subsection 4.3.

As for the number of elements of C-APPRmin(Q), a simple upper bound is 2n·log n (a better
bound is the nth Bell number [4]). This raises the question whether the exponential number of
approximating queries can be witnessed. We prove that this is the case even for queries over graphs
and treewidth 1.

Proposition 4.4 There is a family (Qn)n>0 of Boolean CQs over graphs such that the number of
variables and joins in Qn’s grows linearly with n, and |TW(1)-APPRmin(Qn)| ≥ 2n for all n > 0.

Proof: We need some definitions and results from [25]. An oriented path P = (u0, ..., un) is a
digraph with nodes u0, . . . , un and n edges such that either (ui, ui+1) or (ui+1, ui) is an edge, for
each 0 ≤ i < n. We shall refer to edges (ui, ui+1) as forward edges and to edges (ui+1, ui) as
backward edges. The node u0 is the initial node of the oriented path and un the terminal one.
Typically, we depict an oriented path P as an edge uv labeled with P , representing that the initial
node of P is u and the terminal node is v. An oriented cycle is an oriented path whose initial and
terminal node coincide.

We define the net length of P to be the number of forward edges minus the number of backward
edges of P . Often we write oriented paths as strings in {0, 1}∗, where 0 represents a forward edge
and 1 represents a backward edge. For example, P = 001 means that P is the oriented path with
two forward edges followed by a backward edge.

A digraph G is balanced if each one of its oriented cycles has net length 0, that is, the number
of forward edges equals the number of backward edges. For a balanced digraph G and a node v in
G, we define the level of v to be

max {net length of P | P is an oriented path in G with terminal node v}.

10
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Figure 3: The digraph D.

It can be proved that the level of v is finite since G is balanced [25]. We define the height of G,
denoted hg(G), to be the maximum level of a node in G.

The following is an important lemma from [25]:

Lemma 4.5 Let G and H be two balanced digraphs of the same height. Then any homomorphism
from G to H preserves the levels of nodes.

We now prove Proposition 4.4. Consider the oriented paths P1 = 001000 and P2 = 000100. It
is straightforward to check that P1 and P2 are incomparable cores (i.e, P1 �→ P2 and P2 �→ P1).
We define the digraph D as follows: Consider the digraph 〈V,E〉 such that V = {a, b, c, d} and
E = {(a, b), (a, d), (c, b), (c, d)}. Add disjoint copies of P1 and P2 and identify the initial node of
the copy of P1 and P2, with b and d, respectively. Then add two new disjoint copies of P1 and P2,
and identify the terminal node of the copy of P1 and P2, with a and c, respectively. The resulting
digraph D is depicted in Figure 3.

We also define Dac and Dbd as the digraphs obtained from D by identifying a with c, and b
with d, respectively. This is shown in Figure 4. Note that both Dac and Dbd are balanced, and
have height 9.

Claim 4.6 Dac and Dbd are incomparable cores.

Proof: We first prove that Dac is a core. Assume otherwise. Then Dac
h

−→ Dac, where h is not
surjective. Since Dac is balanced, Lemma 4.5 tells us that h preserves levels. Figure 4 shows the
different levels. Observe that the only node in Dac with level 4 is e, thus h(e) = e. Note also that
h(x1) is either x1 or x3. But h(x1) = x3 implies P1 → P2, which is impossible. It follows that
h(x1) = x1. Similarly, we have h(x3) = x3. Using the same argument, we have h(b) = b, otherwise
h(b) = d and P1 → P2. Similarly, h(d) = d. Finally, we must have h(x2) = x2 and h(x4) = x4. It
follows that h is surjective, which is a contradiction. Analogously, we have that Dbd is a core.

We prove next that Dac and Dbd are incomparable. Assume otherwise. Suppose first that

Dac
h

−→ Dbd. Observe that h preserves levels, since Dac and Dbd have the same height. It follows
that h(e) is either a or c. If h(e) = a, then h(x3) = y1. It follows that P2 → P1. Similarly, if
h(e) = c, it follows that P1 → P2. In any case, we have a contradiction with the fact that P1 and
P2 are incomparable. The case Dbd �→ Dac is analogous. �
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Figure 4: Dac and Dbd, and some of its levels.

For n ≥ 1, we define Gn to be the digraph constructed as follows: Take the union of n disjoint
copies of the digraph D. For each 1 ≤ i < n, add an edge from the terminal node of the copy of P2

which starts in d in the i-th copy of D to the initial node of the copy of P1 which ends in a in the
(i + 1)-th copy of D. Figure 5 shows a graphical depiction of G3.
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Figure 5: The digraph G3 and some of its levels.

Consider a string s ∈ {V,H}n for n ≥ 1. We define Gs
n to be the digraph obtained from Gn by

identifying in the i-th copy of D, 1 ≤ i ≤ n, the nodes a and c if si = V (that is, turning the i-th
copy of D in Gn into Dac) and b and d if si = H (that is, turning the i-th copy of D in Gn into
Dbd).

Claim 4.7 Let s, s′ ∈ {V,H}n for n ≥ 1 and assume that s �= s′. Then Gs
n and Gs′

n are incompa-
rable cores.

Proof: We first prove that Gs
n is a core for each s ∈ {V,H}n. Assume otherwise. Then Gs

n
h

−→ Gs
n,

where h is not surjective. Observe that Gs
n is balanced and no two nodes in different copies of Dac

or Dbd in Gs
n can share a level, as shown in Figure 5. It follows from Lemma 4.5 that h maps the

i-th copy of Dac or Dbd in Gs
n to itself. Thus, h is surjective in such copy (because from Claim 4.6

both Dac and Dbd are cores), and, therefore, h itself is surjective. This is a contradiction.
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Now, assume that Gs
n

h
−→ Gs′

n . Since Gs
n and Gs′

n have the same height, we have from Lemma
4.5 that h preserves levels. Again, we have that h maps the i-th copy of Dac or Dbd in Gs

n to
the i-th copy of Dac or Dbd in Gs′

n , respectively. Since there exists 1 ≤ j ≤ n such that the
j-th components of s and s′ are different, we have that h maps Dac to Dbd, or vice versa. This
contradicts Claim 4.6 which states that Dac and Dbd are incomparable. �

We state a claim about databases that will be useful in this proof and in other proofs as well:

Claim 4.8 Let D and D′ be two databases over the same schema. If D
h

−→ D′ and h(a) = h(b) for
a and b in D, then D∗ → D′, where D∗ is the database obtained from D by identifying a and b with
a new element c.

Proof: Just map c to h(a) = h(b) and all other elements to themselves. �

For each n ≥ 1 and s ∈ {V,H}n, let Qn be the CQ whose tableau is Gn and Qs
n the CQ whose

tableau is Gs
n. Observe that each Qs

n has treewidth 1.

Claim 4.9 Qs
n is a TW(1)-approximation of Qn, for each n ≥ 1 and s ∈ {V,H}n.

Proof: By contradiction, suppose that there exists a CQ Q′′ ∈ TW(1) such that Gn
h

−→ TQ′′ �� Gs
n.

Consider the i-th copy of D in Gn. If we restrict h to such copy it must be the case that h(a) = h(c)
or h(b) = h(d). Otherwise h(a), h(b), h(c) and h(d) forms an oriented cycle in TQ′′ . With each
i such that 1 ≤ i ≤ n we associate a label ti ∈ {V,H} in the following way: If the restriction
of h to the i-th copy of D in Gn satisfies h(a) = h(c) then ti = V , otherwise ti = H. We then
define a word t in {V,H}n as t1t2...tn. Using Claim 4.8 we have that Gt

n → TQ′′ , and, by com-
position, Gt

n → Gs
n. Using Claim 4.7 we have t = s, and then Gs

n → TQ′′ , which is a contradiction. �

We conclude the proof of the proposition now. Observe that for each n ≥ 1 and
s ∈ {V,H}n it is the case that Qs

n ∈ TW(1)-APPRmin(Qn) (because Gs
n is a core). There-

fore, |TW(1)-APPRmin(Qn)| ≥ 2n, for all n ≥ 1. Furthermore, observe that the number of variables
in Qn is 28n and the number of joins is the number of edges in Gn minus 1, that is, 29n − 2.
Therefore, the family (Qn)n≥0 satisfies the required conditions. �

Reinterpretation of results for graphs Let G be an arbitrary digraph and T an acyclic
digraph. We say that T is an acyclic approximation of G if G → T and there is no acyclic T ′ such
that G → T ′ and T ′

�� T .
Then our results imply the following:

Corollary 4.10 • Every digraph G has an acyclic approximation.

• The number of nonisomorphic cores of acyclic approximations of G is at most 2n·log n, where
n is the number of vertices of G.

• There exists a family Gn, n > 0 of cyclic digraphs so that the number of edges and vertices
in Gns grows linearly with n, and each Gn has at least 2n nonisomorphic cores of acyclic
approximations.
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4.3 Complexity of computation and identification

We have seen that a (minimized) treewidth-k approximation can be found in single-exponential
time. Of course this is expected given NP-hardness of most static analysis tasks related to CQs. It
is also in accordance with the following proposition that states that if treewidth-k approximations
could be computed in polynomial time then P = NP.

Proposition 4.11 Assume there exists a polynomial time algorithm that, given a CQ Q, computes
a TW(k)-approximation of Q, for a fixed k ≥ 1. Then P = NP.

Proof: For each fixed k ≥ 1, the following problem is NP-complete [12]: Given a Boolean CQ Q
over graphs, check if Q is equivalent to a CQ in TW(k). We prove next that, for each fixed k ≥ 1,
this problem can be decided in polynomial time if we assume the existence of a polynomial time
algorithm A that computes TW(k)-approximations for CQs over graphs.

Let A(Q) be the output of A on input a CQ Q. We claim that Q ⊆ A(Q) if and only if Q is
equivalent to a CQ Q′ in TW(k) (i.e. Q ≡ Q′). Assume first that Q ≡ Q′, for some Q′ ∈ TW(k).
Since A(Q) is TW(k)-approximation of Q (and, thus, of Q′), it is the case that A(Q) ⊆ Q′ ⊆ Q,
and, hence, Q′ ≡ A(Q). It follows that Q ⊆ A(Q), which was to be proved. On the other hand, if
Q ⊆ A(Q) then Q ≡ A(Q) (because A(Q) is a TW(k)-approximation of Q, and hence it is contained
in Q). We conclude that Q is equivalent to a CQ Q′ that belongs to TW(k).

Since checking whether Q ⊆ A(Q) corresponds to evaluating the bounded treewidth query
A(Q) in the tableau of Q, which can be done in polynomial time, we conclude that the whole
procedure can be done in polynomial time. This finishes the proof of the proposition. �

To do a more detailed analysis of complexity for approximations, we study the following asso-
ciated decision problem:

Problem: Treewidth-k Approximation

Input: a CQ Q, a treewidth-k CQ Q′.
Question: Is Q′ a treewidth-k approximation of Q?

To solve Treewidth-k Approximation, we need to check two things:

1. Q′ ⊆ Q; and

2. there is no Q′′ ∈ TW(k) such that Q′ ⊂ Q′′ ⊆ Q.

The first subproblem is solvable in NP. Checking whether there is a query Q′′ ∈ TW(k) not
equivalent to Q′ with Q′ ⊆ Q′′ ⊆ Q is solvable in NP too. This means TQ → TQ′′ �� TQ′ and hence
such Q′′, if it exists can always be chosen not to exceed the size of Q. Therefore, one can guess TQ′′

and all homomorphisms in NP. Furthermore, since both TQ′′ and TQ′ have treewidth at most k,
checking that TQ′ �→ TQ′′ can be done in polynomial time. Thus, the second subproblem is solvable
in coNP.

Hence, to solve Treewidth-k Approximation, we need to solve an NP subproblem and a
coNP subproblem. This means that the problem is in the complexity class DP: this is the class
of problems (languages) which are intersections of an NP language and a coNP language [37]. It
turns out that the problem is also hard for the class, even when k = 1.
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Theorem 4.12 The problem Treewidth-1 Approximation is DP-complete. It remains DP-
complete even if Q and Q′ are CQs over graphs, Q′ is fixed and both Q and Q′ are Boolean and
minimized (i.e., their tableaux are cores).

DP-completeness appeared in database literature in connections with cores: checking whether
G′ = core(G), for two graphs G and G′, is known to be DP-complete [13]. The source of DP-
completeness in our case is completely different, as hardness applies even if the tableaux of queries
are cores to start with, and the proof, which is quite involved, uses techniques different from those
in [13]. We only sketch the main ideas behind the proof here, since the complete proof is technical
and lengthy. The complete proof can be found in the appendix.

Proof (Sketch) of Theorem 4.12: The class TW(1) over the vocabulary of graphs contains all
acyclic directed graphs, i.e. the directed graphs whose underlying undirected graph contains no
cycles. It thus suffices to show that the following problem is DP-complete:

Problem: Graph Acyclic Approximation

Input: a digraph G, an acyclic digraph T .
Question: Is G → T and there is no acyclic digraph A such that G → A �� T ?

In order to prove this, we consider the Exact Four Colorability problem: Given a graph
G, decide if G is 4-colorable but not 3-colorable. It is known that this problem is DP-complete [40].
We provide a polynomial time reduction from Exact Four Colorability to Graph Acyclic

Approximation.
Using techniques from [26], we construct two digraphs T and T̃ . As Figure 6 shows, T consists

of digraphs Z1, Z2, Z3 and Z4, whose only vertex in common is v. Each of the distinguished vertices
t1, t2, t3 and t4 represents a possible color. The digraph T̃ has two distinguished vertices p and q.

The key properties of T and T̃ are the following:

1. If h : T̃ → T is an homomorphism, then h(p), h(q) ∈ {t1, t2, t3, t4} and h(p) �= h(q).

2. For any pair (t, t′) of elements of {t1, t2, t3, t4} with t �= t′, there exists an homomorphism
h : T̃ → T such that h(p) = t and h(q) = t′.

3. If h : T̃ → T is an homomorphism and h(p) = ti or h(q) = ti for 1 ≤ i ≤ 4, then the subgraph
Zi is contained in the homomorphic image of h.
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4. For any pair (t, t′) of elements of {t1, t2, t3} with t �= t′, there exists an homomorphism
h : T̃ → T such that h(p) = t, h(q) = t′ and the homomorphic image of h is contained in
Z1 ∪ Z2 ∪ Z3.

Now, given a graph G we define ϕ(G) to be the digraph obtained from G by replacing each
edge {a, b} with a fresh copy of T̃ , where we identify p with a and q with b. This is the first step
of our construction. Using properties (1)-(4) it is straightforward to prove the following:

Claim 4.13 G is 4-colorable but not 3-colorable if and only if ϕ(G) → T and there is no homo-
morphism from ϕ(G) to a proper subgraph of T .

Indeed, if G is 4-colorable, we can consider the set {t1, t2, t3, t4} to be the colors. Using property
(2) it follows that ϕ(G) → T . If there is an homomorphism h from ϕ(G) to a proper subgraph of
T , then there exists t∗ ∈ {t1, t2, t3, t4} such that h(a) �= t∗ for all a ∈ G (notice that each vertex of
G can be viewed as a vertex of ϕ(G)); otherwise, by property (3), h would be surjective. Therefore,
since the image of h over G contains at most 3 elements from {t1, t2, t3, t4}, using property (1)
it follows that G is 3-colorable. This proves the forward direction. For the backward direction,
notice that ϕ(G) → T implies that G is 4-colorable, again using property (1). Finally, if G is
3-colorable, we can consider the set {t1, t2, t3} to be the colors. Using property (4) define the
standard homomorphism h from ϕ(G) → T . Observe that h is not surjective as it is contained in
Z1 ∪ Z2 ∪ Z3.

As a corollary we obtain that the following problem is also DP-complete:

Problem: Exact Acyclic Homomorphism

Input: a digraph G, an acyclic digraph T .
Question: Is G → T and G �→ S for every proper subgraph S of T ?

At this point, ϕ(G) does not provide a reduction from Exact Four Colorability to Graph

Acyclic Approximation: It could be possible that there is no homomorphism from ϕ(G) to a
proper subgraph of T , but still there is an acyclic digraph A such that ϕ(G) → A �� T . In other
words, it is possible that the instance (ϕ(G), T ) belongs to Exact Acyclic Homomorphism but
not to Graph Acyclic Approximation. We explain next how this problem can be avoided.

We modify ϕ(G) in order to have the following two properties: (†) (ϕ(G), T ) is still a reduction
from Exact Four Colorability to Exact Acyclic Homomorphism and (††) (ϕ(G), T ) ∈
Exact Acyclic Homomorphism if and only if (ϕ(G), T ) ∈ Graph Acyclic Approximation.
This immediately implies DP-completness of Graph Acyclic Approximation. Our modifica-
tion of ϕ(G) satisfies the following property:

(P) Suppose that A is an acyclic digraph, h an homomorphism from ϕ(G) to A, g a surjective
homomorphism from A to T , and for each t ∈ {t1, t2, t3, t4} there exists a vertex u of G such that
g ◦ h(u) = t. Then there exists an homomorphism r from T to A.

Observe that property (P) implies property (††): For the forward implication, asssume that
(ϕ(G), T ) ∈ Exact Acyclic Homomorphism and, by contradiction, suppose that there exists
an acyclic digraph A such that ϕ(G) → A �� T . Let h be a homomorphism from ϕ(G) to A and
g a homomorphism from A to T . Notice that g must to be surjective, otherwise g ◦ h would be a
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homomorphism from ϕ(G) to a proper subgraph of T . Moreover, it must be the case that for each
t ∈ {t1, t2, t3, t4} there exists a vertex u of G such that g ◦h(u) = t. Assume otherwise. Then using
property (1) we can conclude that G is 3-colorable, and therefore that there exists a homomorphism
from ϕ(G) to a proper subgraph T (considering {t1, t2, t3} to be the colors and then using property
(4)). Thus, using property (P) it follows that T → A, which is a contradiction. The backward
direction is trivially true, as the existence of a homomorphism h from ϕ(G) to a proper subgraph
of T implies the existence of an acyclic digraph A such that ϕ(G) → A �� T : it suffices to consider
the homomorphic image Im(h) of ϕ(G) in T . Notice that Im(h) is acyclic, ϕ(G) → Im(h) → T and
T �→ Im(h), since T is a core.

The idea of the construction is to consider a digraph Q∗ such that Z1, Z2, Z3 and Z4 are acyclic
approximations of Q∗. Moreover, Q∗ has an “initial vertex” x and a “terminal vertex” y. Now, we
add to ϕ(G) a fresh node v0, and for each vertex u in ϕ(G) that corresponds to a vertex of G we
add a fresh copy of Q∗, identifying x with v0 and y with u.

Using the structure of Q∗ it can be shown that ϕ(G) is still a reduction from Exact Four

Colorability, i.e., that satisfies property (a). Moreover, it can be shown that it satisfies property
(P). The intuition behind this is as follows: if A is an acyclic digraph as in property (P), we can
choose u1, u2, u3 and u4 from G such that g ◦ h(ui) = ti, for each 1 ≤ i ≤ 4. Each ui has an
associated copy Q∗

i of Q∗. Each of the Q∗
i s must be mapped via h to an acyclic subgraph Ai of

A. At the same time, each Ai must be mapped via g to Zi. Thus, since Zi is actually an acyclic
approximation of Q∗, there exists a homomorphism ri from Zi to Ai, for each 1 ≤ i ≤ 4. These
homomorphisms can be combined to define a homomorphism r from T to A.

Our construction of ϕ(G) does not necessarily yield a digraph that is a core. However, by
applying a more involved construction we can force ϕ(G) also to be a core. The technical details
can be found in the appendix. �

5 Queries over Graphs

In this section we look more closely at queries over graphs. That is, the vocabulary σ has a single
binary relation E(·, ·), interpreted as a directed graph. In this restricted scenario we prove several
results about the structure of approximations in graph-based classes.

5.1 Acyclic approximations

We study acyclic (or, equivalently, treewidth-1) approximations in detail for graph queries. We
begin with the case of Boolean queries, when the tableau of a query is just a graph, and show
a trichotomy theorem for them, classifying approximations based on graph-theoretic properties of
the tableau. Note that a query is acyclic if and only if its tableau has no oriented cycles of length
3 or more.

5.1.1 Boolean queries

These queries are of the form Q():– . . . and thus produce yes/no answers; their tableaux are simply
directed graphs TQ. We already talked about them in the introduction, and mentioned that for
nontrivial approximations, the tableau must be bipartite. Recall that a digraph G is bipartite if
G → K�

2 , i.e., G is 2-colorable: its nodes can be split into two disjoint subsets A and B so that all
edges have endpoints in different subsets.
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Recall the example from the introduction: the cyclic query Q1():–E(x, y), E(y, z), E(z, x) had
a trivial acyclic approximation Qtriv():–E(x, x) (which is contained in every Boolean graph query).
The reason for that was TQ1

was not bipartite. In the introduction, we saw an example of a
query with a bipartite tableaux that had a nontrivial approximation stating the existence of a
path of length 4. Note that every query whose tableau is bipartite will contain the trivial bi-
partite query Qtriv

2 ():–E(x, y), E(y, x), whose tableau is K�

2 . For some bipartite queries, e.g.,
Q3():–E(x, y), E(y, z), E(z, u), E(x, u), this trivial query is the only acyclic approximation. This
behavior is caused by the cycle being unbalanced. We next define this concept [25], and then state
the trichotomy result.

We now recall several notions from [25] that have been already introduced in the proof of
Proposition 4.4. An oriented cycle is a digraph with nodes u1, . . . , un and n edges such that either
(ui, ui+1) or (ui+1, ui) is an edge, for each i < n, and either (u1, un) or (un, u1) is an edge. Edges
(ui, ui+1) and (un, u1) are forward edges and edges (ui+1, ui) and (u1, un) are backward edges. An
oriented cycle is balanced if the number of forward edges equals the number of backward edges, and
a digraph is balanced if every oriented cycle in it is balanced.

Now we can state a trichotomy result for acyclic approximations of Boolean CQs over graphs.

Theorem 5.1 Let Q be a Boolean CQ over graphs. Then, if its tableau TQ:

• is not bipartite, then Q has only the trivial acyclic approximation Qtriv (up to equivalence);

• is bipartite but not balanced, then Q’s only acyclic approximation (up to equivalence) is the
trivial bipartite query Qtriv

2 ;

• is bipartite and balanced, then none of Q’s acyclic approximations is trivial, and none contains
two subgoals of the form E(x, y), E(y, x).

Proof: Suppose the tableau TQ is not bipartite and let Q′ be an acyclic approximation of Q. If

TQ′ has no loops then, by acyclicity, it is bipartite; hence TQ → TQ′ → K�

2 , which contradicts
non-bipartiteness of TQ. Hence TQ′ has a loop, and Q′ is equivalent to Qtriv.

Let TQ be bipartite and not balanced, and let Q′ be an acyclic approximation of Q. We

prove that TQ′ is homomorphically equivalent to K�

2 . Note that TQ′ has no loops: otherwise

TQ → K�

2 �� TQ′ , and Q′ is not an approximation. Thus, TQ′ is bipartite and TQ′ → K�

2 . For the

converse, assume K�

2 �→ TQ′ . Then K�

2 is not subgraph of TQ′ . Since Q′ is acyclic, this implies
that TQ′ is balanced, and the following claim shows that TQ → TQ′ implies that TQ is balanced
too, which is a contradiction.

Claim 5.2 Balanced digraphs are closed under inverse homomorphisms. That is, if G → H and
H is balanced, then G is balanced.

Proof: We use the following characterization of balanced digraphs from [25]: G is balanced if and
only if G → �Pk, for some k ≥ 1, where �Pk denotes the directed path of length k. Now, suppose
G → H and H is balanced. Then H is homomorphic to a directed path, and, by composition, G
is homomorphic to such directed path as well. Therefore, G is balanced. �

Finally, let TQ be bipartite and balanced, and let Q′ be an acyclic approximation of Q. As

above, we see that Q′ is not equivalent to the trivial CQ. We now prove that K�

2 is not a subgraph
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of TQ′ , implying the result. Assume otherwise; since TQ is balanced, we have that TQ → �Pk for

some k [25]. Since �Pk �� K�

2 , we have TQ → �Pk �� TQ′ , which contradicts the minimality of TQ′ . �

Note that the conditions used in the theorem – being bipartite and balanced – can be checked
in polynomial time [25, 44].

As a corollary to the proof of the previous theorem, we obtain:

Corollary 5.3 Let Q be a Boolean cyclic CQ over graphs. Then all minimized acyclic approxima-
tions of Q have strictly fewer joins than Q.

Proof: Let Q′ be a minimized acyclic approximation of Q. It suffices to show that the tableau
TQ′ has strictly fewer edges than the tableau TQ. We denote by |E(TQ′)| and |TQ′ | the numbers of
edges and nodes in TQ′ , respectively.

If TQ is not bipartite, or if is bipartite but not balanced, using Theorem 5.1 and the fact that
TQ has at least 3 edges (TQ is cyclic), we have the result.

Now, if TQ is bipartite and balanced we know that K�

2 � TQ′ (Theorem 5.1) and since TQ′

is a core (Q′ is a minimized CQ), we know that TQ′ is a homomorphic image of TQ, via some h,

that is, TQ
h

−→ TQ′ , where Im(h) = TQ′ . It suffices to show that there are two edges in TQ which
are mapped via h to the same edge in TQ′ . Since TQ is cyclic there exists a connected component
of TQ which is cyclic, namely H (connected in the sense that Hu is connected). Let h′ be the

restriction of h to H. Note that Im(h′) is connected and acyclic, and since K�

2 � Im(h′), it follows
that |E(Im(h′))| = |Im(h′)| − 1 ≤ |H| − 1. Finally, observe that |E(H)| > |H| − 1, otherwise since
H is connected, then H would be acyclic, which is a contradiction. Thus, |E(Im(h′))| < |E(H)|
and h′ maps two edges to one edge in TQ′ . In particular, h maps two edges to one edge in TQ′ . �

Reformulating our results in terms of graphs, we obtain:

Corollary 5.4 For every cyclic digraph G and its acyclic approximation T , the core of T has
strictly fewer edges than G. Moreover, T is not homomorphically equivalent to a single loop iff G
is bipartite.

Theorem 5.1 says that the most interesting case, for graph queries, is when the tableau is
bipartite and balanced (as we already mentioned in the introduction, for relations of higher arity,
such restrictions need not be imposed). A natural question is whether CQs with such tableaux are
still intractable (i.e., whether it still makes sense to approximate them). We prove next that this
is the case.

Proposition 5.5 The combined complexity of evaluating Boolean CQs over graphs whose tableaux
are bipartite and balanced is NP-complete.

Proof: Note that any balanced digraph is bipartite, thus bipartite and balanced digraphs are exactly
balanced digraphs. It suffices to prove (due to the correspondence between CQs and tableaux) that
the following equivalent problem is NP-complete: Given a balanced digraph G and a digraph H,
check if G → H.

It is known that there exists an oriented tree T (undirected tree plus orientation in the
edges) such that the following problem is NP-complete [25]: Given a digraph G, decide if
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G → T . This problem remains NP-complete even for G balanced, since a digraph homomor-
phic to T must be balanced (using Claim 5.2 and the fact that any oriented tree is balanced).
Thus the result follows and, in fact, the problem is NP-complete even if H is a fixed oriented tree. �

We conclude our investigation of Boolean CQs with a remark on a subclass of acyclic approxima-
tions with special properties. A query Q′ is a tight C-approximation of Q if it is a C-approximation
of Q and there is no query Q′′ such that Q′ ⊂ Q′′ ⊂ Q. It is not clear a priori whether, and for
which classes C, such approximations exist. The results of [36] (reformulated in terms of tableaux
of queries) imply that if a tight C-approximation Q′ of a query Q is minimized and connected, then
Q′ is acyclic. Hence, tightness forces the approximating query to be acyclic. The next question is
whether acyclic tight approximations exist. We can show that this is the case.

Proposition 5.6 There is an infinite family of nonequivalent Boolean CQs Qn, Q′
n, for n > 0, so

that Q′
n is a tight acyclic approximation of Qn.

Proof: Let Gk be the digraph constructed as follows. Take two disjoint copies of a directed path of
length k, the first on nodes x0, x1, . . . , xk, and the second on nodes y0, y1, . . . , yk. Then add edges
(x0, y2), (x1, y3), . . . , (xi, yi+2), . . . , (xk−2, yk). The picture is shown below.

• ��

���
��

� •

���
��

�
... ... •

���
��

�
�� •

���
��

�
�� • �� •

• �� • �� • �� • ... • �� • �� •

It can then be shown that �Pk+1, the path of length k + 1, has two properties, as long as k ≥ 3:

1. Gk → �Pk+1; and

2. there is no digraph G such that Gk �� G �� �Pk+1.

The first property is immediate. To show the second, we use the standard construction for gaps
in the lattice of digraphs [36]: we take �Pk+1 and compute its dual Fk (following the procedure
in [36] or in Theorem 3.35 in [25]), that has the following property: for every digraph H, either
H → Fk or �Pk+1 → H holds. Then we take the digraph Fk × �Pk+1. Of course Fk × �Pk+1 → �Pk+1;
the results of [36] further tell us that there is no digraph between Fk × �Pk+1 and �Pk+1 in the →
ordering. We then compute the core of Fk × �Pk+1, which happens to be Gk. We omit the tedious
calculations.

With the properties 1 and 2 above established, we simply take Qn to be the query whose
tableau is Gn+2 (as the properties above are guaranteed starting with G3) and Q′

n to be the CQ
whose tableau is �Pn+3. �

Example 5.7 Consider a Boolean query Q whose tableau is the digraph below, in which number
k above an edge represents a path of length k:

• •��
3
���

��
�

•

2 ������

3 ���
��

� •

• •�� 2

������
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This digraph is bipartite and balanced, so Theorem 5.1 tells us that it has nontrivial acyclic
approximations. In fact it can be shown that Q has a unique (up to equivalence) acyclic approxi-
mation Q′, whose tableau is the path of length 4 (i.e., the query Q′():–P4(x

′, x, y, z, u) mentioned
in the Introduction).

The same Q′ serves as a tight acyclic approximation to the query whose tableau is:

• ��

���
��

� • ��

���
��

� • �� •

• �� • �� • �� •
This is exactly the query Q2 from the Introduction, for which, as stated there, Q′ is an acyclic

approximation. �

5.1.2 Non-Boolean queries

For CQs with free variables, it is still true that those whose tableaux are bipartite have non-
trivial acyclic approximations. However, now some queries with non-bipartite tableaux may have
approximations whose bodies do not trivialize to just E(x, x). For example, consider a query
Q(x, y):–E(x, y), E(y, z), E(z, x). It can be shown easily that Q′(x, y):–E(x, y), E(y, x), E(x, x) is
an acyclic approximation of it; the tableau of Q′ is K�

2 with a loop on one of the nodes (recall that
the definition of query acyclicity refers to tree decompositions of the query hypergraphs, so Q′ is
indeed acyclic).

What distinguishes the case of bipartite tableaux now when we look at queries with free variables
is that they do not have subgoals of the form E(x, x) in approximations. That is, we have the
following dichotomy:

Theorem 5.8 Let Q(x̄) be a cyclic CQ over graphs. If its tableau TQ

• is not bipartite, then all of Q’s acyclic approximations have a subgoal of the form E(x, x).

• is bipartite, then Q has an acyclic approximation without a subgoal of the form E(x, x).

Proof: Suppose that the tableau TQ of Q is not bipartite and let Q′ be an acyclic approximation
of Q. Suppose that TQ′ has no loops. Then TQ′ is bipartite (since T u

Q′ is acyclic), implying that

TQ′ → K�

2 . Since TQ → TQ′ , we have that TQ → K�

2 as well. If follows that TQ is bipartite, which
is impossible. Therefore, TQ′ has loops, i.e, Q′ has a subgoal of the form E(x, x).

Now, suppose that the tableau TQ of Q is bipartite. Using an argument similar to the proof
of Theorem 4.1 we shall prove that there exists an acyclic approximation of Q without a subgoal
of the form E(x, x), i.e, whose tableau has no loops. Let AQ be the set of all digraphs with
distinguished elements (H, ū) such that Hu is acyclic and has no loops, (TQ, x̄) → (H, ū) and
|H| ≤ |TQ| + 1 (where |G| is the number of nodes of the digraph G). Clearly, AQ is finite.

Moreover, it is not empty, since there exists a homomorphism h from TQ to K�

2 (this follows

from the fact that TQ is bipartite) and this implies that (K�

2 , h(x̄)) is contained in AQ. We can
pick a minimal element (with respect to →) (H ′, ū′) from AQ. We shall show that Q′(ū′), the
CQ whose tableau is (H ′, ū′), is an acyclic approximation of Q. Suppose not, then there exists

an acyclic CQ Q′′(x̄′′) such that (TQ, x̄)
g

−→ (TQ′′ , x̄′′) �� (H ′, ū′). Observe that (Im(g), x̄′′) has
no loops (otherwise, (TQ′′ , x̄′′) �→ (H ′, ū′)), Im(g)u is acyclic (since Im(g) is subgraph of TQ′′),
(TQ, x̄) → (Im(g), x̄′′) and |Im(g)| ≤ |TQ|. Therefore, (Im(g), x̄′′) is contained in AQ. Finally, note
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that (Im(g), x̄′′) �� (H ′, ū′), which contradicts the minimality of (H ′, ū′) in AQ. Thus, Q′ is an
acyclic approximation of Q and since TQ′ = H ′ has no loops, we have the result. �

Notice that the previous theorem actually generalizes Theorem 5.1, since a boolean CQ is
trivial if and only if its tableau has a loop. However, when the query is not Boolean the latter is
not necessarily true.

For Boolean queries we saw that acyclic approximations also have strictly fewer joins than Q.
With free variables, the number of joins may sometimes be the same as for Q itself.

Proposition 5.9 There is a non-Boolean cyclic CQ over graphs such that all of its minimized
acyclic approximations have exactly as many joins as Q.

Proof: Consider the following query:

Q(x1, x2, x3) :– E(x1, x2), E(x2, x3), E(x3, x4), E(x4, x1).

This query is minimized. Its tableau, which we denote by (G,x1, x2, x3), contains an oriented cycle
on nodes x1, x2, x3, x4, with x1, x2, x3 being distinguished nodes.

Let G′ = 〈V ′, E′〉 be a digraph containing nodes x′
1, x

′
2, x

′
3 (not necessarily distinct) so that

(G′, x′
1, x

′
2, x

′
3) is a tableau of an acyclic approximation of Q. We know that (G′, x′

1, x
′
2, x

′
3) is an

image of some homomorphism h defined on G. Note that if the homomorphism h were one-to-one,
then all the edges of G would be present in G′ and thus G′ would be cyclic. Hence, |V ′| ≤ 3.

By definition, h(xi) = x′
i for 1 ≤ i ≤ 3. Consider first a homomorphism h so that x′

is, for
1 ≤ i ≤ 3, are distinct. Then there are three possibilities where x4 could be mapped:

• If h(x4) = x′
1 or h(x4) = x′

3, then Im(h) is a cyclic digraph, contradicting the assumption.

• If h(x4) = x′
2, we get a digraph consisting of two copies of K�

2 , i.e., a graph G0 with nodes x′
i,

1 ≤ i ≤ 3, and edges (x′
1, x

′
2), (x

′
2, x

′
1) as well as (x′

2, x
′
3), (x

′
3, x

′
2). The corresponding query

Q0(x
′
1, x

′
2, x

′
3):–E(x′

1, x
′
2), E(x′

2, x
′
1), E(x′

2, x
′
3), E(x′

3, x
′
2) has the same 3 joins as the original

query.

Next we see what happens when h collapses some of xi’s, for 1 ≤ i ≤ 3. First we look at the
cases when h collapses two of those. Suppose we collapse x1 and x2, i.e., h(x1) = h(x2) (and thus
x′

1 = x′
2) and x′

3 �= x′
1. There are three possibilities for x4:

• If h(x4) = x′
1 = x′

2, then Im(h) is the digraph G1 with nodes x′
1, x

′
3 and edges

(x′
1, x

′
3), (x

′
3, x

′
1), (x

′
1, x

′
1), with distinguished nodes (x′

1, x
′
1, x

′
3). It is routine to check that

(G0, x
′
1, x

′
2, x

′
3) �� (G1, x

′
1, x

′
1, x

′
3), and hence the result of this homomorphism is not an

acyclic approximation.

• If h(x4) = x′
3, then the image of h is a digraph with 4 edges, hence corresponding to a query

with 3 joins, same as in the original Q.

• If h(x4) is different from x′
1, x

′
2, x

′
3, then Im(h) has a cycle.

The case when x2 and x3 are collapsed to the same node by h is completely symmetric. Now
assume that h collapses x1 and x3, i.e., x′

1 = x′
3. Again there are three cases.
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• If h(x4) = x′
2, then the image of h is (G2, x

′
1, x

′
2, x

′
1) where G2 is a copy of K�

2 on x′
1, x

′
2.

In this case again we easily verify (G0, x
′
1, x

′
2, x

′
3) �� (G2, x

′
1, x

′
2, x

′
1), meaning that the latter

cannot be an acyclic approximation.

• If h(x4) = x′
1, then the image of the original tableau is the same digraph as in the previous

case, plus a loop on x′
1. Hence, the same argument as above shows that it cannot be an

acyclic approximation.

• Otherwise, if h(x4) is different from x′
1, x

′
2, x

′
3, then Im(h) is a union of two copies of K�

2 ,
and thus it has the same 3 joins as the original query.

Finally, if h collapses all nodes (say to x′
1), there are two possibilities.

• If h(x4) = x′
1, then we end up with a trivial query with the tableau (K�

1 , x′
1, x

′
1, x

′
1), where K�

1

is the digraph that consists of a directed loop on a single element, and clearly (G0, x
′
1, x

′
2, x

′
3)

�� (K�
1 , x′

1, x
′
1, x

′
1).

• If h(x4) = x′
4 �= x′

1, then Im(h) consists of a copy of K�

2 on x′
1 and x′

4, as well as a loop on
x′

1. In this case we again easily verify that (G0, x
′
1, x

′
2, x

′
3) �� (Im(h), x′

1, x
′
1, x

′
1).

Hence, in all the cases when the number of joins is reduced, the resulting query is not an
acyclic approximation, which proves the proposition. �

5.2 Bounded treewidth queries

We have already seen that treewidth-k approximations of a CQ Q always exist, that they cannot
exceed the size of Q, and can be constructed in single-exponential time. There is an analog of
the dichotomy for acyclic queries, in which bipartiteness (i.e., being 2-colorable) is replaced by
(k + 1)-colorability for TW(k).

Theorem 5.10 Let Q be a CQ over graphs. If its tableau TQ

• is not (k + 1)-colorable, then all of its TW(k)-approximations have a subgoal of the form
E(x, x);

• is (k+1)-colorable, then Q has a TW(k)-approximation without a subgoal of the form E(x, x).

Proof: We use similar arguments to the proof of Theorem 5.8. We also use the well-known result
that each digraph without loops of treewidth at most k is (k + 1)-colorable, or, equivalently, is
homomorphic to K�

k+1.
Assume first that the tableau TQ of Q is not (k + 1)-colorable and let Q′ be a TW(k)-

approximation of Q. Assume for the sake of contradiction that TQ′ has no loops. Then TQ′ is

(k + 1)-colorable, implying that TQ′ → K�

k+1. Since TQ → TQ′ , we have that TQ → K�

k+1 as well.
If follows that TQ is (k + 1)-colorable, which is a contradiction. Therefore, TQ′ have loops, i.e, it
has a subgoal of the form E(x, x).

Assume, on the other hand, that the tableau TQ of Q is (k + 1)-colorable and let AQ be
the set of all digraphs with distinguished elements (H, ū) such that Hu has treewidth at most
k and has no loops, (TQ, x̄) → (H, ū) and |H| ≤ |TQ| + k. Clearly, AQ is finite. Moreover, it
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is not empty, since there exists a homomorphism h from TQ to K�

k+1 (TQ is (k + 1)-colorable)

and this implies that (K�

k+1, h(x̄)) is contained in AQ. We pick a minimal element (with respect
to →) (H ′, ū′) from AQ. We shall show that Q′(ū′), the CQ whose tableau is (H ′, ū′), is a
TW(k)-approximation of Q. Suppose not, then there exists a CQ Q′′(x̄′′) with treewidth at

most k such that (TQ, x̄)
g

−→ (TQ′′ , x̄′′) �� (H ′, ū′). Observe that (Im(g), x̄′′) has no loops
(otherwise, (TQ′′ , x̄′′) �→ (H ′, ū′)), Im(g)u has treewidth at most k (since Im(g) is subgraph of
TQ′′), (TQ, x̄) → (Im(g), x̄′′) and |Im(g)| ≤ |TQ|. Therefore, (Im(g), x̄′′) is contained in AQ.
Finally, note that (Im(g), x̄′′) �� (H ′, ū′), which is a contradiction with the minimality of (H ′, ū′) in
AQ. Thus, Q′ is a TW(k)-approximation of Q and since TQ′ = H ′ has no loops, we have the result. �

Recall that a Boolean CQ Qtriv():–E(x, x) is a trivial (acyclic, or treewidth-k) approximation
of every Boolean CQ. In the acyclic case, 2-colorability (or bipartiteness) of TQ was equivalent to
the existence of nontrivial approximations. This result extends to treewidth-k.

Corollary 5.11 A Boolean CQ Q over graphs has a nontrivial TW(k)-approximation iff its tableau
TQ is (k + 1)-colorable.

Proof: Let Q′ be a TW(k)-approximation of Q. Assume first that the tableau TQ of Q is not
(k + 1)-colorable. Using Theorem 5.10 we know that TQ′ has loops. Therefore, Q′ is equivalent
to Qtriv. Now, assume that the tableau TQ of Q is (k + 1)-colorable. If TQ′ has loops we have

that TQ → K�

k+1 �� TQ′ , which is a contradiction with the minimality of TQ′ because K�

k+1 is of

treewidth k. Then TQ′ has no loops, i.e., is not equivalent to Qtriv. �

Note the big difference in the complexity of testing for the existence of nontrivial approximations:
while it is in Ptime in the acyclic case, the problem is already NP-complete for TW(2).

If a Boolean CQ Q has a nontrivial TW(k)-approximation, then the query Qtriv
k+1 with the tableau

K�

k+1 is contained in Q. For k = 1, we had a necessary and sufficient condition for such a query
to be an approximation (it was the Ptime-testable condition of not being balanced, see Theorem
5.1). For TW(k), we do not have such a characterization, but we do know that even for TW(2),
the criterion will be much harder than for the acyclic case due to the following.

Proposition 5.12 For every k > 1, testing, for a Boolean CQ Q over graphs, whether Qtriv
k+1 is a

TW(k)-approximation of Q is NP-hard.

Proof: Let k > 1. We shall prove that there is a polynomial reduction from the (k + 1)-coloring
problem to our problem. Let G be a graph. The reduction returns the CQ ϕ(G) whose tableau is
�G+K�

k+1, where + denotes disjoint union and �G is the directed version of G obtained by replacing
each undirected edge {a, b} in G with both (a, b) and (b, a). We prove next that G is (k+1)-colorable
iff Qtriv

k+1 is a TW(k)-approximation of ϕ(G).

Suppose that G is (k + 1)-colorable, then �G → K�

k+1, implying that the tableau of ϕ(G) is

homomorphically equivalent to K�

k+1, the tableau of Qtriv
k+1. Therefore, ϕ(G) is equivalent to Qtriv

k+1,

and, thus, Qtriv
k+1 is a TW(k)-approximation of ϕ(G).

Suppose, on the other hand, that Qtriv
k+1 is a TW(k)-approximation of ϕ(G). In particular, we

have that Tϕ(G) → TQtriv
k+1

, implying that �G → K�

k+1.Therefore, G is (k + 1)-colorable. �
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Thus, while the behavior of acyclic and treewidth-k approximations for k > 1 is in general
similar, testing conditions that guarantee certain properties of approximations is harder even for
treewidth-2, compared to the acyclic case.

5.3 Graphs vs higher-arity relations

We now contrast graph queries with those that use relations of higher arity, to demonstrate that
higher arity gives a lot more freedom for finding interesting approximations. Since we deal with
graph-based classes of queries, we shall be looking for the strongest, i.e., TW(1)-approximations.
Suppose we have an arbitrary query Q with n variables. Then the maximum possible treewidth of
Q is n − 1. We look for approximation that decrease the treewidth in the strongest possible way.
That is, we say that Q′ is a strong treewidth approximation of Q if Q′ is a TW(1)-approximation of
Q, and Q has the maximum possible treewidth > 1 (i.e., its treewidth is the number of variables
minus 1).

For this subsection we deal with Boolean queries, and assume that the vocabulary consists of
one m-ary relation R; when m = 2, we deal with graphs. In fact, in the case of graphs the notion
of strong treewidth approximation trivializes: if Q′ is a strong treewidth approximation of Q, then
Q′ is equivalent to the trivial query Qtriv. Indeed, if Q is of maximum possible treewidth > 1, then
G(Q) is Kn (perhaps with some loops), and hence for n > 2 it is not bipartite, implying triviality
of TW(1)-approximation.

However, when m > 2, there are many possible strong treewidth approximations, even in cases
that appear to be close to the cases of graphs admitting only trivial approximations. So for now,
fix m > 2 and assume that Q′ is a strong treewidth approximation of Q. First observe that Q′ can
have at most 2 variables: indeed, since G(Q) is a Kn (perhaps with loops), then if G(Q′) has at
least 3 nodes, it would have a triangle and hence be of treewidth at least 2. So we call a Boolean
query Q′ over an m-ary relation R a potential strong treewidth approximation if G(Q′) has at most
2 nodes.

Proposition 5.13 Let Q′ be a potential strong treewidth approximation. Assume that Q′ is non-
trivial. Then, for every n > m, there is a conjunctive query Q with n variables such that Q′ is a
strong treewidth approximation of Q. Moreover, if the query Q′ has k atoms, then Q can be chosen
to have at most k + n(n−1)

2 − 1 atoms.

Proof: Observe that in every atom in Q′ one variable occurs at least twice. Assume first that
there is an atom in which some variable occurs exactly twice, say, an atom R(x, . . . , x, y, y).
Then in Q we put atoms R(x1, . . . , x1, xi, xj) for all 2 ≤ i ≤ j ≤ n, assuming Q has variables
x1, . . . , xn. For every other atom R(x, . . . , x, y, . . . , y) with r occurrences of y we put in Q the atom
R(x1, . . . , x1, x2, . . . , xr+1) (of course variables can occur in an arbitrary order; we simply replace
all the occurrences of x with x1 and r occurrences of y with x2, . . . , xr+1, in the same order in
which the y’s occur in the atom). The construction ensures that G(Q) is Kn and it is easy to

verify that Q has at most k + n − 2 + (n−1)(n−2)
2 = k + n(n−1)

2 − 1 atoms, as only one atom in Q′

generates multiple atoms in Q. The mapping sending x1 to x and every xi with i > 1 to y is a
homomorphism showing Q′ ⊆ Q. If there were TW(1)-approximation Q′′ of Q with Q′ ⊂ Q′′ ⊂ Q,
then G(Q′′) would be K2 (perhaps with loops), so a homomorphism of the tableau of Q′′ into the
tableau of Q′ can only be the identity, or swapping the roles of variables x and y. Using this one
easily verifies that Q′ is an approximation.
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If we do not have an atom with exactly two occurrences of a variable, then pick an atom
with a minimum number p of repetitions of a variable, say R(x, . . . , x, y, . . . , y), where y occurs
p times. Then we replace it by putting in Q atoms R(x1, . . . , x1, x2, . . . , xp−1, xi, xj) with
p ≤ i < j ≤ n (where x1s correspond to the positions of x). In addition, we put in Q atoms
R(x1, . . . , x1, xi, . . . , xi, xi, xi) whenever 2 ≤ i ≤ n. The proof then is the same (only the number
of atoms in Q gets smaller). �

Recall that for Boolean graph queries (m = 2), TW(1)-approximations strictly decrease the
number of joins. Beyond graphs, however, this need not be the case.

Proposition 5.14 For every k ≥ 3, one can find a relation symbol R of arity m > 2, and two
minimized conjunctive queries Q and Q′ over R with the same number of joins such that Q′ is a
strong treewidth approximation of Q.

Proof: We take m, the arity of R, to be equal to k. In Q, the first three atoms are
R(x1, x2, x3, x4, . . . , xk), R(x2, x1, xk+1, x4, . . . , xk), and R(x3, xk+1, x1, x4, . . . , xk). The next k − 3
atoms are of the form R(xj , xj, . . . , xj , x1, xj , . . . , xj), where x1 appears in the jth position; here
4 ≤ j ≤ k. In Q′, we have k atoms of the form R(x, y, . . . , y), R(y, x, y, . . . , y), . . . , R(y, . . . , y, x),
i.e., x appears once, every time in a different position. It is straightforward to verify all three
conditions of the proposition. �

A slight drawback of the previous result is that it requires relations of high arity. But we
can show that already for ternary relations, the behavior of strong treewidth approximations is
drastically different from the graph case.

Consider the query Qtr():–R(x, y), R(y, z), R(z, x); it states that a graph contains a triangle.
Its graph is not bipartite, since G(Q) = K3, and hence it only has trivial TW(1)-approximation.

We now look at ternary relations R. We call an instance R of a ternary relation an almost-
triangle if there is an element that belongs to every triple of R, and when it is removed from
every triple, the resulting pairs form a triangle. For instance, (4, 1, 2), (4, 2, 3), (4, 3, 1) is an almost-
triangle: when we remove 4 for each of the triples, we end up with the pairs (1, 2), (2, 3), (3, 1)
which form a triangle.

Proposition 5.15 There is a minimized conjunctive query Q over a ternary relation R that uses
4 variables, has maximum treewidth 3, such that:

• the tableau TQ of Q is an almost-triangle; and

• Q has a strong treewidth approximation Q′ with the same number of joins as Q.

Proof: We define Q over variables x1, x2, x3, x4 as follows:

Q() :– R(x1, x2, x3), R(x2, x1, x4), R(x4, x3, x1).

Its tableau is an almost triangle (just remove x1). Furthermore G(Q) = K4 and thus it has
treewidth 3. It is also minimized.

We then look at
Q′() :– R(x, y, y), R(y, x, y), R(y, y, x).
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It is routine to verify that Q′ is a strong treewidth approximation of Q satisfying all conditions of
the proposition. �

Thus, indeed, the behavior of treewidth approximations is already drastically different for the
case of ternary relations, compared to graphs.

6 Hypergraph-based Approximations

We now switch to study approximations in tractable classes defined by restricting the hypergraph
H(Q) of a CQ Q: The nodes of H(Q) again are variables used in Q, and its hyperedges correspond
to the atoms of Q, i.e., for each atom R(x1, . . . , xn) in Q, we have a hyperedge {x1, . . . , xn}. If C
is a class of hypergraphs, then a query Q is a hypergraph-based C-query if H(Q) ∈ C. In general,
graph-based and hypergraph-based classes of CQs are incompatible: there are graph-based classes
that are not hypergraph-based, and vice versa [16].

The oldest tractability criterion for CQs, acyclicity [43], is a hypergraph-based notion (see the
definition in Section 3). It corresponds to the class of CQs Q such that H(Q) belongs to the class AC

of acyclic hypergraphs, or, in other words, Q is a hypergraph-based AC-query. Analogs of bounded
treewidth for hypergraphs were defined in [20, 21]; those notions of bounded hypertree width and
generalized hypertree width properly extended acyclicity and led to tractable classes of CQs over
arbitrary vocabularies.

We look at hypergraph-based C-approximations, i.e., approximations in the class of hypergraph-
based C queries. Our first goal is to have a general result about the existence of approximations that
will apply to both acyclicity and bounded (generalized) hypertree width (to be defined formally
shortly).

Note we cannot trivially lift the closure condition used in Theorem 4.1 for hypergraphs, since
even acyclic hypergraphs are not closed under taking subhypergraphs. Indeed, take a hypergraph H
with hyperedges {a, b, c}, {a, b}, {b, c}, {a, c}. It is acyclic: the decomposition has {a, b, c} associated
with the root of the tree, and two-element edges with the children of the root. However, it has
cyclic subhypergraphs, for instance, one that contains its two-element edges.

The closure conditions we use instead are:

• Closure under induced subhypergraphs. If H = 〈V, E〉 is in C and H′ is an induced sub-
hypergraph, then H′ ∈ C. Recall that an induced subhypergraph is one of the form
〈V ′, {e ∩ V ′ | e ∈ E}〉.

For instance, take again the hypergraph H with hyperedges {a, b, c}, {a, b}, {b, c}, {a, c}. Then
the only induced subhypergraph of H that contains all of its two-element edges is H itself.

• Closure under edge extensions: if H = 〈V, E〉 is in C and H′ is obtained by adding new nodes
V ′ to one hyperedge e ∈ E , where V ′ is disjoint from V , then H′ ∈ C.

We shall see that these will be satisfied by the classes of hypergraphs of interest to us. The
analog of the previous existence results can now be stated as follows.

Theorem 6.1 Let C be a class of hypergraphs closed under induced subhypergraphs and edge ex-
tensions. Then every CQ Q that has at least one hypergraph-based C-query contained in it, has a
hypergraph-based C-approximation.
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Moreover, the number of non-equivalent hypergraph based C-approximations of Q is at most
exponential in the size of Q, and every such approximation is equivalent to one which has at most
O(nm−1) variables and at most O(nm) joins, where n is the number of variables in Q, and m is
the maximum arity of a relation in the vocabulary.

Proof: We make use of the following claim:

Claim 6.2 Let C be a class of hypergraphs closed under induced subhypergraphs and edge extensions.
Let Q(x̄) be a CQ and Q′(x̄′) be a hypergraph-based C-query, both over vocabulary σ, such that
Q′ ⊆ Q. Let us denote by n be the number of variables in Q, by � the number of relation symbols
in σ, and by m the maximum arity of a symbol in σ. Then there exists a hypergraph-based C-query
Q′′, with at most n + (m − 1)2nm−1 variables and at most � · nm joins, such that Q′ ⊆ Q′′ ⊆ Q.

Proof: Since Q′ ⊆ Q it is the case that (TQ, x̄)
h

−→ (TQ′ , x̄′). Consider the database T over σ
constructed as follows: Let U be the active domain of Im(h). For each relation symbol R ∈ σ, add
to RT all tuples t̄ ∈ RTQ′ such that Ut̄ ⊆ U , where Ut̄ is the set of elements that occur in t̄. Notice
that H(T ) is not necessarily an induced subhypergraph of H(TQ′), as there might be hyperedges
e in H(TQ′) that contain elements in U but e ∩ U is not a hyperedge in H(T ). As such, it is
not possible to apply the first closure condition of C in order to infer that H(T ) belongs to C. A
straightforward alternative seems to consider the subhypergraph HU of H(TQ′) induced by U . The
problem then is that there might be hyperedges in HU that do not belong to H(TQ′), and, thus, it
is not clear how to define from HU a query Q′′ that contains Q′, which is one of the properties we
are looking for. We will have to follow a different strategy based on the second closure property of
C – closure under edge extensions – to build the desired query Q′′.

A nonempty subset X of U is an extended subset if (1) there is no tuple t̄ in some relation of
T such that Ut̄ = X, and (2) there exists a tuple s̄ in some relation of TQ′ such that Us̄ � U and
Us̄ ∩ U = X. That is, the extended subsets X of U are precisely the hyperedges of HU that are
not hyperedges of H(TQ′), and, thus, of H(T ). Using this notion we define a database T ′ that is
obtained by extending T as follows: For each extended subset X of U , choose an arbitrary tuple s̄X

and an arbitrary symbol SX in σ such that (i) s̄X belongs to the interpretation of SX in TQ′ , (ii)
Us̄X

� U and (iii) Us̄X
∩ U = X (we know this tuple exists by definition of extended subset). Add

to the interpretation of SX in T ′ the tuple s̄′X that is obtained from s̄X by renaming all elements
in Us̄X

\ U = {z1, z2, ..., zr} by new elements {z′1, z
′
2, ..., z

′
r}.

Observe that the hypergraph H(T ′) is in C since it is obtained from H(TQ′) in the following way:
Take the induced subhypergraph HU of H(TQ′) whose node set is U , and then for each extended
subset X ⊆ U do an edge extension in X (recall that each extended subset X of U is a hyperedge
of HU). Using the closure properties of C and the fact that H(TQ′) ∈ C, it follows that H(T ′) ∈ C.

Notice that h is a homomorphism from (TQ, x̄) to (T ′, h(x̄)) = (T ′, x̄′) since Im(h) is contained
in T ′. Thus, (TQ, x̄) → (T ′, x̄′). We prove next that (T ′, x̄′) → (TQ′ , x̄′). In fact, let T ∗ be the
database that is obtained from T by adding, for each extended subset X of U , the tuple s̄X to the
interpretation of SX , where SX and s̄X are as defined before for X. By definition, T ∗ is contained
in TQ′ , and hence, the identity mapping is a homomorphism from (T ∗, x̄′) to (TQ′ , x̄′). Notice that
T ′ is (up to isomorphism) the database that is obtained from T ∗ by taking each tuple of the form
s̄X in T ∗ and replacing each element z in s̄X that does not belong to U with a fresh element z′.
In particular, two different facts of T ′ can only share elements that belong to U . It can be easily
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seen then that the mapping h : T ′ → TQ′ defined as the identity on U and as h(z′) = z for each
element z′ in T ′ that does not belong to U and replaced element z in T ∗, is a homomorphism.
Further, x̄′ belongs to T , and, thus, to U , and hence h is the identity on x̄′. We conclude that
(TQ, x̄) → (T ′, x̄′) → (TQ′ , x̄′).

Recall that for each extended subset X of U it is the case that there exists a tuple s̄ in some
relation of TQ′ such that Us̄ � U and Us̄ ∩ U = X. Thus, |Us̄ \ X| ≥ 1. Since |Us̄| ≤ m (because
|Us̄| is bounded by the maximum arity of a tuple in TQ′ , and, thus, by the maximum arity m of a
symbol in σ), we conclude that for each extended subset X of U it is the case that |X| ≤ m − 1.
Furthermore, for each extended subset X of size i ≥ 1 we add at most m − i fresh elements to the
domain of T to construct T ′. It follows that the number of elements in T ′ that do not belong to T
is at most

m−1∑
i=1

(
|U |

i

)
(m − i) ≤ (m − 1)2 · |U |m−1

Therefore, it is the case that T ′ has at most |U | + (m − 1)2 · |U |m−1 elements. Since |U | is
bounded by n (which is the number of variables in Q) the number of elements of T ′ is bounded by
n + (m − 1)2nm−1.

In addition, the number of facts in T ′ equals the number of facts of T plus one fact for each
extended subset X of U . Since for each such X there is no tuple t̄ in a relation of T with Ut̄ = X,
the number of facts in T ′ is bounded by the number of facts of the form R(t̄), where R ∈ σ and t̄
is a tuple of elements in U . This number is bounded by l · |U |m, that is, by � · nm.

We conclude that the CQ Q′′ whose tableau is (T ′, x̄′) satisfies all the required conditions of
the claim. �

We continue now with the proof of Theorem 6.1. We start with the first part of it. Let Q(x̄)
be a CQ over σ that has at least one hypergraph-based C-query contained in it, namely Q′(x̄′).
Let l be the number of relations and m the maximum arity of a relation in σ, respectively. Define
HC(Q) as the set of all CQs that are hypergraph-based C-queries contained in Q and have at most
|Q| + (m − 1)2 · |Q|m−1 variables and at most l · |Q|m joins, where |Q| denotes the number of
variables of Q. Clearly, HC(Q) is finite (up to renaming of variables). From Claim 6.2, it follows
that HC(Q) is not empty. Take a maximal element Q̃ in HC(Q) (with respect to ⊆). We claim that
Q̃ is a hypergraph-based C-approximation of Q. Assume for the sake of contradiction that this is
not the case. Then there exists a hypergraph-based C-query P such that Q̃ ⊂ P ⊆ Q. Using Claim
6.2, there exists a hypergraph-based C-query P ′ such that Q̃ ⊂ P ⊆ P ′ ⊆ Q and P ′ is in HC(Q).
Since Q̃ ⊂ P ′ and P ′ ∈ HC(Q), we have a contradiction with the maximality of Q̃. Thus, Q̃ is a
hypergraph-based C-approximation of Q.

It easily follows from Claim 6.2 that each hypergraph-based C-approximation of Q is equivalent
to a CQ in HC(Q). The second part of Theorem 6.1 follows directly from this observation. �

It is straightforward to check that the class of acyclic hypergraphs satisfies both closure condi-
tions, and that any constant homomorphism on a query Q produces an acyclic query. Thus,

Corollary 6.3 For every vocabulary σ, there exist two polynomials pσ and rσ such that every CQ
Q over σ has a hypergraph-based acyclic approximation of size at most pσ(|Q|) that can be found
in time 2rσ(|Q|).

In the specific case of acyclicity, this result (in fact with linear bounds) can also be derived from
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the results of [5]. The general closure-based approach we have here allows us to extend it further,
to both hypertree width and generalized hypertree width. First we recall the definitions [21]. A
generalized hypertree decomposition of a hypergraph H = 〈V, E〉 is a triple 〈T, f, c〉, where T is a
rooted tree, f is a map from T to 2V and c is a map from T to 2E , such that

• (T, f) is a tree decomposition of H.

• f(u) ⊆
⋃

c(u) holds for every u ∈ T .

A hypertree decomposition of H [20] is a generalized hypertree decomposition that satisfies, in
addition, the following property:

•
⋃

c(u) ∩
⋃
{f(t) | t ∈ Tu} ⊆ f(u) holds for every u ∈ T , where Tu refers to the subtree of T

rooted at u.

The width of a (generalized) hypertree decomposition 〈T, f, c〉 is maxu∈T |c(u)|. The (general-
ized) hypertree width of H is the minimum width over all its (generalized) hypertree decompositions.
We denote by HTW(k) the class of hypergraphs with hypertree width at most k, and slightly abus-
ing notation, the class of CQs or tableaux whose hypergraphs have hypertree width at most k.
Similarly, we denote by GHTW(k) the class of hypergraphs, CQs and tableaux of generalized hy-
per treewidth at most k. Obviously, HTW(k) ⊆ GHTW(k), for each k ≥ 1. It is shown in [20]
that a hypergraph H is acyclic iff its hypertree width is 1. That is, AC = HTW(1), and, thus,
AC ⊆ GHTW(1).

The key result of [20] is that for each fixed k, CQs from HTW(k) can be evaluated in polynomial
time with respect to combined complexity. Notably, the same holds for the class GHTW(k), for
each fixed k [21]. There is, however, a crucial difference between the two notions: Verifying whether
HTW(H) ≤ k, for a given hypergraph H and a fixed k ≥ 1, can be solved in polynomial time [20],
while verifying whether GHTW(H) ≤ k, for any k ≥ 3, is NP-complete [22].

To apply the existence result, we need to check the closure conditions for hypergraphs of fixed
hypertree width. It turns out they are satisfied.

Lemma 6.4 For each k, the class HTW(k) is closed under induced subhypergraphs and edge ex-
tensions. The same holds for the class GHTW(k).

Proof: We only prove it for HTW(k). It will be clear from the proof that the same argument applies
to GHTW(k). Let H = 〈V, E〉 be a hypergraph of hypertree width at most k and 〈T, f, c〉 a hypertree
decomposition of H of width at most k.

We consider edge extensions first. Let H′ be a hypergraph obtained from H by extending
hyperedge e with new nodes V ′. Thus, the set of nodes of H′ is V ∪ V ′ and its set of hyperedges
is (E \ {e}) ∪ {e′}. First, pick an arbitrary node ue in T that satisfies e ⊆ f(ue) and is at minimal
distance to the root (such element ue exists because 〈T, f〉 is a tree decomposition of H). Let T ′

be the tree that is obtained from T by adding a new child z to ue in T . We then define a function
f ′ : T ′ → 2(V ∪V ′) as follows: f ′(u) = f(u) for each node u in T ′ that is neither z nor ue, f ′(z) = e′,
and, finally, f ′(ue) = f(ue) ∪ V ′, if e ∈ c(ue), and f ′(ue) = f(ue) otherwise. We also define a
function c′ : T ′ → 2(E\{e})∪{e′}) such that c′(z) = {e′} and for each u ∈ T ′ that is not z it is the
case that c′(u) = c(u), if e �∈ c(u), and c′(u) = (c(u) \ {e}) ∪ {e′}, otherwise. Clearly, the width of
〈T ′, f ′, c′〉 is at most k. We prove next that 〈T ′, f ′, c′〉 is a hypertree decomposition of H′.
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First, we shall prove that 〈T ′, f ′〉 is a tree decomposition of H′. Consider a hyperedge d in H′.
If d �= e′ then there exists a node u in T such that d ⊆ f(u) (because 〈T, f〉 is a tree decomposition
of H). By definition, d also belongs to f ′(u). If d = e′ then d ⊆ f ′(z). This shows that each
hyperedge of H′ is contained in f ′(u′), for some node u′ in T ′. Consider now a node v of H′, i.e.
v ∈ V ∪ V ′. If v �∈ e′ = e ∪ V ′ then, by definition, each node u of T ′ such that v ∈ f ′(u) belongs
to T and satisfies that v ∈ f(u) iff v ∈ f ′(u). Thus, since 〈T, f〉 is a tree decomposition of H, we
conclude that {u ∈ T ′ | v ∈ f ′(u)} is a connected subset of T ′. If v ∈ e then a similar argument
shows that {u ∈ T ′ | v ∈ f ′(u)} is exactly

{u ∈ T | v ∈ f(u)} ∪ {z}.

Since z is a leaf of ue and, by definition, v ∈ f(ue), we conclude from the fact that 〈T, f〉 is a tree
decomposition of H that {u ∈ T ′ | v ∈ f ′(u)} is a connected subset of T ′. Finally, if v ∈ V ′ then
{u ∈ T ′ | v ∈ f ′(u)} is the single node z, if e �∈ c(ue), or the single edge {ue, z}, if e ∈ c(ue), both
of which are connected subsets of T ′. We conclude that 〈T ′, f ′〉 is a tree decomposition of H′.

We prove next that f ′(u) ⊆
⋃

c′(u), for each node u in T ′. First of all, by definition f ′(z) = e′ ⊆⋃
c′(z) = {e′}. Also, since 〈T, f, c〉 is a hypertree decomposition of H, we have that f(ue) ⊆

⋃
c(ue),

and, thus, f ′(ue) ⊆
⋃

c′(ue) (no matter whether e is or is not in c(ue)). For u different from z and
ue, we have by definition that f ′(u) = f(u), and, by hypothesis, f(u) ⊆

⋃
c(u). But for each u in

T ′ that is neither z nor ue we have by definition that
⋃

c(u) ⊆
⋃

c′(u), and, thus, f ′(u) ⊆
⋃

c′(u).
We prove finally that

⋃
c′(u) ∩

⋃
{f ′(t) | t ∈ T ′

u} ⊆ f ′(u) holds for every u ∈ T ′. Consider
first a node u in T ′ such that ue /∈ T ′

u. If u = z then the property holds trivially since c′(z) = {e′},
f ′(z) = e′ and {f ′(t) | t ∈ T ′

z} = {f ′(z)}. Suppose then that u �= z. By definition, f(x) = f ′(x)
for each x ∈ T ′

u, and, thus, no element in V ′ belongs to f ′(x), for some x ∈ T ′
u. It follows that

⋃
c′(u) ∩

⋃
{f ′(t) | t ∈ T ′

u} =
⋃

c(u) ∩
⋃

{f(t) | t ∈ Tu}.

But the latter is contained in f(u) because 〈T, f, c〉 is a hypertree decomposition of H, and, thus,
in f ′(u) because f(u) = f ′(u).

Consider now a node u in T ′ such that ue ∈ T ′
u. Assume first that u = ue. If e ∈ c(ue) we have

by definition that
⋃

c′(u) ∩
⋃

{f ′(t) | t ∈ T ′
u} = V ′ ∪

( ⋃
c(u) ∩

⋃
{f(t) | t ∈ Tu}

)
.

But since 〈T, f, c〉 is a hypertree decomposition of H we have that the latter is contained in V ′∪f(u),
which by definition is f ′(u). If e �∈ c(ue), then

⋃
c′(u) =

⋃
c(u) and, thus,

⋃
c′(u) does not contain

any element in V ′. We conclude that
⋃

c′(u) ∩
⋃

{f ′(t) | t ∈ T ′
u} =

⋃
c(u) ∩

⋃
{f(t) | t ∈ Tu}.

But the latter is contained in f(u) because 〈T, f, c〉 is a hypertree decomposition of H, and, therefore,
in f ′(u) because f(ue) = f ′(ue). Finally, assume that u �= ue. Then necessarily e /∈ c(u). Assume
otherwise. Then since e ⊆ f(ue) we would have that e ⊆

⋃
c(u) ∩ f(ue), and, thus, in

⋃
c(u) ∩⋃

{f(t) | t ∈ Tu}. But 〈T, f, c〉 is a hypertree decomposition of H, and, thus, e ⊆ f(u), which is a
contradiction with the minimality of ue with respect to distance to the root of T . Then, e /∈ c(u),
implying that V ′ ∩

⋃
c′(u) = ∅. Therefore,

⋃
c′(u) ∩

⋃
{f ′(t) | t ∈ T ′

u} =
⋃

c(u) ∩
⋃

{f(t) | t ∈ Tu}.
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But the latter is contained in f(u) because 〈T, f, c〉 is a hypertree decomposition of H, and, therefore,
in f ′(u) because f(u) = f ′(u). We conclude then that 〈T ′, f ′, c′〉 is a hypertree decomposition of
H′.

We consider now closure under induced subhypergraphs. Let H′ = 〈V ′, {e ∩ V ′ | e ∈ E}〉 be an
induced subhypergraph of H, for V ′ ⊆ V . Let also T ′, f ′ and c′ be defined as follows: T ′ = T , and
for each u ∈ T ′ it is the case that f ′(u) = f(u) ∩ V ′, and c′(u) = {e ∩ V ′ | e ∈ c(u)}. Clearly, the
width of 〈T ′, f ′, c′〉 is at most k. We prove next that 〈T ′, f ′, c′〉 is a hypertree decomposition of H′.

We prove first that 〈T ′, f ′〉 is a tree decomposition of H′. Consider a hyperedge d in H′. Then,
d = e ∩ V ′, for some e ∈ E . Since 〈T, f〉 is a tree decomposition of H there is u ∈ T such that
e ⊆ f(u). It follows that d = e ∩ V ′ ⊆ f(u) ∩ V ′ = f ′(u). Let v be a node in H′, i.e. v ∈ V ′. It is
easy to see that {u ∈ T ′ | v ∈ f ′(u)} is exactly the same set than {u ∈ T | v ∈ f(u)}. Since 〈T, f〉
is a tree decomposition of H we conclude that {u ∈ T ′ | v ∈ f ′(u)} is a connected subset of T ′.

For each u ∈ T ′ we have by definition that f ′(u) = f(u) ∩ V ′, and, thus, f ′(u) ⊆
⋃

c(u) ∩ V ′

(because f(u) ⊆
⋃

c(u) from the fact that 〈T, f, c〉 is a hypertree decomposition of H). But
the latter is precisely

⋃
c′(u), which implies that f ′(u) ⊆

⋃
c′(u), for each u ∈ T ′. In addition,⋃

c′(u) ∩
⋃
{f ′(t) | t ∈ T ′

u} is by definition equal to the set
⋃

c(u) ∩
⋃
{f(t) | t ∈ Tu} ∩ V ′. Since

〈T, f, c〉 is a hypertree decomposition of H the latter is contained in f(u) ∩ V ′, which is f ′(u) by
definition. We conclude that 〈T ′, f ′, c′〉 is a hypertree decomposition of H′. �

Note that the query Qtrivial from Section 4.1 is in HTW(k) and GHTW(k). This gives the desired
result about the existence of approximations within HTW(k) for every k.

Corollary 6.5 For every vocabulary σ, there exist two polynomials pσ and rσ such that every CQ
Q over σ has a hypergraph-based HTW(k)-approximation or GHTW(k)-approximation of size at
most pσ(|Q|) that can be found in time 2rσ(|Q|), for every k ≥ 1.

Example 6.6 Consider a Boolean query

Q() :– R(x1, x2, x3), R(x3, x4, x5), R(x5, x6, x1)

over a schema with one ternary relation. If we had a binary relation instead and omitted the middle
attribute, we would obtain a query whose tableau is a cycle of length 3, thus having only trivial
approximations. However, going beyond graphs lets us find nontrivial acyclic approximations. In
fact this query has 3 non-equivalent acyclic approximations (all queries below are minimized):

• With fewer joins than Q:
Q′

1() :– R(x, y, x).

• With as many joins as Q:

Q′
2() :– R(x1, x2, x3), R(x3, x4, x2), R(x2, x6, x1).

• With more joins than Q:

Q′
3():–R(x1, x2, x3), R(x3, x4, x5), R(x5, x6, x1), R(x1, x3, x5).

�
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7 Conclusions

We have concentrated on approximations of conjunctive queries that are guaranteed to return
correct answers. Given the importance of acyclic CQs and very good complexity bounds for them,
we have focused on acyclic approximations, but we also provided results on approximations within
classes of bounded treewidth and bounded hypertree width. We have proved the existence of
approximations, and showed they can be found with an acceptable computational overhead, and
that their sizes are at most polynomial in the size of the original query, and sometimes are bounded
by the size of the original query.

In this work we only dealt with the qualitative approach to approximations; in the future we
would like to study quantitative guarantees as well, by defining measures showing how different
from the original query approximations are. One approach is to find probabilistic guarantees for
approximations. Note that such guarantees have been studied for queries from expressive languages
(e.g., with fixed points or infinitary connectives) [1, 27], with typical results showing that queries
are equivalent to those from simpler logics (e.g, FO) almost everywhere. One possibility is to
specialize these results to much weaker logics, e.g., to CQs and their tractable subclasses.

We also plan to study other notions of approximations that are not constrained to return correct
result only. These include overapproximations, that return all correct results, and arbitrary approx-
imations that simply look for maximal elements in the preorder �Q. Even the most basic problems
related to those notions of approximations, such as existence and complexity, seem challenging.
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8 Appendix: Proof of Theorem 4.12

The class TW(1) over graphs contains all acyclic directed graphs, i.e. directed graphs whose un-
derlying undirected graph contains no cycles. It thus suffices to show that the following problem is
DP-complete:

Problem: Graph Acyclic Approximation

Input: a digraph G, an acyclic digraph T .
Question: Is G → T and there is no acyclic digraph T ′ such that G → T ′

�� T ?

The Exact Four Colorability problem is defined as follows: Given a graph G, decide if G
is 4-colorable but not 3-colorable. It is known that this problem is DP-complete [40]. We define a
polynomial time reduction from Exact Four Colorability to Graph Acyclic Approxima-

tion.
We use several notions, such as oriented paths, cycles, heights and levels, that were defined in

the proof of Proposition 4.4. The proof requires some preparation. Consider the oriented paths
Pi = 0i+11011−i, for each 1 ≤ i ≤ 9. Observe that all these oriented paths are incomparable cores
and have net length 11. We have the following:

Claim 8.1 For each 1 ≤ i < j ≤ 9, there exists an oriented path Pij such that Pij → Pi, Pij → Pj

and Pij �→ Pk for each 1 ≤ k ≤ 9 with k �= i and k �= j.

Proof: We take Pij = 0i+1100j−i1011−j . Using Lemma 4.5 it can be verified that the conditions
are satisfied. �

Claim 8.2 For each 1 ≤ i < j < k ≤ 9, there exists an oriented path Pijk such that Pijk → Pi,
Pijk → Pj , Pijk → Pk and Pijk �→ P� for each 1 ≤ � ≤ 9 with � �= i, � �= j and � �= k.

Proof: We take Pijk = 0i+1100j−i100k−j1011−k. Using Lemma 4.5 it can be verified that the
conditions are satisfied. �

Next we define a digraph Q∗ (depicted in Figure 7) as follows: Consider the balanced cycle
(a1, a2, ..., a8, a1) defined by the string 01010101. For each 1 ≤ i ≤ 8, we add a disjoint copy of
Pi. If i is odd, we identify ai with the terminal node of Pi; otherwise, we identify ai with the

36



a4

x P1

P2

P3

a3

a2

a1

a8 a6

a5

P4

P5

P6

P7

P8

a7

y

Figure 7: The digraph Q∗.

24

x P1

P2

P3

P4

P5

P6

P7

P8

y

12

13

12

13

12

13

12

13
0 1

24

25
1

24

1

24

1

Figure 8: The digraph Q∗ and some of its levels.

37



y1

25 24

12 12

24 24

11

24

1 1

z1 z2 z4 z5

P1 P3

P2

0

P5

P4

P6

13 13

P7

P8 13

z3

x1

Figure 9: The digraph T1 and some of its levels.

initial node of Pi. Finally, we add two new nodes x and y and two new edges: one from x to the
initial node of the copy of P1, and another one from the terminal node of the copy of P8 to y. The
resulting digraph Q∗ and its levels are depicted in Figure 8. Notice that Q∗ is balanced and that
its height, hg(Q∗), is 25. Moreover, the nodes x and y are the only ones in Q∗ with level 0 and 25,
respectively.

We also define acyclic digraphs T1, T2, T3 and T4 as follows: Each Ti, for 1 ≤ i ≤ 4, is obtained
from Q∗ by identifying some specific nodes. For T1 we identify a1, a2 and a3 with a7, a6 and a5,
respectively. In the case of T2 we identify a8, a1 and a2 with a6, a5 and a4, respectively. For T3

we identify a7, a8 and a1 with a5, a4 and a3, respectively. Finally, for T4 we identify a6, a7 and a8

with a4, a3 and a2. Note that for each 1 ≤ i ≤ 4, hg(Ti) = 25 and the nodes xi and yi are the only
ones in Ti with level 0 and 25, respectively, as depicted in Figures 9 and 10.

Since the Ti’s are acyclic, they are by definition balanced. Using Lemma 4.5 and the incom-
parability of the Pi’s, it easily follows that T1, T2, T3 and T4 are incomparable cores. Furthermore,

observe that Q∗ hi−→ Ti for all 1 ≤ i ≤ 4, where hi is the homomorphism naturally defined by the
identification of nodes we used to construct the Ti’s. Note that for each 1 ≤ i ≤ 4, hi is a surjective
homomorphism, i.e., Im(hi) = Ti. Even more, we have the following:

Claim 8.3 For each 1 ≤ i ≤ 4, hi is the unique homomorphism from Q∗ to Ti. In particular, any
homomorphism from Q∗ to Ti is surjective, for each 1 ≤ i ≤ 4.

Proof: Let h be a homomorphism that witnesses Q∗ → T1. We shall prove that h = h1. Since
Q∗ and T1 are balanced, we have that h preserves levels (Lemma 4.5). Thus, either h(a8) = z1,
h(a8) = z3 or h(a8) = z5. If h(a8) = z3 then P8 → P2 or P8 → P6, which is is impossible since the
Pi’s are incomparable. Similarly, if h(a8) = z5 then P8 → P4, which is also not possible. It follows
that h(a8) = z1 = h1(a8). Using the same argument we can prove that h(c) = h1(c), for each other
element c of Q∗. For T2, T3 and T4 the argument is analogous. �

A key property of the Ti’s is the following:

Claim 8.4 For each 1 ≤ i ≤ 4, Q∗ → Ti and there is no acyclic T ′ such that Q∗ → T ′
�� Ti.
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Proof: We only prove the claim for i = 1. For i = 2, 3, 4 the proof is analogous. By contradiction,

assume that there exists an acyclic digraph T ′ such that Q∗ h
−→ T ′ g

−→ T1 and T1 �→ T ′. If
h(a1) = h(a7), h(a2) = h(a6) and h(a3) = h(a5), using Claim 4.8, it follows that T1 → T ′, which is
a contradiction. Thus, we have that either h(a1) �= h(a7), h(a2) �= h(a6) or h(a3) �= h(a5). Using
Claim 8.3, we have that g ◦ h = h1. Notice by definition that the sets {h1(a8)}, {h1(a1), h1(a7)},
{h1(a2), h1(a6)}, {h1(a3), h1(a5)} and {h1(a4)} are mutually disjoint, and hence the sets {h(a8)},
{h(a1), h(a7)}, {h(a2), h(a6)}, {h(a3), h(a5)} and {h(a4)} must be mutually disjoint as well. Since
h(a1) �= h(a7), h(a2) �= h(a6) or h(a3) �= h(a5), necessarily T ′ has an oriented cycle, which is a
contradiction. �

We define an acyclic directed graph T5 as follows: Consider the disjoint union of P1 and P8.
Add two new nodes x5 and y5 and three new edges: from x5 to the initial node of P1, from the
terminal node of P1 to the initial node of P8, and from the terminal node of P8 to y5. Finally,
add two disjoint copies of P9 and identify the terminal node of one copy with the terminal node of
P1, and the initial node of the other copy with the initial node of P8. The resulting graph T5 is
depicted in Figure 11.

Since T5 is acyclic, it is also balanced. Using Lemma 4.5 and the incomparability of the Pi’s, it
easily follows that T5 is incomparable with T1, T2, T3, T4 and Q∗.

Claim 8.5 For each (i, j) ∈ {(1, 5), (2, 5), (3, 5), (1, 2), (1, 3), (2, 3)}, there exists an acyclic digraph
Tij such that Tij → Ti, Tij → Tj, and Tij �→ Tk, for 1 ≤ k ≤ 5 with k �= i and k �= j.

Proof: Consider the oriented path P constructed as follows: Take the disjoint union of P1 and
P8. Add two new nodes p1 and p2, and three new edges: from p1 to the initial node of P1,
from the terminal node of P1 to the initial node of P8, and from the terminal node of P8 to p2.
Each Tij is obtained from P by adding a disjoint copy of a specific path Xij and identifying the
terminal node of Xij with the terminal node of P1, as depicted in Figure 12. The Xij ’s are:
X15 = P79,X25 = P59,X35 = P39,X12 = P57,X13 = P37 and X23 = P35. Using Lemma 4.5 and
Claim 8.1 it can be proved that these Tij ’s satisfy the required conditions. �

Claim 8.6 For each (i, j, k) ∈ {(1, 2, 5), (2, 4, 5), (3, 4, 5)}, there exists an acyclic digraph Tijk such
that Tijk → Ti, Tijk → Tj, Tijk → Tk, and Tijk �→ T� for 1 ≤ � ≤ 5, � �= i, � �= j and � �= k.

Proof: Consider the oriented path P as in the proof of Claim 8.5. The digraph T125 is obtained
from P by adding a disjoint copy of P579 and identifying the terminal node of P579 with the
terminal node of P1. The others Tijk’s are obtained from P by adding a disjoint copy of a path Xijk
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Figure 13: The structure of T245 and T345.

and identifying the initial node of Xijk with the initial node of P8. The Xijk’s are: X245 = P269

and X345 = P249; see Figure 13 . From Lemma 4.5 and Claim 8.2, it follows that these Tijk’s
satisfy the required conditions. �

We introduce some notation. We work with digraphs that have an initial and a terminal node,
which are simply two distinct distinguished elements in the digraph. Consider a digraph G with
two distinguished nodes i1 and t1, which are its initial and terminal node, respectively. Similarly,
consider a digraph H with nodes i2 and t2 distinguished as initial and terminal node, respectively.
We define the concatenation of G and H, denoted G · H, to be the digraph obtained from the
disjoint union of G and H identifying t1 with i2. The initial and terminal node of G · H is i1 and
t2, respectively. Finally, we define G−1 to be the digraph obtained from G by switching the roles
of the initial and terminal nodes, that is, the initial node of G is t1 and the terminal one is i1.

Let us assume now that the initial node of Q∗ is x and its terminal node is y. For each 1 ≤ i ≤ 5,
we also assume that xi and yi are the initial and terminal nodes of Ti, respectively. Similarly, for
each Tij and Tijk defined as in Claims 8.5 and 8.6, respectively, we assume its initial and terminal
nodes to be the only nodes in the respective graphs with level 0 and 25, respectively. In all figures,
an edge uv labeled with a digraph G with initial node i and terminal node t, represents the digraph
constructed as follows: delete the arc uv, add a disjoint copy of G and identify i with u and t with
v.

Let T be the acyclic digraph constructed as follows: Consider the disjoint union of T1 · T−1
5 ,

T2 · T−1
5 , T3 · T−1

5 and T4 · T−1
5 , and identify all of their initial nodes into a single new node v.

Observe that hg(T ) = 25, the only nodes of T with level 0 are v, u1, u2, u3 and u4, and the only
nodes of T with level 25 are t1, t2, t3 and t4. This is shown in Figure 14.

Now we recall the notion of (i, j)-chooser from [26].

Definition 8.7 Let X = {1, 2, 3} and i, j ∈ X be indices. An (i, j)-chooser is a digraph T ∗ with
two distinguished nodes a and b such that:

• For every homomorphism h : T ∗ → T , we have h(a) = t1 and h(b) �= ti, or h(a) = t2 and
h(b) �= tj.
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Figure 15: The choosers S13, S21 and S32.

• For every k ∈ X with k �= i, there is a homomorphism h : T ∗ → T such that h(a) = t1 and
h(b) = tk.

• For every k ∈ X with k �= j, there is a homomorphism h : T ∗ → T such that h(a) = t2 and
h(b) = tk.

An extended (i, j)-chooser is defined exactly as in Definition 8.7, but this time we consider
X = {1, 2, 3, 4}.

Claim 8.8 There exists a (1, 3)-chooser S13, a (2, 1)-chooser S21, and a (3, 2)-chooser S32.

Proof: The digraphs S13, S21 and S32 are shown in Figure 15. Proving that they are indeed
the corresponding choosers it is not hard (and one can in fact mimic the proof of Lemma 4 in [26]). �

We rename the nodes a and b in S13, S21 and S32 to a1, b1; a2, b2 and a3, b3, respectively.

42



x1a b

T12 T125 T345

Figure 16: The extended (2, 1)-chooser S̃21.

Claim 8.9 There exists an extended (2, 1)-chooser S̃21 and an extended (3, 4)-chooser S̃34.

Proof: We define S̃21 = T12 ·T
−1
125 ·T345 and S̃34 = T12 ·T

−1
25 ·T35 ·T

−1
15 · T245 ·T

−1
35 ·T15. For S̃21 and

S̃34, we denote by a the terminal node of their respective copies of T12, and by b their respective
terminal nodes, as illustrated in Figures 16 and 17.

Consider first a homomorphism h : S̃21 → T . It is not hard to see that either h(a) = t1 or
h(a) = t2. Assume first that h(a) = t1. Then either h(x1) = u1 or h(x1) = v. If h(x1) = u1 then
h(b) = t1. If h(x1) = v then either h(b) = t3 or h(b) = t4. Thus, if h(a) = t1, then h(b) �= t2, and
all the following combinations are possible:

(i) h(a) = t1, h(b) = t1; (ii) h(a) = t1, h(b) = t3; and (iii) h(a) = t1, h(b) = t4.

Assume, on the other hand, that h(a) = t2. Then either h(x1) = u2 or h(x1) = v. If h(x1) = u2

then h(b) = t2. If h(x1) = v then either h(b) = t3 or h(b) = t4. Thus, if h(a) = t2 then h(b) �= t1,
and all the following combinations are possible:

(i) h(a) = t2, h(b) = t2; (ii) h(a) = t2, h(b) = t3; and (iii) h(a) = t2, h(b) = t4.

Therefore, S̃21 is an extended (2, 1)-chooser.
Consider now a homomorphism h : S̃34 → T . Again, either h(a) = t1 or h(a) = t2. Assume first

that h(a) = t1. Then h(x1) = u1 and h(x2) = t1, and we have either h(x3) = u1 or h(x3) = v. If
h(x3) = u1 then h(x4) = t1, h(x5) = u1 and h(b) = t1. If h(x3) = v then h(x4) = t2 or h(x4) = t4.
If h(x4) = t2, then h(x5) = u2 and h(b) = t2. If h(x4) = t4 then h(x5) = u4 and h(b) = t4. Thus, if
h(a) = t1, then h(b) �= t3, and all the following combinations are possible:

(i) h(a) = t1, h(b) = t1; (ii) h(a) = t1, h(b) = t2; and (iii) h(a) = t1, h(b) = t4.

Assume, on the other hand, that h(a) = t2. Then we have either h(x1) = u2 or h(x1) = v. If
h(x1) = u2 then h(x2) = t2, h(x3) = u2, h(x4) = t2, h(x5) = u2 and h(b) = t2. If h(x1) = v then
h(x2) = t3, h(x3) = u3 and h(x4) = t3, and we have either h(x5) = u3 or h(x5) = v. If h(x5) = u3

then h(b) = t3. If h(x5) = v then h(b) = t1. Thus, if h(a) = t2, then h(b) �= t4, and all the following
combinations are possible:

(i) h(a) = t2, h(b) = t1; (ii) h(a) = t2, h(b) = t2; and (iii) h(a) = t2, h(b) = t3.

We conclude that S̃34 is an extended (3, 4)-chooser. �

Next we borrow techniques from [26], and define an acyclic graph T ′ as follows: We take the
disjoint union of S13, S21 and S32, and identify their respective terminal nodes b1, b2 and b3 into a
new node b (see Figure 18). The following claim will be useful.
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Figure 17: The extended (3, 4)-chooser S̃34.
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Figure 18: The digraph T ′.

Claim 8.10 There is no homomorphism h : T ′ → T such that h(a1) = h(a2) = h(a3). Fur-
thermore, for any triple (ti, tj , tk) ∈ {t1, t2}

3 \ {(t1, t1, t1), (t2, t2, t2)} there exists a homomorphism
h : T ′ → T such that h(a1) = ti, h(a2) = tj and h(a3) = tk.

Proof: Exactly as in the proof of Lemma 5 in [26]. �

Next, we construct our main gadget T̃ : Let p and q be two fresh nodes. We add two disjoint
copies of T ′, namely, T ′

1 and T ′
2. We rename the nodes a1, a2, a3 and b in T ′

1 to a1
1, a

1
2, a

1
3 and b1,

respectively, and the nodes a1, a2, a3 and b in T ′
2 to a2

1, a
2
2, a

2
3 and b2, respectively. We then add

three disjoint copies of S̃21, namely, S̃1
21, S̃

2
21 and S̃3

21, and for each 1 ≤ i ≤ 3 we rename the nodes
a and b in S̃i

21 to ai
21 and bi

21, respectively. Afterwards, we identify the nodes b1
21 and b2

21 with p,
and b3

21 with q. We also identify, for each 1 ≤ i ≤ 3, the node ai
21 with a1

i . Analogously, we add
three disjoint copies of S̃34, namely, S̃1

34, S̃
2
34 and S̃3

34, and for each 1 ≤ i ≤ 3 we rename the nodes
a and b in S̃i

34 to ai
34 and bi

34, respectively. We then identify the vertices b1
34 and b2

34 with p, and
b3
34 with q. Finally, for each 1 ≤ i ≤ 3, we identify the node ai

34 with a2
i . The resulting digraph T ′

is shown in Figure 19.

Claim 8.11 There is no homomorphism h : T̃ → T such that h(p) = h(q). Furthermore, for
any pair (ti, tj) ∈ {t1, t2, t3, t4}

2 \ {(t1, t1), (t2, t2), (t3, t3), (t4, t4)} there exists a homomorphism
h : T̃ → T such that h(p) = ti and h(q) = tj .

Proof: Assume, for the sake of contradiction, that there exists h : T̃ → T such that h(p) = h(q).
Since S̃21 and S̃34 are extended choosers, either h(a1

1) = h(a1
2) = h(a1

3) or h(a2
1) = h(a2

2) = h(a2
3),

which contradicts Claim 8.10. We only prove the second part of the claim for the pair (t1, t2),
all other cases being similar. We define h : T̃ → T in such a way that h(p) = t1 and h(q) = t2.
We start by defining h(a1

1) = t1, h(a1
2) = t1 and h(a1

3) = t2. We then extend h to the disjoint
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Figure 19: The gadget T̃ .
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copies of S̃21 in T̃ using the definition of extended chooser. Also, we extend h to T ′
1 using Claim

8.10. If we choose (h(a2
1), h(a2

2), h(a2
3)) to be any triple in {t1, t2}

3 \ {(t1, t1, t1), (t2, t2, t2)}, then it
is easy to extend h to the disjoint copies of S̃34 in T̃ . Finally, using Claim 8.10 we extend h to T ′

2. �

Note that the digraph T contains as a subgraph a copy of Ti ·T
−1
5 , for each 1 ≤ i ≤ 4. Abusing

notation, we will say that Ti · T
−1
5 is a subgraph of T , or write Ti · T

−1
5 ⊆ T , for 1 ≤ i ≤ 4. Let Z

be the subgraph of T , defined by the union of T1 · T
−1
5 , T2 · T

−1
5 and T3 · T

−1
5 . From the proof of

Claim 8.11 and Claim 8.9, we obtain the next corollary.

Corollary 8.12 For each pair (ti, tj) ∈ {t1, t2, t3}
2 \ {(t1, t1), (t2, t2), (t3, t3)} there exists a homo-

morphism h : T̃ → T such that h(p) = ti, h(q) = tj, and the image of h is contained in Z.

We can now define the reduction from Exact Four Colorability to Graph Acyclic

Approximation: Given an undirected graph G = 〈V,E〉, the output of our reduction is the
instance (ϕ(G), T ), where ϕ(G) is a digraph and T is the directed acyclic graph we defined before.
The digraph ϕ(G) is constructed as follows: The node set of ϕ(G) is V . For each edge {u, u′} ∈ E,
we add a new disjoint copy of T̃ and identify the node p in T̃ with u and the node q in T̃ with u′.
We then add a new node v0. For each node u ∈ V we add new disjoint copies of Q∗ and T5 (as
defined before), and identify the initial node of Q∗ with v0, the terminal node of Q∗ with u, and
the terminal node of the copy of T5 with u. Figure 20 shows the graph ϕ(G) for a particular graph
G. Clearly, the reduction can be computed in polynomial time in the size of G. We prove next
that G is 4-colorable but not 3-colorable if and only if ϕ(G) → T but there is no proper subgraph
S of T such that ϕ(G) → S.

First, suppose that G = 〈V,E〉 is 4-colorable but not 3-colorable. Since G is 4-colorable, there
exists a 4-coloring c : V → {1, 2, 3, 4} of G. We shall define a homomorphism h : ϕ(G) → T . For
each u ∈ V let h(u) = tc(u). Then for each {u, u′} ∈ E it holds that h(u) �= h(u′) (because c is a

coloring). Using Claim 8.11 we can extend h to all disjoint copies of T̃ in ϕ(G). Finally, we define
h(v0) = v. Notice that the images of the copies of Q∗and T5 in ϕ(G) are completely determined.
For example, if u ∈ V satisfies h(u) = t1, then the copy of Q∗ associated with u has to be mapped
to T1 in T and the copy of T5 associated with u has to be mapped to the copy of T5 in T whose
initial node is u1. We conclude that ϕ(G) → T .

Assume, for the sake of contradiction, that there exists a proper subgraph S of T such that
ϕ(G)

g
−→ S. Then there exists i∗ ∈ {1, 2, 3, 4} such that g(u) �= ti∗ for all u ∈ V . Assume this is not

the case, i.e. for all i ∈ {1, 2, 3, 4} there exists u ∈ V such that g(u) = ti. Consider i = 1 and take
u ∈ V with g(u) = t1. Since hg(ϕ(G)) = hg(S) = 25 we have that g preserves levels, implying that
g(v0) is either v, u1, u2, u3 or u4. Because Q∗ and T5 are incomparable, it follows that g(v0) = v.
This implies that the copy of Q∗ associated to u is mapped via g to the copy of T1 in T . Using
Lemma 8.3, Q∗ is mapped via g in a surjective manner. Also, using again the incomparability
between Q∗ and T5, it follows that the copy of T5 associated with u is mapped via g to the copy of
T5 in T whose initial node is u1. Furthermore, since T5 is a core, this mapping is surjective as well.
Then we conclude that T1 · T

−1
5 is contained in the homomorphic image of g. The same argument

can be mimicked for each i ∈ {2, 3, 4}, and, thus, g is surjective, which implies that S = T , which
is a contradiction. Thus, effectively there exists i∗ ∈ {1, 2, 3, 4}, such that g(u) �= ti∗ for all u ∈ V .
Using Claim 8.11 we have that g(u) �= g(u′) for all {u, u′} ∈ E. This implies that G is 3-colorable,
which is a contradiction.
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Figure 20: The digraph ϕ(G) for the graph G = ({u1, u2, u3, u4}, {{u1, u2}, {u2, u3}, {u2, u4}}).

Assume now that ϕ(G) → T but there is no proper subgraph S of T such that ϕ(G) → S. Since

ϕ(G)
h

−→ T , using Claim 8.11 we can deduce that h(u) �= h(u′) for all {u, u′} ∈ E. Furthermore,
we can define a 4-coloring for G. In fact, we can just take c : V → {1, 2, 3, 4} such that c(u) = i if
and only if h(u) = ti, for each u ∈ V .

Assume, for the sake of contradiction, that there exists a 3-coloring c : V → {1, 2, 3} of G. We
then define a homomorphism g : ϕ(G) → T as follows: First, for each u ∈ V we define g(u) = tc(u).
Since c is a coloring we have that g(u) �= g(u′), for all {u, u′} ∈ E. Using Corollary 8.12, we can
extend g to all ϕ(G) in a way that the homomorphic image of g is contained in Z. But this is a
contradiction since Z is a proper subgraph of T .

Note that as a corollary, we obtain that the following problem is also DP-complete:

Problem: Exact Acyclic Homomorphism

Input: a digraph G, an acyclic digraph T .
Question: Is G → T and G �→ S for every proper subgraph S of T ?

Before proceeding with the proof, we recall the following lemma from [25]:

Lemma 8.13 If G and H are two balanced digraphs such that G → H, then hg(G) ≤ hg(H).

We conclude the DP-hardness result proving the following proposition, that tell us that
(ϕ(G), T ) is actually a reduction from Exact Four Colorability to Graph Acyclic Ap-

proximation.

Proposition 8.14 Let G = 〈V,E〉 be a graph. Then ϕ(G) → T but there is no proper subgraph
S of T such that ϕ(G) → S if and only if ϕ(G) → T but there is no acyclic digraph S such that
ϕ(G) → S �� T .

Proof: The backward direction is trivial using the easily verifiable fact that T is a core. For
the forward direction, assume by contradiction that there exists an acyclic digraph A such that
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ϕ(G)
h

−→ A
g

−→ T and T �→ A. Suppose first that there exists i∗ ∈ {1, 2, 3, 4}, such that g ◦h(u) �=
ti∗ , for all u ∈ V . Using similar arguments as before, we have that G is 3-colorable and then there
exists a proper subgraph S of T such that ϕ(G) → S (in fact, we can take S = Z), which is a
contradiction. Thus, necessarily for each i ∈ {1, 2, 3, 4} there exists u ∈ V such that g ◦ h(u) = ti.

Consider i = 1 and take u ∈ V with g ◦ h(u) = t1. Let Q∗
1 be the copy of Q∗ associated with

u, and let A′ be the homomorphic image of the restriction of h to Q∗
1 . Using the incomparability

of Q∗ and T5, and the fact that g ◦ h preserves levels, it follows that the homomorphic image of
the restriction of g ◦ h to Q∗

1 is exactly T1. This implies that the homomorphic image of A′ via
g is T1. Thus Q∗

1→A′→T1. Using the fact that A′ is acyclic (it is a subgraph of A) and Claim
8.4, we have that there exists a homomorphism g′ : T1 → A′. Let h5 be the restriction of h to
the copy of T5 associated with u. We define a homomorphism r1 from T1 · T−1

5 ⊆ T to A. For
each z in the copy of T1 we define r1(z) = g′(z), and for each z in the copy of T5 we define
r1(z) = h5(z). We prove that r1 is well defined, i.e., g′(t1) = h5(t1). Using Lemma 8.13, we
know that hg(A) = 25, so h preserves levels. Thus, h(u) and h(v0) are the only nodes in A′ with
level 25 and 0, respectively. Again, since hg(A′) = 25 we have that g′ preserves levels, implying
that g′(t1) = h(u) = h5(u) = h5(t1). Notice also that g′(v) = h(v0). Thus, r1 is well defined.
Moreover, it is a homomorphism and r1(v) = g′(v) = h(v0). We can apply the same argument for
each i ∈ {2, 3, 4}, obtaining for each 1 ≤ i ≤ 4 a homomorphism ri from Ti · T

−1
5 ⊆ T to A, such

that ri(v) = h(v0). Finally, we can define a homomorphism r : T → A as follows: First, if u is
in Ti · T

−1
5 , for 1 ≤ i ≤ 4, then r(u) = ri(u). Since v is the only common node of the subgraphs

Ti · T
−1
5 , with i ∈ {1, 2, 3, 4}, and r1(v) = r2(v) = r3(v) = r4(v) = h(v0), r is well defined and it is

a homomorphism, which is a contradiction. �

Finally, we show that Graph Acyclic Approximation is DP-hard even when G and T are
cores and T is fixed. We define a new function ϕ̃ from ϕ, such that for each undirected graph G
it is the case that ϕ̃(G) is a core and G is 4-colorable but not 3-colorable if and only if ϕ̃(G) → T
and there is no acyclic S such that ϕ̃(G) → S �� T . Since T is already a fixed core, this is enough
to prove the result.

First, note that T̃ is not a core, since for each ai
j there are two distinct copies of T12 whose

terminal nodes are identified with ai
j (due to the structure of the choosers S13, S21 and S32). We

modify T̃ and leave only one copy of T12 for each ai
j. Observe that Claim 8.11 is still valid.

Next we introduce some notation. For a set of indices X ⊆ {1, 2, 3, 4, 5}, we denote by TX the
corresponding digraph from Claims 8.5 and 8.6. For example, for X = {3, 5} and X = {1, 2, 5},
TX denotes T35 and T125 from Claims 8.5 and 8.6, respectively. If X = {k}, then TX = Tk. Notice
that TX �→ TY , for each X,Y ⊆ {1, 2, 3, 4, 5} such that Y � X.

Claim 8.15 If h is a homomorphism from T̃ to T̃ such that h(p) = p and h(q) = q, then h is the
identity mapping.

Proof: Using Lemma 4.5, Claim 8.5, Claim 8.6 and the fact that TX �→ TY , for each
X,Y ⊆ {1, 2, 3, 4, 5} such that Y � X, the claim follows by a straightforward case analysis. �

For each n ≥ 1, consider the oriented path Wn = 000(10)n0, illustrated in Figure 21. Notice
that hg(Wn) = 4. For each 1 ≤ k ≤ n we define W k

n to be Wn plus an edge from a new element zk

to xk (an example is depicted in Figure 22). Notice that hg(W k
n ) = 4 as well.
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Figure 21: The digraph Wn and its levels.
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Figure 22: The digraphs W 2
5 and W 5

5 .

Claim 8.16 For each n ≥ 1 the digraphs W k
n (k ∈ {1, ..., n}) are incomparable cores.

Proof: Suppose that W k
n is not a core, for some 1 ≤ k ≤ n. Then there exists W k

n
h

−→ W k
n , where

h is not surjective. Necessarily, h(a) = a, h(b) = b, h(c) = c, h(d) = d and h(e) = e (since h
preserves levels). This implies that h(xi) = xi and h(yi) = yi, for each 1 ≤ i ≤ n (see Figure 22).
Since h(xk) = xk, it must be the case that h(zk) = zk. This implies that h is surjective, which is a
contradiction.

Now, suppose that W k
n

h
−→ W k′

n for k �= k′. Since h preserves levels, we have that h maps
a, b, c, d and e in W k

n to a, b, c, d and e in W k′

n , respectively. This implies that h maps, for each
1 ≤ i ≤ n, xi and yi in W k

n to xi and yi in W k′

n , respectively. Since k �= k′, we have that zk cannot
be mapped in W k′

n via h, which is a contradiction. �

Consider the digraph S as defined in Figure 23. Recall that �Pk = 0k, P6 = 07105 and P8 = 09103.
The oriented path P135 is from Claim 8.2.

For each n ≥ 1 and 1 ≤ k ≤ n, we define the digraph Sk
n as follows: Take S and replace the

directed path of length 4 in S that starts at z′ and ends at z by a copy of W k
n , identifying a with

z′ and renaming e to z (see Figure 24). Observe that W k
n → �P4, thus Sk

n → S.

Claim 8.17 For each n ≥ 1 the digraphs Sk
n (k ∈ {1, ..., n}) are incomparable cores.
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Figure 24: The digraph Sk
n.

Proof: Follows easily from Lemma 4.5, Claim 8.16 and the fact that P6 and P8 are incomparable. �

Now we define our main construction. Consider an undirected graph G and let u1, u2, ..., un be
an arbitrary enumeration of its nodes. We define ϕ̃(G) to be ϕ(G), where, in addition, for each
1 ≤ k ≤ n we add a disjoint copy of Sk

n and identify z in Sk
n with uk. Clearly, ϕ̃(G) can be computed

in polynomial time in the size of G. To conclude, we prove the following proposition:

Proposition 8.18 For every undirected graph G, the digraph ϕ̃(G) is a core. Furthermore, G
is 4-colorable but not 3-colorable if and only if ϕ̃(G) → T and there is no acyclic S such that
ϕ̃(G) → S �� T .

Proof: Let G be an undirected graph and h a homomorphism from ϕ̃(G) to ϕ̃(G). We shall
prove that h is surjective, implying that ϕ̃(G) is a core. Recall that u1, ..., un is an enumeration
of the nodes of G, which are by definition contained in ϕ̃(G). We have that h(uk) = uk, for each
1 ≤ k ≤ n. Indeed, since h preserves levels, we know that h maps uk to ul, for some 1 ≤ l ≤ n, or
maps uk to some node in a copy of T̃ with level 25. Using the facts that Q∗ �→ TX , for some X
that contains element 5 (since Q∗ �→ T5) and TX �→ TY , for Y � X, we can easily show that the
second case is not possible, since we have copies of T345 (from S̃21), T15 (from S̃34) and Q∗ whose
terminal nodes are identified with uk, as shown in Figure 25. For example, h cannot map uk to
a1

1, otherwise T345 → T12, T345 → T15 or T345 → T125. Similarly, h cannot map uk to b1, otherwise
Q∗ → T15, Q∗ → T25 or Q∗ → T35 (see Figure 25). For the other nodes in T̃ with level 25, we have
similar contradictions.

Thus, h maps uk to ul, for some 1 ≤ l ≤ n. We shall show that l = k. Indeed, suppose that
l �= k. Since h preserves levels and the only node with level 25 in the copy of Sk

n whose terminal
node is uk, is precisely uk, we have that h maps this copy of Sk

n either to a copy of Q∗, T345, T15,
T5 or Sl

n, whose terminal node is ul. Suppose that h maps the copy of Sk
n to the copy of Q∗.

Necessarily, h maps w in Sk
n to a7 in Q∗ (see Figures 24 and 7). This implies that P135 → P7, which

50



T345
T5

Q∗

uk

Sk
n

a1
1

T125

T12

T15

T15

T35

T25
b1

T15

Figure 25: The node uk and a copy of T̃ .

is a contradiction with Claim 8.2. Now, suppose that h maps the copy of Sk
n to the copy of T5. It

follows that h maps w′ in Sk
n to the initial node of the copy of P8 in T5, implying that P6 → P8 or

P6 → P9 (Figures 24 and 11), which is a contradiction. The cases when the copy of Sk
n is mapped

to T345 or T15 lead a contradiction as well, since T345 → T5 and T15 → T5. Finally, suppose that h
maps the copy of Sk

n to the copy of Sl
n whose terminal node is ul. It follows that Sk

n → Sl
n, which

contradicts Claim 8.17. In any case we have a contradiction, thus l = k and h(uk) = uk, for each
1 ≤ k ≤ n.

Now, observe that for each 1 ≤ k ≤ n, the copies of T5 and Sk
n whose terminal node is uk have to

be mapped via h to themselves, in a surjective manner. Moreover, h(v0) = v0, otherwise Q∗ → T5,
Q∗ → T15 or Q∗ → T345, which is a contradiction. This implies that h maps all disjoint copies of
Q∗ to themselves, in a surjective manner as well. Finally, observe that h maps all the copies of
T̃ to themselves too. Indeed, using the facts that h preserves levels, TX �→ TY , for Y � X, and
h(uk) = uk, for each 1 ≤ k ≤ n, we can easily show that h maps each node in a copy of T̃ to a
node inside the same copy of T̃ . Thus, we can use Claim 8.15, to conclude that h maps all copies
of T̃ to themselves in a surjective manner, implying that h is actually surjective. This proves that
ϕ̃(G) is a core.

Finally, observe that for each 1 ≤ i ≤ 4 and 1 ≤ k ≤ n, there is a homomorphism gi from Sk
n

to Ti such that gi maps the node z in Sk
n to the terminal node of Ti. Thus, if we are constructing

a homomorphism from ϕ̃(G) to T , for any values of the images of the uk’s, we can always define
images for the copies of the Sk

n’s. Therefore, we can use exactly the same arguments as in the
proofs of the correctness of ϕ and Proposition 8.14. �

This finishes the proof of Theorem 4.12.
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