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Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; D.3.3
[Programming Languages]: Language Constructs and Features—
Concurrent programming structures

General Terms Languages, Algorithms, Performance

Keywords Structured Parallelism, Algorithmic Skeletons, Paral-
lel Language Constructs, Patterns, Computational Grids

Introduction
Algorithmic skeletons [3] abstract commonly-used patterns of par-
allel computation, communication, and interaction. They provide
top-down design composition and control inheritance throughout
the whole structure. Parallel programs are expressed by interweav-
ing parameterised skeletons analogously to the way sequential
structured programs are constructed [4, 8].

This design paradigm, known as structured parallelism, pro-
vides a high-level parallel programming method which allows the
abstract description of programs and fosters portability. That is to
say, structured parallelism requires the description of the algorithm
rather than its implementation, providing a clear and consistent
meaning across platforms while their associated structure depends
on the particular implementation. By decoupling the structure from
the meaning of a parallel program, it benefits entirely from any per-
formance improvements in the systems infrastructure.

Computational grids [5] have long posed a challenge to known
distributed systems programming techniques as a result of inherent
heterogeneity and dynamism. Over the last decade, their study
has constituted an evolving field in computer science, and the
associated programming frameworks have incorporated assorted
paradigms such as program composition, derivation, construction,
and transformation [1, 2].

Algorithmic skeletons possess a crucial property which favours
performance optimisation: their structured and predictable mean-
ing for a given program. Nevertheless, little research has been con-
ducted on improving performance by actively using this informa-
tion from a systems infrastructure perspective.

By identifying the intrinsic properties of an algorithmic skele-
ton, which capture its essence and distinguish it from the rest, the
GRASP methodology enables its instrumentation and indeed its
adaptivity. Current skeletal libraries have not used these properties
to predict the execution of a skeletal program. We argue that by
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Figure 1. The four-phase GRASP methodology

identifying and instrumenting these properties, a structured paral-
lelism program will be able to adapt to the dynamic grid conditions
over time by steering its execution.

Hence, the main objective of this work is to address the open
question:

How much can the structural forecasting information of
structured parallelism help to improve the performance of
parallel applications executing in a non-dedicated distrib-
uted heterogenous system (computational grid)?

The key challenges in improving such performance include the
correct selection of resources (processors, links) from amongst
those available, the correct adjustment of algorithmic parameters
(for example, blocking of communications, granularity) and most
importantly, the ability to adapt all of these factors dynamically in
the light of evolving external pressure on the chosen resources.

The main difference to other performance approaches is that
GRASP intends to be oriented toward structured parallelism,
adaptable by construct, and focused on empirical, system in-
frastructure methodologies.

GRASP currently comprises two algorithmic skeletons, task
farm [6] and pipeline [7], programmed as APIs in ANSI C.

GRASP Methodology
GRASP is a generic methodology to incorporate structural infor-
mation into a parallel program at compile time that helps it to adapt
at execution time. It instruments the program with a series of prag-
matic rules embedded in the algorithmic skeletons, which depend
on particular performance thresholds based on the nature of the
skeleton, the computation/communication ratio of the program, and
the availability of grid resources. As illustrated in Fig. 1, GRASP
comprises four phases: programming, compilation, calibration, and
execution.
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Programming is a design phase in which the application pro-
grammer selects a suitable skeleton in order to parallelise an algo-
rithm and interacts with GRASP through standard application pro-
gramming interfaces. Since structured parallelism provides a high-
level approach to programming, the programmer only requires to
additionally supply the initialisation and termination calls for the
parallel environment.

The criterion to choose a skeleton depends entirely on the na-
ture of the parallel algorithm in hand. The programmer identifies
the most suitable pattern to address the computational and commu-
nication requirements of the algorithm.

Next, the programmer needs to parameterise the API calls to
GRASP. This parametrisation is crucial to stamp the algorith-
mic skeleton with correct meaning for the given problem instance.
Then, the structured parallelism program is compiled and linked
with the GRASP code, the parallel environment, and, if any, the
resource monitoring library.

This parallel environment handles the underlying metacom-
puter/computational grid, including the node initialisation, grid re-
source co-allocation, inter-domain scheduling, and other infrastruc-
ture matters.

Both stages are static since they do not require any online
interaction or feedback from the underlying platform.

The calibration is an autonomic stage, which executes a sample
of the data on every allocated node, extrapolating the node perfor-
mance in order to select the fittest nodes for the given computation
under the current resource conditions. That is to say, the selection
of the fittest nodes depends entirely on the resource usage of the
platform at the start of execution.

Nodes are ranked by extrapolating their performance based on
the execution times only (the faster a node the fitter it is), or
on statistical functions, such as univariate and multivariate linear
regression involving execution time, processor load, and bandwidth
utilisation. This ranking involves the actual execution of the given
set of functions on the complete processor pool.

Data: F : Set of Functions;
P : Number of nodes;

Result: Chosen: Table of fittest processing elements;

Execute F over P nodes concurrently;
Set t← execution times(F);
if root node then

Collect t from P nodes into T ;
if Statistical Calibration then

Collect processor and bandwidth values;
Adjust T statistically;

end
Rank P by extrapolating performance based on T ;
Select Chosen from P ;
Send Chosen

else
Send time from this node to root node;
Receive Chosen;

end

Algorithm 1: Calibration Algorithm

The calibration procedure, as shown in Algorithm 1, accounts
for the initial task-to-node allocation based on the intrinsic prop-
erties of the algorithmic skeleton. It provides the initial conditions
for execution of the parallel program. It is relevant to mention that
the processing performed during the calibration contributes to the
overall job.

Once the fittest nodes are allocated at calibration, the execu-
tion phase monitors periodically the grid conditions and adapts
the workload, i.e., if it encounters a performance bottleneck it is
addressed according to the inherent properties of the algorithmic
skeleton as illustrated by Algorithm 2.

Data: F : Set of Functions;
Chosen: Table of fittest nodes;
Z:Performance threshold

Result: A: Adaptive Process;

while ¬ Recalibration do
Execute F over Chosen nodes concurrently;
Set t← execution times(F);
if monitor node then

Collect t from Chosen nodes into T ;
if min T > Z then

Set Recalibration← true;
end

else
Send time from this node to monitor node;

end
end

Algorithm 2: Execution Algorithm

By using the performance threshold while recording the exe-
cution times of the given functions, the skeleton adapts to the in-
frastructure by allowing performance variations up to the threshold.
Once the threshold is reached, the skeleton takes action, e.g., feed-
ing back to the calibration phase and/or modifying the task schedul-
ing according to the inherent properties of the skeleton in hand.

Note that both stages are dynamically determined since their
behaviour varies according to the overall workload and the resource
conditions.
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