
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep Type Inference for Mobile Functions

Citation for published version:
Gilmore, S 2000, 'Deep Type Inference for Mobile Functions'. in PW Trinder, G Michaelson & H-W Loidl
(eds), Selected papers from the 1st Scottish Functional Programming Workshop (SFP99), University of
Stirling, Bridge of Allan, Scotland, August 29th to September 1st, 1999. Trends in Functional Programming,
Intellect Ltd , pp. 41-49.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
Selected papers from the 1st Scottish Functional Programming Workshop (SFP99), University of Stirling, Bridge
of Allan, Scotland, August 29th to September 1st, 1999

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/deep-type-inference-for-mobile-functions(a080ced1-bc65-40ad-82d4-6fe018170c42).html


Chapter 1

Deep type inference for mobile
functions
Stephen Gilmore1

Abstract: We consider the problem of assessing the trustworthiness of mobile
code. We introduce the idea of deep type inference on compiled object code and
explain its usefulness as a method of deciding the level of security management
which a unit of mobile code will require.

1.1 INTRODUCTION

The mobile agent paradigm is emerging as a leading programming paradigm for
the next generation of networked computing architectures. A mobile agent can be
deployed for evaluation of a computation on a remote host. This remote evalua-
tion can both improve data locality and make economical use of available network
resources. However, the only reasonable security policy for a computational re-
source provider to adopt is one which considers all computations of non-local ori-
gin to be potentially hostile. Thus programming languages such as Java [AG98]
where the notion of mobility is native to the language enforce sandboxing of
mobile code. This prevents anti-social behaviour such as the creation and dele-
tion of local files, sending and receiving electronic mail and making network con-
nections other than back to the point of origin of the mobile code. The Java
language provides degrees of programmer-definable control over the amount of
liberty which mobile code is allowed. The programming abstraction in the Java
language which is responsible for enforcing the sandboxing of non-native code is
called a security manager.
In those cases where the code comes from a trusted host, it may be possible to

allow the degree of sandboxing to be relaxed by installing a more liberal security
1Laboratory for Foundations of Computer Science, The University of Edinburgh,

King’s Buildings, Edinburgh, EH9 3JZ, Scotland; Phone: +44 (0)131-650-5189; Fax: +44
(0)131-667-7209; Email: Stephen.Gilmore@ed.ac.uk

1



manager. However, in the general case, it is still always necessary in Java to apply
complete sandboxing to mobile code from an untrusted source. This sandboxing,
and the degree of attendant indirection of execution of system functions which
goes with it, only serves to be an unnecessary computational overhead in the cases
where the mobile code actually has no potential for harmful behaviour.
The same reasoning applies in the case of the use of an untrusted library of

potentially side-effecting functions. A mobile agent might wish to exploit data
locality by using a local copy of a library. However, if the agent also wishes to
retain control of its state it could employ a state manager which passes copies of
mutable data values to library functions, discarding these copies on completion of
the function invocation, on the assumption that they may have been altered by a
side-effect of the function invocation. In the object-oriented programming model
objects are routinely passed as parameters to method invocations. Here, the atten-
dant object cloning and production of garbage which will require collection later
could impose a significant performance penalty on a mobile agent. As was the
case with the use of a Java security manager, this attendant performance penalty
is entirely unnecessary when the local copy of the library actually has no potential
for harmful behaviour.
The detection of harmful behaviour can be formulated as a type inference prob-

lem which is applied to the object code which is produced from some high-level
source. We term this inference of deep types in contrast to the inference of shal-
low types performed on source code expressed in high-level languages such as
Standard ML [MTHM97]. The deep types which are produced from this type
inference extend traditional shallow types by including a static representation of
any reads and stores which may be performed on non-local variables. For any
pure function, the shallow and deep types will be equal but for an impure func-
tion they will not. Deep types are purely internal and serve as an abstract typing
valuation within the run-time interpreter. Thus, in pointed contrast to the shallow
types of Standard ML, a deep type is never seen by an application programmer.
We present examples in the setting of Java byte code which show that this

form of type inference is applicable to byte code which is either of functional or
imperative origin. We use the MLj compiler [BKR98] to compile Standard ML
code to Java byte code and compare this with the code which is produced from
Java source by Sun’s javac compiler. We show that even untrusted code which
assigns only to local variables can be allowed to run unrestricted without incurring
the overhead of a security manager. The benefits which arise from the functional
programming paradigm are seen to come from the disciplined control of state.
The use of a purely functional language can be seen as one which has entirely
suppressed the use of state.

1.2 COMPILING TO JAVA BYTE CODE

The widespread availability of implementations of the Java Virtual Machine has
encouraged implementors of other programming languages to target Java byte
code as a form of portable assembly language. Of interest to the functional

2



programming community in particular are compilers which produce Java byte
codes from Standard ML [BKR98, BK99] and from Haskell [PH97, Wak98].
Comparing compilation units for Standard ML and Java, as shown in Figure 1.1,

signature Fac =
sig

val fact : int -> int
end;

structure Fac :> Fac =
struct

fun fac (n, m) =
if n = 0
then m
else

fac (n - 1, m * n)

fun fact n =
fac (n, 1)

end;

class Fac {
private int m;

private int fac (int n, int m){
while (n != 0) {

m *= n;
n--;

}
return m;

}

public int fact (int n) {
m = 1;
return fac (n, m);

}
}

FIGURE 1.1. A Standard ML structure and a Java class

we have a Standard ML structure in one case and a Java class in the other. A
Standard ML structure may be accompanied with a signature which identifies the
components of the structure which are to be accessible outside the structure body
via long identifiers such as the function Fac.fact in this case. The Java pro-
gramming language provides control of visibility and encapsulation through the
use of the access control modifiers public, private and protected. The
Java class defines a method fact() which object instances of the class Fac will
provide. The two example code fragments in Figure 1.1 are both representative in
the sense that the Standard ML example contains no assignments and defines the
function recursively whereas the Java version uses updates and a loop to compute
the same results (ignoring different behaviour on numeric overflow).
The two code fragments also have a common point of comparison in the func-

tion fac and the method fac(). Neither are visible outside their respective
compilation units although they do of course occupy space in their compiled rep-
resentations. A Java disassembler such as Sun’s javap provides a convenient
way to inspect these compiled representations. A representative extract of the
byte code produced from these compilation units is shown in Figure 1.2.
As might be expected, it becomes difficult after compilation to determine

which bytecodes resulted from the functional Standard ML input and which re-
sulted from the imperative Java input. Both compiled representations include
loads (iload instructions) and stores (istore instructions) and both contain

3



Method int fac(int,int)
0 goto 19
3 iload_1
4 ireturn
5 iconst_0
6 istore_2
7 iload_2
8 ifne 3

11 iload_1
12 iload_0
13 imul

14 istore_1
15 iload_0
16 iconst_m1
17 iadd
18 istore_0
19 iload_0
20 ifne 5
23 iconst_1
24 istore_2
25 goto 7

Method int fac(int,int)
0 goto 10
3 iload_2
4 iload_1
5 imul
6 istore_2
7 iinc 1 -1
10 iload_1
11 ifne 3
14 iload_2
15 ireturn

FIGURE 1.2. Java byte code extracts

conditional and unconditional jumps (the ifne and goto instructions). In fact,
the bytecodes on the left come from the Standard ML source and the bytecodes
on the right come from the Java source.
In order to see how deep type inference can allow us to distinguish code with

the potential to update non-local variables from code with no such potential we
first need to understand the role of types in the Java Virtual Machine. The Java
Virtual Machine is a typed abstract machine. The types which it directly supports
correspond to a subset of the Java types. We cannot reconstruct the Java type of
a method from its compiled bytecodes. Neither is it possible to reconstruct the
principal type of a Standard ML function since the JVM provides no support
for the expression of parametric polymorphism in routines. However, we are
seeking to establish here instead the presence or absence of potential side-effects
in the execution of a compiled JVM bytecode sequence and to identify the object
fields which could potentially be modified by a method call. We term the formal
expression of this information the deep type of a method.
We identify a representative subset of the Java bytecodes which we will term

JVMLd . The operational semantics of this subset is presented in Figure 1.3.
Tuples of machine states contain a program counter i, a total map f which maps
local variables from the set VAR to values, and an operand stack s.
We use the variables m to range over any object type and write O m for the set

of values of that type. A particular object value from that set will be denoted
by o or ol. We use ol solely to denote locally generated object accessors, meaning
that they are generated by this method invocation instead of being passed in as
parameters. We write Unused o f s to abbreviate o s o Rng f .
In defining the static semantics of the language as presented in Figure 1.4

we begin by identifying semantic objects which shadow the roles of the state
function f and the operand stack s which are found in the dynamic semantics. We
name the corresponding static semantic objects F and S. The former is a mapping
from addresses to functions which map local variables to types. The latter is a
mapping from addresses to stack types. Thus Fi y is the type of local variable y

4



P i
P i f n s i 1 f n 1 s

P i
P i f v s i 1 f s

P i
P i f s i 1 f 0 s

P i x
P i f s i 1 f f x s

P i x
P i f v s i 1 f x v s

P i o x
P i f s i 1 f f o x s

P i o x
P i f v s i 1 f o o x v s

P i L
P i f 0 s i 1 f s

P i L n 0
P i f n s L f s

P i L
P i f s L f s

P i m ol Ompc Unused ol f s
P i f s i 1 f ol s

FIGURE 1.3. JVMLd operational semantics

5



at line i of the program and Si is the type of the operand stack at the same place.
Our interest here has been in formulating the deep type for a function or

method. We use the variableD to range over deep typings. These are purely static
semantic objects which have no counterpart in the dynamic semantics. When
we use such a static semantic object to accumulate the deep typing information
from the method body we manipulate it as a stack onto which information is only
pushed. The stack never decreases in size as we investigate the instructions in the
body of the method. It is possible that no information is added as we go from line
i to the following line (Di+ 1 Di). In the significant cases we haveDi+ 1 d Di
where pushing d onto the top of the stack records either reading field x of object o
at a particular type or writing field x of object o at a particular type. The tags
and are used to distinguish reading from writing.
We regulate the correct use of the program counter by checking the success-

ful progression through to the next instruction in most cases. Exceptionally, the
goto and halt instructions do not need this test since the immediately follow-
ing instruction is not reached in either case. The if instruction has two possible
destinations, both of which must be checked. This gives rise also to two possible
subsequent semantic values for each of the functions for state typing, stack typing
and deep typing.

1.3 UNDERSTANDING THE STATIC SEMANTICS

To explore the static semantics further we select one of the rules to consider in
greater depth. As our illustrative example we consider the rule for the
instruction.

P i o x
o Dom Fi
x Dom Fi o

Fi + 1 Fi o o x o
Si o Si+ 1

Di + 1 o x o Di
i 1 Dom P
F S D i P

This rule is applicable when instruction i of the program P (denoted P i ) is
o x. This instruction pops the value on top of the operand stack S and
writes it to field x of object o. Of course, o must be an object in the store typing
at line i (that is, o Dom Fi ) and x must be one of its fields at this position (that
is, x Dom Fi o , treating objects as environments themselves.
The value on top of the operand stack will have some type, say o, and the

operand typing stack will be popped by this instruction (that is, S i o Si+ 1).
Because the value of this type is written to field x of object o this will cause a
change in the store typing for the next instruction so that the typing associated
with x in o will now be o. The new typing for o itself is o x o and the entry
for o in Fi is updated to reflect this change.

6



P i
Fi+ 1 Fi

Si + 1 Si INT _
Di+ 1 Di

i 1 Dom P
F S D i P

P i L
Fi+ 1 FL Fi

Si INT Si+ 1 INT SL
Di+ 1 DL Di
i 1 Dom P
L Dom P
F S D i P

P i
Fi+ 1 Fi
Si o Si + 1
Di+ 1 Di

i 1 Dom P
F S D i P

P i
Fi + 1 Fi

Si+ 1 INT Si
Di + 1 Di

i 1 Dom P
F S D i P

P i x
x Dom Fi
Fi+ 1 Fi

Si+ 1 Fi x Si
Di+ 1 Di

i 1 Dom P
F S D i P

P i x
x Dom Fi

Fi+ 1 Fi x o
Si o Si+ 1
Di+ 1 Di

i 1 Dom P
F S D i P

P i o x
o Dom Fi
x Dom Fi o
Fi + 1 Fi

Si+ 1 Fi o x Si
Di + 1 o x Fi o x Di

i 1 Dom P
F S D i P

P i o x
o Dom Fi
x Dom Fi o

Fi+ 1 Fi o o x o
Si o Si + 1

Di+ 1 o x o Di
i 1 Dom P
F S D i P

P i
F S D i P

P i L
FL Fi
SL Si
DL Di

L Dom P
F S D i P

P i m
Fi+ 1 Fi
Si+ 1 mi Si
Di+ 1 Di
mi Si

mi Rng Fi
i 1 Dom P
F S D i P

FIGURE 1.4. JVMLd static semantics

7



We wish to record in the deep typing that a value of type o can be written to
field x of object o so we have a deep typing entry o x o for this. The stack of
these typings is then increased to record this new information

Di+ 1 o x o Di

Finally, control will progress to the next instruction in the program, so it is impor-
tant to check that this progression does not overflow the program counter (that is,
i 1 Dom P ).

1.4 USING DEEP TYPES TO DETECT UNCHECKED UPDATES

Having presented the static semantics for JVMLd we are now able to consider the
use of deep type inference on a simple example. In Figure 1.5 we present three
different implementations of a simple function to add one to an integer reference
value.

fun add1a x = fun add1b x = fun add1c x =
!x + 1; (x := !x + 1; let val y = ref(!x)

!x); in y := !y + 1; !y
end;

FIGURE 1.5. Three Standard ML functions

The first, add1a, is a pure function. It dereferences an integer reference value
(the StandardML dereference operator is !) and returns the successor of the value
which is stored in the reference cell. The second, add1b, has the side-effect of
incrementing the reference value which it is passed so that successive calls of the
function with the same argument will return different results. The third, add1c,
makes a local copy of the reference value, increments this local copy, and returns
the result.
Standard ML assigns to all three of these functions the same shallow type,

namely int ref -> int. The supplementary deep typing information which
we can derive from the compiled bytecode representation of these functionsmakes
clear that the function add1b could not be used as a direct replacement for either
of the others. The deep type for that function will include a record that field x
of the first object parameter to the compiled representation of the function will
be updated at type INT. By using deep type inference to detect potential updates
of local state by code which has been downloaded from an untrusted source an
application program can protect its correct functioning from potentially malicious
updates to accessible store. In contrast, if deep type inference finds a unit of
downloaded code to consist only of pure functions or impure functions which only
update their own local state then such code may be allowed to execute without any
supervisory overhead.

8



The deep type information which we derive is comprehensive in that it gives
details about reads and updates of each argument to a function invocation. Even
in call-by-value languages such as Standard ML and Java a function might use
derefrencing to update one of its arguments. Since the deep type of the function
will tell us exactly which arguments are (potentially) updated we can arrange
to copy only those values which might be overwritten and restore their original
values after the function call terminates. We can impose this form of protection
from accidental or malicious update of our private storage locations economically
because we copy only those values which might be overwritten. In the best case
we can determine that no values will be overwritten and we need copy no values
at all.

1.5 RELATED WORK

Because security properties must ultimately be verified on Java bytecode, the im-
portance of thoroughness here was identified early by authors interested in the
subject [DFW96]. The absence of a formal description of the type system for
Java bytecode was an obvious source of concern. Another was the deviation
of Java bytecode type-checking from traditional type-checking where the type-
correctness of a construct depends upon the current typing context, the type-
correctness of subexpressions, and whether the construct is typable by one of a
fixed set of rules. In contrast, the Java bytecode verifier must show that all possi-
ble execution paths lead to the same virtual machine configuration.
A compelling type system for Java bytecode subroutines has previously been

given by Stata and Abadi [SA98]. Their main theorem shows that for methods
expressed in a subset of Java’s bytecodes (JVML0) when method execution stops
it is because of a halt instruction and not program counter overflow or violation
of an instruction precondition. Further, the operand stack, with the return value on
top, is well-typed. This work has been continued by Hagiya and Tozawa [HT98]
and by Freund and Mitchell [FM98] leading in the latter case to the detection of
a previously unknown bug in the Sun JDK 1.1.4 bytecode verifier. Other work
by Qian [Qia99] is being developed and may lead to the first provably-correct
implementation of the JVM bytecode verifier [CGQ98].

ACKNOWLEDGEMENTS

Stephen Gilmore is supported by the ‘Distributed Commit Protocols’ grant from
the EPSRC and by Esprit Working group FIREworks. It is a pleasure to thank the
anonymous referees for many insightful comments which led to improvements in
this paper.

REFERENCES

[AG98] K. Arnold and J. Gosling. The Java Programming Language. Addison-
Wesley, Second edition, 1998.

9



[BK99] N. Benton and A. Kennedy. Interlanguage working without tears: Blending
SML with Java. In Proceedings of the 4th ACM SIGPLAN International
Conference on Functional Programming, Paris, France, September 1999.

[BKR98] N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java
bytecodes. In Third ACM SIGPLAN International Conference on Functional
Programming, pages 129–140, Baltimore, 1998.

[CGQ98] A. Coglio, A. Goldberg, and Z. Qian. Toward a provably-correct implemen-
tation of the JVM bytecode verifier. Kestrel Institute, Palo Alto, California,
July 1998.

[DFW96] D. Dean, E.W. Felten, and D.S. Wallach. Java security: From HotJava to
Netscape and beyond. In IEEE Symposium on Security and Privacy, Oak-
land, California, May 1996.

[FM98] S. Freund. and J.C. Mitchell. A type system for object initialization in the
java bytecode language. In ACM Symp. Object-oriented Programming: Sys-
tems, Languages and Applications (OOPSLA), 1998.

[HT98] M. Hagiya and A. Tozawa. On a new method for dataflow analysis of Java
Virtual Machine subroutines. In SIG-Notes, PRO-17-3, pages 13–18. Infor-
mation Processing Society of Japan, 1998.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Stan-
dard ML: Revised 1997. The MIT Press, 1997.

[PH97] J. Peterson and K. Hammond, editors. Haskell 1.4: A non-strict purely func-
tional language. The Haskell Committee, April 1997.

[Qia99] Z. Qian. A Formal Specification of Java Virtual Machine Instructions for Ob-
jects, Methods and Subroutines, chapter 8 of Formal Syntax and Semantics
of Java. Springer-Verlag LNCS 1523, 1999.

[SA98] R. Stata and M. Abadi. A type system for Java bytecode subroutines. Tech-
nical Report 158, Digital Equipment Corporation Systems Research Center,
June 1998. To appear in ACM Transactions on Programming Languages and
Systems.

[Wak98] D. Wakeling. Mobile Haskell: Compiling lazy functional programs for the
Java Virtual Machine. In Proceedings of the 1998 Conference on Program-
ming Languages, Implementations, Logics and Programs (PLILP’98), vol-
ume 1490 of LNCS, pages 335–352. Springer Verlag, September 1998.

10


