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Abstract. Stochastic process algebras such as PEPA provide ample
support for the component-based construction of models. Tools compute
the numerical solution of these models; however, the stochastic process
algebra methodology has lacked support for the specification and cal-
culation of complex performance measures. In this paper we present a
stochastic modal logic which can aid the construction of a reward struc-
ture over the model. We discuss its relationship to the underlying theory
of PEPA. We also present a performance specification language which
supports high level reasoning about PEPA models, and allows queries
about their equilibrium behaviour. The meaning of the specification lan-
guage has its foundations in the stochastic modal logic. We describe the
implementation of the logic within the PEPA Workbench and a case
study is presented to illustrate the approach.

1 Introduction

It has long been recognised that whilst Markovian models of simple computer
systems can be constructed without explicit notational support, for complex sys-
tems use of some high-level modelling formalism becomes essential. A variety of
formalisms exist, for example queueing networks [1], generalised stochastic Petri
nets (GSPN) [2], stochastic activity networks (SAN) [3] and stochastic process
algebras (SPA) [4]. Unfortunately corresponding high-level notational support
has not been developed for querying models and checking performance specifi-
cations will be met. At best, some support for constructing a reward structure
which captures the desired measure is provided.

In this paper we use Performance Evaluation Process Algebra (PEPA) [4],
a compact formal language for modelling distributed computer and telecommu-
nications systems. PEPA models are constructed by the composition of compo-
nents which perform individual activities or cooperate on shared ones. Using such
a model, a system designer can determine whether a candidate design meets both
the behavioural and the temporal requirements demanded of it. Markovian SPA,
such as PEPA, are enhanced with information about the duration of activities
and, via a race policy, their relative probabilities. Several such languages have
appeared in the literature; these include PEPA [4], TIPP [5] and EMPA [6].
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Essentially these all propose the same approach to performance modelling: a
corresponding continuous time Markov chain (CTMC) is generated via a struc-
tured operational semantics; linear algebra can then be used to solve the model
in terms of equilibrium behaviour. This behaviour is represented as a probability
distribution over all the possible states of the model.

This distribution is seldom the ultimate goal of performance analysis; instead
the modeller is interested in performance measures which must be derived from
this distribution via a reward structure defined over the CTMC [7]. A recent
case study by first-time users of PEPA [8] reported that a significant proportion
of the effort was spent in deriving the performance measures once steady state
analysis was complete.

The study of temporal and modal logics in conjunction with process alge-
bras is well-established. These logics express properties of systems which have a
number of states, and in which there is a relation of succession. A modal logic is
used to express finite behaviour. In a temporal logic one or more operators are
introduced allowing reasoning to be carried out over infinite behaviour. Over the
last decade, process algebras have been extended to capture additional informa-
tion about systems, such as the relative probability of choices and the timing
of actions. Analogously, extensions have been made to the syntax of the logics
which allow properties to be expressed which reflect the additional information
being captured [9–12].

Here we present a stochastic modal logic and explain how it may be used
to specify performance measures over a PEPA model. The logic has several
attractive features:

– it expresses properties in a high-level manner, focusing on the possible be-
haviours of the model rather than the states;

– properties expressed in this way remain invariant under model transforma-
tions such as automatic aggregation;

– a specification can be constructed in a compositional manner reflecting the
compositional structure of the model.

Since we are interested in steady state behaviour it is perhaps surprising that
we use a modal, and not a temporal, logic. However, as we will explain, we
have found that a modal logic is sufficient for specifying a reward structure
over a model assumed to be in equilibrium. This approach to specifying per-
formance measures over PEPA models has been incorporated into the PEPA
Workbench [13]. Finally, recognising that the logic expressions may be intimi-
dating to some users, we have developed a high-level model query language. This
language has foundations in the stochastic logic.

Earlier work by Clark proposed the use of a modal logic to define the reward
structure over a PEPA model [14]. While demonstrating feasibility, this work
suffered from a major drawback. The logic used did not include any represen-
tation of the timing aspects of PEPA and consequently does not have a clear
relationship to the equivalence relations which have been established for the lan-
guage, such as strong equivalence. In the current work we address this problem
by developing a stochastic logic which takes full account of the random variables



used to represent the duration of activities in PEPA. An earlier version of this
work appeared in [15]. Our reward language has now been extended to take ad-
vantage of the compositional structure of models. Moreover, in this paper, we
additionally describe the implementation of the approach and illustrate it using
a more substantial case study.

In the next section we give a succinct summary of the PEPA language and
motivate the need for a formal notation for specifying the performance of a
PEPA model. Since we provide only a brief summary of PEPA here, the reader
should consult [4] for full details. The PEPA Reward Language and its associated
stochastic modal logic are presented in Section 3, whilst the implementation is
described in Section 4. In Section 5 we illustrate our ideas with a simple, yet
realistic, example. Finally, conclusions and future directions for the work are
presented at the end of the paper.

2 PEPA

PEPA (Performance Evaluation Process Algebra) extends classical process alge-
bra with the capacity to assign exponentially distributed durations to activities,
which are described in an abstract model of a system. It is a concise formal lan-
guage with a small number of grammar rules which define the well-formed terms
in the language. An activity of action type α performed at rate r preceding P
is denoted by (α, r).P . Using the symbol � instead of a rate denotes passive
participation in a shared activity. Choices are separated by +. Cooperation be-
tween P and Q over a set L of action types is P ��

L
Q or P ‖ Q if L is empty.

Hiding the activities in L and thus denying their availability for cooperation
gives the term P/L. The notation for definitional equality is def=. The syntax may
be formally introduced by means of the following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

where S denotes a sequential component and P denotes a model component which
executes in parallel. C stands for a constant which denotes either a sequential
or a model component, as introduced in a definition. CS stands for constants
which denote sequential components. The effect of this syntactic separation be-
tween these types of constants is to constrain legal PEPA components to be
cooperations between sequential processes. This constraint is necessary for the
underlying Markov process to be ergodic.

Using the structured operational semantic rules of the language it is possible
to generate, directly from a PEPA model, a continuous time Markov process
which faithfully encodes the temporal aspects of the PEPA model. The PEPA
Workbench is used to check the well-formedness of PEPA models and to generate
their Markov process representation. It detects faults such as deadlocks and
cooperations which do not involve active participants. It is described in full in
an earlier paper [13]. The steady state distribution may be found by applying any



one of a number of linear algebra solution methods to the generator matrix. We
have recently extended the Workbench with the capability to reduce models to
a canonical form internally, thereby automatically aggregating the model [16].
This has considerable benefits in terms of tackling the state space explosion
problem, but means that the states of the Markov process which is solved are
no longer in one-to-one correspondence with the states of the PEPA model.

The formal aspects of PEPA have been exploited in developing the mapping
from the language to the Markov process and in the automatic aggregation
techniques. However, the extraction of performance measures from the resulting
steady state probability distribution has been a largely ad hoc procedure. A
reward structure is used to calculate appropriate expectations over the state
space but determining which states should have a reward attached has relied on
the knowledge of the modeller, and such states were characterised as syntactic
terms [17]. Apart from relying on the modeller’s insight, this technique also has
the disadvantage of being incompatible with the automatic aggregation. Thus
we have been motivated to develop a companion reward language for PEPA,
centred on a stochastic modal logic, which characterises in behavioural terms
the states to which rewards must be attached.

3 The PEPA reward language and stochastic modal logic

In this section we introduce a stochastic modal logic, which is used at the core of
our reward language. In particular, the expression, and testing for satisfaction of
equilibrium properties, can be seen to be closely related to the specification, and
model checking of a formula expressed in probabilistic modal logic (PML [18]).
We give a modified interpretation of such formulae suitable for reasoning about
PEPA’s continuous time models.

Previous work by Clark [14] proposed an approach to generating measures
using traditional Hennessy-Milner logic (HML [19]). The idea was to capture
the set of ‘interesting’ states of the model by partitioning the state space with
a formula of the logic—those states that enjoy the property are then assigned a
reward, such as a number, or a value based on ‘local state’ information, such as
the rate at which the state may perform a particular activity. All uninteresting
states are given a reward of 0. In this way, a reward vector is formally specified,
and equilibrium measures such as utilisation and throughput may be calculated.
However, the method was not ideal for several reasons. Firstly, it was ad hoc—the
logic provided an initial partition only, meaning that a calculational technique
was required in addition, in order to assign reward values. Secondly, the logic was
qualitative only, in that it disregarded the rate at which a PEPA process could
perform an activity, and only captured the fact that an activity was possible.
These inadequacies led us to base our recent work on a more appropriate logic,
namely Larsen and Skou’s PML.



3.1 Probabilistic modal logic

The syntax of PML formulas is given by

F ::= tt | ∇α | ¬F | F1 ∧ F2 | 〈α〉μF

The models described in [18] are probabilistic, in that for any state P and any
action α, there is a (discrete) probability distribution over the α-successors of P .
Informally, the semantics of a formula ∇α is the set of states unable to perform
an α activity; and the semantics of 〈α〉μF is the set of states such that each
can make an α-transition with probability at least μ to a set of successors each
of which satisfies F . We choose to modify slightly the interpretation of these
formulae with respect to PEPA models. First we give a simple definition:

Definition 1 Let S be a set of states. P
(α,ν)−−−→S if and only if for all successors

P ′ ∈ S, P
α−→ P ′, and

∑{r : P
(α,r)

−−−→P ′, P ′ ∈ S} = ν.

Now let P be a model of a PEPA process. Then

P |= tt
P |= ¬F if P 
|= F
P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 
α−→
P |= 〈α〉μF if P

(α,ν)−−−→S for some ν ≥ μ, and for all P ′ ∈ S, P ′ |= F.

Thus, the subscript μ present in formulae of the form 〈α〉μF is now interpreted
as a rate rather than a probability; if a state P is capable of doing activity α
quickly enough arriving at a set of states S each of which satisfies F , then P
satisfies 〈α〉μF . For the remainder of the paper, we will denote PML with this
interpretation as PMLμ.

3.2 Relation of PML� to PEPA

In [18], Larsen and Skou show that PML exactly characterises probabilistic bisim-
ulation, in the sense that two probabilistic processes are bisimilar if and only if
they satisfy exactly the same set of PML formulae. With our modification to the
semantics of PML, an analogous result holds for PEPA processes:

Theorem 1 (Modal characterisation of strong equivalence) Let P be a
model of a PEPA process. Then

P ∼= Q if and only if for all F, P |= F if and only if Q |= F

That is to say that two PEPA processes are strongly equivalent (in particular,
their underlying Markov chains are lumpably equivalent [4]) if and only if they
both satisfy the same set of PMLμ formulae (in our modified setting). A proof
of this can be found in [15].



This result is not just of theoretical interest. It guarantees that if a trans-
formation is applied to a model, resulting in the model being replaced by a
strongly equivalent model, then we can expect that the new model satisfies the
same formulae as the original model. Moreover if rewards are attached to equiv-
alent states then the performance measures derived from the new model will be
equal to the measures which would have been derived from the original.

The automatic aggregation procedure described in [16] and implemented in
the PEPA Workbench, is based on the isomorphism relation of PEPA. However
this relation is stronger than strong equivalence, meaning that any isomorphic
models are necessarily strongly equivalent. Thus the above result implies that,
using PMLμ formulae, the measures calculated from a model after aggregation
will be identical to those that would have been calculated before. Therefore, from
the user’s point of view the aggregation remains transparent even when reward
calculations are to be carried out. This is not the case for the other reward
specification techniques used in SPA models.

Some PMLμ derived combinators are introduced in Equation 1. These add
no expressive power to the logic, but will prove more succinct in expressing
particular properties later. Informally, [α]μF is the set of processes which can
make an α-transition with rate at least μ, the derivative of which must satisfy
F , and Δα is those processes which are able to perform an α activity.

ff
def= ¬tt

[α]μF
def= ¬〈α〉μ¬F

Δα
def= ¬∇α

F1 ∨ F2
def= ¬((¬F1) ∧ (¬F2))

(1)

When specifying some performance measures it is natural to use the idea of model
states, as well as model behaviour in a state. This can be smoothly reconciled
with the use of a probabilistic logic, and the computation of the reward vector
can thus be seen as a two-stage procedure. The method is simple, and standard
in the theory of process logics—it is to extend the syntax of PMLμ with a set of
variables V , and for a given model P with state space S, to extend the semantics
with a valuation function V : V → 2S .

F ::= tt | ∇α | ¬F | F1 ∧ F2 | 〈α〉μF | X
P |= X if and only if P ∈ V(X)

The intuition is that a variable X ∈ V represents a property which is true in
a particular subset of the state space. This allows the expression of formulae
such as ¬(〈transmit〉120FailState), where FailState is understood to represent
an undesirable portion of the state space—“it is not the case that it is possible
to efficiently transmit a network packet and finish in a failure state”. We have
found that it is useful to compose an additional monitor process with the model,
and use this to label states. This is a well-known technique in verification but,



in general, it relies on the skill of the modeller to design such a process so that
it does not alter the state space of the original model.

Due to the predicative semantics of PMLμ, i.e. formulae evaluate to a charac-
teristic function over the set of states, it is straightforward to specify utilisation
and reliability measures which only require reward values of 0 or 1. The relation
of PMLμ to measures such as throughput which require real-valued rewards, is
less direct. For this reason PMLμ is not, in general, used alone, but as part of
the richer PEPA Reward Language.

3.3 PEPA Reward Language

The definition of a reward structure in the PEPA Reward Language is comprised
of two parts:

– a reward specification, which associates a value with a logical formula, spec-
ifying a behaviour;

– an attachment which determines with which process derivatives a particular
reward specification is associated, reflecting the compositional structure of
the model.

The meaning of the reward specification will depend on how it is “attached” to
a PEPA model—the associated value may depend on information local to the
derivative under consideration. This will be explained when the semantics of the
reward language is described below.

Formally, each reward specification can be considered as a pair consisting of a
logical formula and a reward expression. Following the attachment, the formula
is checked against a set of subcomponents within the context of the model as
a whole. When the formula is satisfied the corresponding derivative is assigned
a reward. The value of the reward corresponds to the evaluation of a simple
arithmetic expression.

Syntax and Semantics of Reward Expressions The syntax of reward ex-
pressions, given below, is very simple; indeed, it captures little more than a
straightforward syntax for arithmetic. The only additions to this are three bound
variables.

e ::= (e) | e1 + e2 | e1 − e2 | e1 × e2 | e1/e2 | atom

atom ::= r ∈ � | cur | rate(α ∈ Act)

The bound variables cur and rate() will be used to denote real numbers. The
meaning will be dependent on the reward structure being built, and the partic-
ular labelled multi-transition system which results from the PEPA model under
consideration. They exist for pragmatic reasons—they are useful in specifying
performance measures. The variable cur is intended to give the reward expression
access to a “currently” assigned reward, allowing reward expressions to make use
of previous assignments. The variable rate(), allows activity rates to be used in



expressions—specifically, reward values can be assigned to a derivative P which
make use of the transition rate from P to successor derivatives via an activity of
type α1. This is the way in which timing information may be incorporated into
reward specifications.

The objective is to define a reward function ρ, such that if P is the PEPA pro-
cess under consideration, and ds computes its derivative set, then ρ : ds(P) −→ �.
That is, given a derivative (in fact a state of the transition system) ρ gives the re-
ward assigned to that derivative. The complete reward structure may be built up
by successively overlaying the effects of different reward functions—this explains
the inclusion of the variable cur.

Given this reward assignment function, the semantic function relies on the
context c of a PEPA process P to define the meaning of reward expressions; the
semantics are given in Figure 1.

||(e) ||Pc = ||e ||Pc

||e1 op e2 ||Pc = ||e1 ||Pc op ||e2 ||Pc

||r ||Pc = r

||cur ||Pc = ρ(c[P ])

||rate(α) ||Pc =
∑{r : c[P ]

(α,r)−−−→}

Fig. 1. Semantics of reward expressions

The notation || e ||Pc denotes the evaluation of expression e with respect to P
in the context c; c[P ] denotes P in the context c and the binary operator op is
intended to capture the obvious binary operators defined in the syntax above.
The following definition completes the definition of a reward specification.

Definition 2 A reward specification is a pair (F, e), where F is a PMLμ for-
mula and e is a reward expression.

Creating a Reward Structure with Attachments When the behavioural
specification captured by the reward specification relates to subcomponents
within a model, rather than to the model as a whole, an attachment may be
used to guide how the formula is to be tested against the model. For instance,
given a large PEPA model, it may be interesting to only examine the performance
of a single component queue. It should be possible to disregard the behaviour
of the rest of the model, at least up to its interaction with the queue under
examination. To achieve this, contexts are employed.

Definition 3 An attachment, a, is a triple (σ, c, 〈P1 , . . . ,Pn〉), where σ is a
reward specification, c is a context, and Pi are PEPA processes, for 1 ≤ i ≤ n.
1 If α is passive in P rate() is undefined.



The attachment allows the modeller to choose which subcomponents are of
interest—the subcomponents are the processes Pi .

Now let ρ : ds(P) −→ � represent a function constructing a reward structure,
and let P be a PEPA process. Assume an initial value of ρ(P ′) = 0, for all
P ′ ∈ ds(P). The semantic function for attachments takes as an argument a
reward assignment function ρ and evaluates to a new function, say ρ′. This
possibly modified assignment function will reflect any new rewards that have
been assigned to the PEPA model. Its argument is a sequence of attachments. A
sequence is chosen so a reward structure can be built sequentially, allowing one
reward expression to make use of the values present in the partially constructed
reward structure. Evaluating such a sequence of attachments is trivial—each is
evaluated individually, in order. This is shown below.

|| 〈〉 ||ρ = ρ

|| 〈ai, ai+1, . . . , am〉 ||ρ = || 〈ai+1, ai+2, . . . , am〉 ||ρ′ where ρ′ =||ai ||ρ

The meaning of an attachment can now be defined.

Definition 4 (Semantics of an attachment) The meaning of an attachment
ai = ((F, e), c, 〈P1 , . . . ,Pn〉) is a value determined as follows:

||ai ||=
{
||e ||c[P1 ,... ,Pn ] if 〈P1 , . . . ,Pn〉 |=c F

0 otherwise.

ρ′ is created by ordinary function perturbation and the end result is a function
which constructs a reward structure over the derivative space of a PEPA process.
More details can be found in [20].

4 Implementation

The PEPA Workbench has been extended to allow the use of a subset of the
PEPA Reward Language. This allows the modeller to express behavioural prop-
erties using PMLμ, though currently the use of contexts is not implemented. The
implementation automatically generates a reward structure which provably gen-
erates the same performance measures for any two strongly equivalent models.
This means that the modeller may apply aggregation to a PEPA model without
having to alter the description of any performance measures.

Given a PEPA model, the Workbench generates a representation of the
model’s generator matrix which is then solved. In order to generate the ma-
trix, it is necessary for the Workbench to traverse the entire state space of the
PEPA model. After this traversal, for each state of the model, a reward specifi-
cation can be checked, and if satisfied, a reward assigned. The algorithm used to
implement this subset of the reward language employs a simple model checking
procedure for PMLμ.



5 Case study: self-checking distributed computation

Our case study comes from the TIRAN project (“TaIlorable fault toleRANce
frameworks for embedded applications”, IT Project 28620). In this project ex-
ample fault-tolerant applications are provided by industrial partners (Siemens
and ENEL). The objective of the project is to build a modular framework in
which the faults, errors and failures can be methodically considered. One mod-
ule in the framework is the TIRAN backbone, responsible for tolerating internal
and external faults. The backbone is currently under implementation and here
we present a simplification of one of the key algorithms which is used.

The setting is an embedded system made up of a number of loosely cou-
pled nodes without shared memory. Communication is by synchronous message
passing. Agents run on each of these nodes. One of the agents is designated
the manager of the others. In our simplified model, we assume that the man-
ager never experiences failures. Without this simplifying assumption it would be
necessary to describe a leadership election in addition to the processing which
we describe here. We concentrate on the internal faults which are detected in
the self-checking phase of the distributed computation. During self-checking the
agents monitor their own progress and may declare themselves to be faulty.

The manager periodically broadcasts a query to all of the agents which asks
“are you alive?”. The manager waits to receive one of two possible replies: the
agent responds “this agent is alive” (alive) or “this agent is faulty” (faulty).
The latter means that the agent has detected and trapped a fault and is in an
uncertain state. If no reply is received within a certain timeout the manager
assumes that there is a hardware fault on the node on which the agent was
running. In this case a recovery process is initiated for the node.

Each agent is composed of three sub-processes. These are responsible for fault
detection, isolation and restarting. The detector sets a local flag to indicate that
there is no fault at present. It then reports back to the manager that this agent is
alive. The same flag is periodically unset by the isolation process. If the isolator
process later reads the flag and finds it still unset then it reports back to the
manager that this agent is faulty. If the agent is faulty, the restart subprocess
ensures the correct re-initialisation of the agent.

We reflect the structure of the system in the components which are used in
the model description. We define a Manager component, and generic Agent com-
ponents. The manager controls Daemon processes, one for each agent which it
must manage. Within an agent, we have sub-components for detection, isolation
and restarting. Since we work with exponential assumptions, the deterministi-
cally timed timeouts are here approximated by exponential distributions.

Manager def= (query , q).Manager

Daemon0
def= (query ,�).Daemon1

Daemon1
def= (alive ,�).Daemon0 + (faulty ,�).Daemon2 + (timeout , t1).Daemon3

Daemon2
def= (restartAgent ,�).Daemon0 + (timeout , t2).Daemon3

Daemon3
def= (repairNode , rn).Daemon0



The agent composes sub-processes, synchronising on the relevant activities.

Agent def=
(

(Detector0 ��
L1

Isolator 0) ��
L2

Restart0

)
where L1 = { timeout ,flag0,flag1, restartAgent, repairNode }

L2 = { timeout , alive, faulty , restartAgent , repairNode }

The detector process is concerned with the value of the flag and with reporting
that the agent is still alive. It registers any timeouts which occur and witnesses
the recovery of the agent or the node.

Detector0
def= (flag1, f1).Detector1 + (flag0,�).Detector2 + (timeout ,�).Detector3

Detector1
def= (alive , a).Detector0 + (timeout ,�).Detector3

Detector2
def= (restartAgent ,�).Detector0 + (timeout ,�).Detector3

Detector3
def= (repairNode ,�).Detector0

The isolator process receives the “are you alive?” query from the manager. After
checking the value of the flag it has the responsibility of sending the fault report,
if this is appropriate. As with the detector process it registers timeouts and any
recovery processes.

Isolator 0
def= (query ,�).Isolator 1

Isolator 1
def= (flag1,�).Isolator 0 + (flag0, f0).Isolator 2 + (timeout ,�).Isolator 4

Isolator 2
def= (faulty , f).Isolator 3 + (timeout ,�).Isolator 4

Isolator 3
def= (restartAgent ,�).Isolator0 + (timeout ,�).Isolator 4

Isolator 4
def= (repairNode ,�).Isolator 0

The final process is responsible for restarting the agent after a fault. It must
witness the other reports from the other sub-processes in order that it does not
restart the agent when this action is not necessary.

Restart0
def= (alive ,�).Restart0 + (faulty ,�).Restart1 + (timeout ,�).Restart2

Restart1
def= (restartAgent , ra).Restart0 + (timeout ,�).Restart2

Restart2
def= (repairNode ,�).Restart0

The complete system is configured as a composition of agents paired with an
instance of the daemon. This structure in the model represents a single manager
process in the system with channels to communicate with each of the agents
running on the remote nodes. In order to model a broadcast of the “are you
alive?” message, all of these paired agent and manager processes are required to
synchronise when the message is sent. The replies are received asynchronously by
each instance of the daemon and all must be received before another broadcast
can be sent. In the case of a fault of an agent or a node the restart action must



be performed on that node before the next broadcast can be sent. Below we
show the system with two managed agents.

ManagedAgent def= Agent ��
L

Daemon0

System def= (ManagedAgent ��
{ query} ManagedAgent) ��

{ query} Manager

The synchronisation set L between the agent and the associated daemon contains
the activity types query, alive , faulty , timeout , restartAgent , and repairNode .

As further managed agents are added the state space of the system increases
proportionally. Of course, the model exhibits symmetries which can be exploited
in order to eliminate uninteresting variants of states. The aggregated state space
is more compact to store and more efficient to solve in order to find the steady
state probability distribution of the system. This aggregation is performed au-
tomatically using the PEPA Workbench.

5.1 Investigations into the model

The effect of aggregation has been to eliminate some syntactic presentations of
states. It may perhaps be the case that the states are still present, but that their
presentation has been altered. This can be a distinct disadvantage to the mod-
eller unless an expressive language is also provided which allows the definition of
performance measures over the model without reference to the syntactic presen-
tation of states. Without such a language, the modeller must have a thorough
knowledge of the aggregation method deployed in order to identify the syntactic
presentations which remain after aggregation. Even with complete knowledge of
the aggregation method used, the definition of performance measures would still
be made more awkward and unnatural for the modeller.

The logical notation which we provide for expressing performance measures
avoids the need for the modeller to understand the aggregation method employed
by the tool, and to reproduce its effect on the states of interest. The same
definition of a measure can be used without change, whether or not aggregation
is performed. Further, the definition of measures which we use is independent
of the number of agents in the system, and can also be re-used unchanged for
larger configurations of the system.

To illustrate the use of the PEPA Reward Language, we compute here two
significant performance measures for the system. The first is the potential for lag
in the system. This occurs when one of the agents has detected a local fault but
its appointed daemon has not yet registered this information. This can be simply
expressed as Δfaulty . This captures all of the states which have the potential to
perform a transition faulty . A reward of f (the fault registration rate) is assigned
to these states.

The effect of varying the flag registration rates, f0 and f1, on this measure
is shown in Figure 2. As might be expected, the measure is more sensitive to
variations in f0 since this is the rate associated with the flag0 activity, which
leads to the states where the faulty message can be sent. In Figure 3 we show
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Fig. 2. Plot of lag l while varying rates f0 and f1

that the effect of timing the agents out at a faster rate is to pre-empt fault
registration, causing agents to be restarted by the manager more often.
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Fig. 3. Plot of lag l while varying rates f0 and t1

The second measure which we define captures the potential for successive
timeouts. This measure would be of interest if tuning the system to find the
right balance between waiting for faulty agents to self-repair or pre-empting
them by software on hardware resets.

Timeout activities are distinguished in this model because they are the only
activity which is performed at more than one rate (t1 and t2). We express our
measure with a third variable, t.

〈timeout〉t〈timeout〉ttt

By varying the relative values of t, t1 and t2, this measure will include one, two
or none of the classes of timeout activity. Thus the ability to use rate variables in
reward expressions allows us to include just the activities which are of interest.



6 Related work

We have presented the PEPA Reward Language, a notation for the description
of performance specifications which relate to stochastic process algebra models
expressed in PEPA. The study of a self-checking distributed computation illus-
trates the way in which a modeller would use the PEPA Reward Language to
reason about the performance of a model.

An alternative approach to constructing reward structures over SPA models
is presented in [21]. In that paper, Bernardo extends the syntax of EMPA, so that
each activity is augmented with a reward value,i.e. each activity is represented
by a triple comprised of type, rate and reward values. In the generated reward
structure, the reward assigned to each state is the sum of the rewards associated
with activities enabled in that state. Bernardo has constructed an equivalence
relation which respects the additional reward information.

Our choice of PML was motivated by its simplicity, and its link to PEPA’s
strong equivalence. Other research in the area of probabilistic verification has
links to our approach. Logics such as that presented by Hansson and Jons-
son [9] are able to specify bounds on probabilistic properties, but crucially these
are probabilities over behaviours from a specified state. Recent work by de Al-
faro [12] addresses the problem of specifying “long-run” average properties of
probabilistic systems, with non-deterministic choices made by adversaries. De
Alfaro defines experiments to represent interesting model behaviour patterns.
These experiments associate a real-valued outcome with a pattern of behaviour,
and are considered to occur infinitely often. In [22] Baier et al. describe how
a temporal logic can be used to specify transient properties of CTMCs. Their
model checking procedure aims to establish whether such properties hold or not.
This is quite distinct from our use of logic to construct the reward structure used
to calculate steady state performance measures.
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