

Edinburgh Research Explorer

SHIFT: Shared History Instruction Fetch for Lean-core Server
Processors

Citation for published version:
Kaynak, C, Grot, B & Falsafi, B 2013, SHIFT: Shared History Instruction Fetch for Lean-core Server
Processors. in Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-46, ACM, New York, NY, USA, pp. 272-283. DOI: 10.1145/2540708.2540732

Digital Object Identifier (DOI):
10.1145/2540708.2540732

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2540708.2540732
https://www.research.ed.ac.uk/portal/en/publications/shift-shared-history-instruction-fetch-for-leancore-server-processors(c1cc1732-f3a7-4d0d-a288-5aa49113316c).html

ABSTRACT

In server workloads, large instruction working sets result in high
L1 instruction cache miss rates. Fast access requirements preclude
large instruction caches that can accommodate the deep software
stacks prevalent in server applications. Prefetching has been a
promising approach to mitigate instruction-fetch stalls by relying
on recurring instruction streams of server workloads to predict
future instruction misses. By recording and replaying instruction
streams from dedicated storage next to each core, stream-based
prefetchers have been shown to overcome instruction fetch stalls.
Problematically, existing stream-based prefetchers incur high his-
tory storage costs resulting from large instruction working sets and
complex control flow inherent in server workloads. The high stor-
age requirements of these prefetchers prohibit their use in
emerging lean-core server processors.

We introduce Shared History Instruction Fetch, SHIFT, an instruc-
tion prefetcher suitable for lean-core server processors. By sharing
the history across cores, SHIFT minimizes the cost per core with-
out sacrificing miss coverage. Moreover, by embedding the shared
instruction history in the LLC, SHIFT obviates the need for dedi-
cated instruction history storage, while transparently enabling
multiple instruction histories in the presence of workload consoli-
dation. In a 16-core server CMP, SHIFT eliminates 81% (up to
93%) of instruction cache misses, achieving 19% (up to 42%)
speedup on average. SHIFT captures 90% of the performance ben-
efit of the state-of-the-art instruction prefetcher at 14x less storage
cost.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – cache memories.

General Terms
Design, Performance

Keywords
Instruction streaming, prefetching, caching, branch prediction

1. INTRODUCTION

Servers power today’s information-centric world. Server work-
loads range from traditional databases that perform business
analytics or online transaction processing, to emerging scale-out
workloads such as web search and media streaming. A characteris-
tic feature of server workloads is their multi-megabyte instruction
working sets that defy the capacities of private first- and second-
level caches. As a result, server workloads suffer from frequent
instruction fetches from the last-level cache that cause the frontend
of the processor to stall. Prior work has shown that frontend stalls
due to large instruction working sets of server workloads account
for up to 40% of execution time in server processors [17, 29, 35,
39].

Prefetching is a well-known mechanism for overcoming the
instruction stall bottleneck. Because server workloads exhibit
highly recurring behavior in processing a large number of similar
requests, they are amenable to prefetching as their control flow
tends to be predictable at the request level. However, the control
flow of each individual request may be quite complex and span
multiple layers of the software stack, including the application
itself, a database engine, a web server and the OS. As a result,
naïve techniques, such as next-line prefetching, offer only mar-
ginal performance benefit.

State-of-the-art instruction prefetchers for server workloads rely on
temporal streaming to record, and subsequently replay, entire
sequences of instructions [14, 15]. As a class, these stream-based
prefetchers have been shown to be highly effective at eliminating
the vast majority of frontend stalls stemming from instruction
cache misses. However, due to the large instruction footprints and
small, yet numerous differences in the control flow among the var-
ious types of requests of a given workload, stream-based
prefetchers require significant storage capacities for high miss cov-
erage. Thus, the state-of-the-art stream-based prefetcher for
servers, Proactive Instruction Fetch (PIF), can eliminate an aver-
age of 90% of instruction cache misses, but necessitates over
200KB per core for its history storage [14].

Stream-based instruction prefetchers were proposed for conven-
tional fat-core processors, where the prefetcher’s high storage cost
is acceptable in view of large private cache capacities and big core
area footprints. Meanwhile, recent research results [22] and indus-
try trends point in the direction of server processors with many
lean cores, rather than a handful of fat cores, which is a character-
istic of conventional server processor designs. For instance,
Tilera’s Tile-series processors integrate as many as 64 simple cores
and have been shown to be highly effective on Facebook’s work-
load [7]. In general, manycore processors are well-matched to rich
request-level parallelism present in server workloads, and achieve

*This work was done while the author was at EPFL.

SHIFT: Shared History Instruction Fetch
for Lean-Core Server Processors

Boris Grot*Cansu Kaynak Babak Falsafi
University of EdinburghEcoCloud, EPFL EcoCloud, EPFL

uhiroeh
Typewritten Text
Kaynak, C., Grot, B., & Falsafi, B. (2013). SHIFT: Shared History Instruction Fetch for Lean-core Server Processors. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture. (pp. 272-283). (MICRO-46). New York, NY, USA: ACM. 10.1145/2540708.2540732

high energy efficiency on memory-intensive server applications
through their simple core microarchitectures.

We observe that stream-based prefetchers are poorly matched to
lean-core processor designs in which the area footprint of the
prefetcher history storage may approach that of the core and its L1
caches. For instance, in 40nm technology, an ARM Cortex-A8 (a
dual-issue in-order core) together with its L1 caches occupies an
area of 1.3mm2, whereas PIF’s per-core storage cost is 0.9mm2.

This work attacks the problem of effective instruction prefetch in
lean-core server processors. Individual server workloads are homo-
geneous, meaning that each core executes the same types of
requests as all other cores. Consequently, over time, the various
cores of a processor executing a common homogeneous server
workload tend to generate similar instruction access sequences.
Building on this observation, we make a critical insight that com-
monality and recurrence in the instruction-level behavior across
cores can be exploited to generate a common instruction history,
which can then be shared by all of the cores running a given work-
load. By sharing the instruction history and its associated storage
among multiple cores, this work provides an effective approach for
mitigating the severe area overhead of existing instruction
prefetcher designs, while preserving their performance benefit. As
a result, this work proposes a practical instruction prefetcher to
mitigate the frontend stalls resulting from instruction cache misses
in lean-core server processors.

The contributions of this work are as follows:

• We demonstrate significant commonality (over 90%) in the
instruction history across multiple cores running a common
server workload.

• We show that a single core chosen at random can generate the
instruction history, which can then be shared across other cores
running the same workload. In a 16-core CMP, the shared his-
tory eliminates 81%, on average, of all instruction cache misses
across a variety of traditional and emerging server workloads.

• We introduce Shared History Instruction Fetch, SHIFT, a new
instruction prefetcher design, which combines shared instruc-
tion history with light-weight per-core control logic. By sharing
the history, SHIFT virtually eliminates the high history storage
cost associated with earlier approaches, improving perfor-
mance per unit of core area by 16% and 59% for two lean-core
designs over the state-of-the-art instruction prefetcher [14]. The
absolute performance improvement on a suite of diverse server
workloads is 19%, on average.

• By embedding the history in the memory hierarchy, SHIFT
eliminates the need for dedicated storage and provides the flex-
ibility needed to support consolidated workloads via a per-
workload history.

The rest of the paper is organized as follows. We motivate the need
for effective and low-cost instruction prefetching for lean-core
server processors in Section 2. We quantify the commonality of
instruction fetch streams across cores running a server workload in
Section 3 and describe the SHIFT design in Section 4. In Section 5,
we evaluate SHIFT against prior proposals and study SHIFT’s sen-
sitivity to the design parameters. We discuss additional issues and
prior work in Section 6 and Section 7. Finally, we conclude in Sec-
tion 8.

2. MOTIVATION

2.1 Instruction Stalls in Server Workloads
Server workloads have vast instruction working sets as a result of
the deep software stacks they employ and their heavy reliance on
the operating system functionality. The large instruction footprints
are beyond the reach of today’s practical first-level instruction
caches [17, 20, 35]. Instruction cache misses served from lower
levels of the cache hierarchy incur delays that cause server cores to
stall up to 40% of the execution time [17, 29, 35, 39], exposing
instruction-fetch stalls as a dominant performance bottleneck in
servers [2, 13, 16, 18, 20, 22, 35].

Figure 1 shows the performance improvements that server work-
loads can achieve as a function of the fraction of instruction cache
misses eliminated. The system configuration and the workloads
used for the experiment are detailed in Section 5.1. In this experi-
ment, each instruction cache miss is converted into a hit (i.e., the
miss latency is not exposed to the core) with some probability,
determined based on the desired fraction of instruction misses
eliminated. 100% instruction cache miss elimination is equivalent
to a perfect instruction cache.

As Figure 1 shows, both traditional database and web workloads
(OLTP, DSS and web frontend), as well as emerging server work-
loads (media streaming and web search), achieve significant
performance improvements as a result of eliminating instruction
misses. As indicated by the trend line, performance increases lin-
early as the fraction of instruction misses decreases, reaching 31%
speedup on average, for our workload suite.

Despite the linear relationship between performance and miss cov-
erage, the correspondence is not one-to-one. This indicates that
while high miss coverage is important, perfection is not necessary
to realize much of the performance benefit. For instance, improv-
ing the miss coverage from 80% to 90% yields an average
performance gain of 2.3%. Consequently, the amount of resources
dedicated to eliminating some fraction of misses needs to be bal-
anced with the expected performance gain.

2.2 Instruction Prefetching
Instruction prefetching is an established approach to alleviate
instruction-fetch stalls prevalent in server workloads. Next-line
prefetcher, a common design choice in today’s processors,
improves performance by 9% by eliminating 35% of instruction
cache misses, on average, for our workload suite. Given the perfor-
mance potential from eliminating more instruction cache misses,

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

Sp
ee

du
p

Instruction Cache Misses Eliminated (%)

OLTP DB2
OLTP Oracle
DSS Qry 2
DSS Qry 17
Media Streaming
Web Frontend
Web Search
Linear (G)Geo. Mean

Figure 1. Speedup as a function of cache misses eliminated.

server processors call for more sophisticated instruction
prefetchers.

To overcome the next-line prefetcher’s inability to predict instruc-
tion cache misses that are not contiguous, stream-based prefetchers
[14, 15] exploit the recurring control-flow graph traversals in
server workloads. As program control flow recurs, the core fron-
tend generates repeating sequences of fetch addresses. The
instruction fetch addresses that appear together and in the same
order are temporally correlated and together form a so-called tem-
poral stream. For instance, in the instruction cache access
sequence A, B, C, D, X, Y, A, B, C, D, Z, the address sequence A, B,
C, D constitutes a temporal instruction stream. Once a temporal
stream is recorded, it can be identified by its first address, the
stream head (address A in our example) and replayed to issue
prefetch requests in advance of the core frontend to hide the
instruction cache miss latency from the core. If the actual instruc-
tion stream matches the replayed stream (addresses B, C, D), the
instruction misses are eliminated by the prefetcher.

The state-of-the-art stream-based instruction prefetcher is Proac-
tive Instruction Fetch (PIF) [14], which extends earlier work on
temporal streaming [15]. PIF’s key innovation over prior work is
its reliance on access streams instead of miss streams. By record-
ing all accesses to the instruction cache, as opposed to just those
that miss, PIF eliminates the dependence on the content of the
cache. While cache content can change over time, reference pat-
terns that PIF records remain stable. The drawback of recording
access streams, instead of just miss streams, is the high history
storage required. For instance, to eliminate an average of 90% of
instruction cache misses, thus approaching the performance of a
perfect I-cache, PIF requires over 210KB of history storage per
core (Section 5.1 details PIF’s storage cost).

2.3 Toward Lean Cores
Today’s mainstream server processors, such as Intel Xeon and
AMD Opteron, feature a handful of powerful cores targeting high
single-threaded performance. Recent research has demonstrated a
mismatch between these processor organizations and server work-
loads whose chief characteristic is low instruction- and memory-
level parallelism but high request-level parallelism [13, 22]. Server
workloads are best served by processors with many lean cores to
maximize throughput and efficiency. A number of processors in

today’s server space exemplify the lean-core philosophy. These
include the Tilera Tile series [45] and the Calxeda ARM-based
Server-on-Chip [9]. While the performance benefits of stream-
based instruction prefetching are consistently high across the core
microarchitecture spectrum, the relative cost varies greatly. For
instance, the 213KB of storage required by the PIF prefetcher
described above consumes 0.9mm2 of the die real-estate in 40nm
process technology. Meanwhile, a Xeon Nehalem core along with
its private L1 caches has an area footprint of 25mm2. The 4% of
area overhead that PIF introduces when coupled to a Xeon core is a
relative bargain next to the 23% performance gain it delivers. This
makes PIF a good design choice for conventional server
processors.

On the opposite end of the microarchitectural spectrum is a very
lean core like the ARM Cortex-A8 [6]. The A8 is a dual-issue in-
order design with an area of 1.3mm2, including the private L1
caches. In comparison to the A8, PIF’s 0.9mm2 storage overhead is
prohibitive given the 17% performance boost that it delivers.
Given that server workloads have abundant request-level parallel-
ism, making it easy to scale performance with core count, the area
occupied by PIF is better spent on another A8 core. The extra core
can double the performance over the baseline core, whereas PIF
only offers a 17% performance benefit.

To succinctly capture the performance-area trade-off, we use the
metric of performance-density (PD), defined as performance per
unit area [22]. By simply adding cores, server processors can
effectively scale performance, while maintaining a constant PD
(i.e., twice the performance in twice the area). As a result, the
desirable microarchitectural features are those that grow perfor-
mance-density, as they offer a better-than-linear return on the area
investment.

Figure 2 shows the relative performance-density merits of three
PIF-enabled core microarchitectures over their baseline (without
PIF) counterparts. Two of the cores are the Xeon and ARM Cor-
tex-A8 discussed above; the third is an ARM Cortex-A15 [40], a
lean out-of-order core with an area of 4.5mm2. For simplicity, we
refer to the three designs as Fat-OoO (Xeon), Lean-OoO (A15),
and Lean-IO (A8).

In the figure, the trend line indicates constant PD (PD = 1), which
corresponds to scaling performance by adding cores. The shaded
area that falls into the left-hand side of the trend line is the region
of PD gain, where the relative performance improvement is greater
than the relative area overhead. The right-hand side of the trend
line corresponds to PD loss, where the relative performance gain is
less than the relative area. In summary, designs that fall in the
shaded region improve performance-density over the baseline;
those outside strictly diminish it.

The results in the figure match the intuition. For the Fat-OoO core,
PIF improves performance-density. In contrast, for the Lean-OoO
core, PIF fails to improve PD, and for the Lean-IO core, PIF actu-
ally diminishes PD, providing less-than-linear performance density
benefit that cannot compensate for its area overhead. Thus, we
conclude that lean-core processors benefit from instruction
prefetching nearly as much as fat-core designs, but mandate area-
efficient mechanisms to minimize the overhead.

Lean-IO
Lean-OoO

Fat-OoO

1

1.1

1.2

1.3

1 1.25 1.5 1.75

Re
lat

ive
 P

er
fo

rm
an

ce

Relative Area

PD Gain PD Loss

Figure 2. Comparison of PIF [14] area overhead and
performance improvement for various core types.

3. INSTRUCTION STREAM
COMMONALITY ACROSS CORES

Our performance density analysis of the state-of-the-art instruction
prefetcher shows it to be unsuitable for lean-core server processors
due to its high area overhead. This work overcomes the high per-
core storage cost of existing designs by sharing the cost among all
cores executing a common server workload. Our insight is that
instruction fetch streams across cores are common and are amena-
ble to sharing.

To show the potential for sharing the instruction history, we first
quantify the similarity between the instruction streams of cores
running a homogeneous server workload. For the purposes of this
study, only one core picked at random records its instruction cache
access stream. All the other cores, upon referencing the first
address in a stream, replay the most recent occurrence of that
stream in the recorded history. The commonality between two
streams is quantified as the number of matching instruction block
addresses between the replayed stream and those issued by the
core replaying the stream. For this study, we use instruction fetch
traces from 16 cores and average the results across all of the cores.

Figure 3 illustrates the commonality of instruction streams
between cores executing a given homogeneous server workload.
More than 90% (up to 96%) of instruction cache accesses (com-
prised of both application and operating system instructions) from
all sixteen cores belong to temporal streams that are recorded by a
single core picked at random. This result indicates that program
control flow commonality between cores yields temporal instruc-
tion stream commonality, suggesting that multiple cores running a
homogeneous server workload can benefit from a single shared
instruction history for instruction prefetching.

4. SHIFT DESIGN

SHIFT exploits the commonality of instruction fetch streams
across cores running a common homogeneous server workload by
enabling a single instruction fetch stream history to be shared by
all the cores. We base the SHIFT history storage on the Global His-
tory Buffer [26] prefetcher to record instruction fetch streams in a
similar vein to prior stream-based instruction prefetchers [14, 15].
We augment each core with simple logic to read instruction
streams from the shared history buffer and issue prefetch requests.

In the rest of this section, we first present the baseline SHIFT
design with dedicated storage, and then explain how to virtualize

the storage (i.e., embed the storage in the LLC). Finally, we dem-
onstrate SHIFT with multiple history buffers to enable support for
workload consolidation.

4.1 Baseline SHIFT Design
SHIFT employs two microarchitectural components shared by all
the cores running a common workload to record and replay the
common instruction streams: the history buffer and the index table.
The history buffer records the history of instruction streams; the
index table provides fast lookups for the records stored in the his-
tory buffer.

The per-core private stream address buffer reads instruction
streams from the shared history buffer and coordinates prefetch
requests in accordance with instruction cache misses.

Recording. SHIFT’s distinguishing feature is to maintain a single
shared history buffer and employ only one core, history generator
core, running the target workload to generate the instruction fetch
stream history.

The history generator core records retire-order instruction cache
access streams to eliminate the microarchitectural noise in streams
introduced by the instruction cache replacement policy and branch
mispredictions [14]. To mitigate increased history storage require-
ments resulting from recording instruction cache accesses rather
than instruction cache misses, the history generator core collapses
retired instruction addresses by forming spatial regions of instruc-
tion cache blocks.

Step 1 in Figure 4(a) depicts how a spatial region is generated by
recording retire-order instruction cache accesses obtained from the
history generator core’s backend. In this example, a spatial region
consists of five consecutive instruction cache blocks; the trigger
block and four adjacent blocks. The first access to the spatial
region, an instruction within block A, is the trigger access and
defines the new spatial region composed of the instruction blocks
between block A and A+4. Subsequent accesses to the same spatial
region are recorded by setting the corresponding bits in the bit vec-
tor until an access to a block outside the current region occurs.

Upon an access to a new spatial region, the old spatial region
record is sent to the shared history buffer to be recorded. The his-
tory buffer, logically organized as a circular buffer, maintains the
stream of retired instructions as a queue of spatial region records.
A new spatial region is recorded in the shared history buffer into
the entry pointed by the write pointer, as illustrated in step 2 in
Figure 4(a). The write pointer is incremented by one after every
history write operation and wraps around when it reaches the end
of the history buffer.

To enable fast lookup for the most recent occurrence of a trigger
address, SHIFT employs an index table for the shared history buf-
fer, where each entry is tagged with a trigger instruction block
address and stores a pointer to that block’s most recent occurrence
in the history buffer. Whenever a new spatial region record is
inserted into the history buffer, SHIFT modifies the index table
entry for the trigger address of the new record to point to the inser-
tion position (step 3 in Figure 4(a)).

Replaying. The per-core stream address buffer maintains a queue
of spatial region records and is responsible for reading a small por-
tion of the instruction stream history from the shared history buffer
in anticipation of future instruction cache misses. When an instruc-
tion block is not found in the instruction cache, the stream address
buffer issues an index lookup for the instruction’s block address to

0

20

40

60

80

100
In

st
ru

ct
io

n C
ac

he

Ac
ce

ss
es

 (%
)

Figure 3. Instruction cache accesses within common
temporal streams.

the index table (step 1 in Figure 4(b)). If a matching entry is found,
it supplies the pointer to the most recent occurrence of the address
in the history buffer. Once the spatial region corresponding to the
instruction block that triggered the lookup is located in the history
buffer (step 2 in Figure 4(b)), the stream address buffer reads out
the record and a number of consecutive records following it as a
lookahead optimization. The records are then placed into the
stream address buffer (step 3 in Figure 4(b)).

Next, the stream address buffer reconstructs the instruction block
addresses encoded by the spatial region entries based on the trigger
address and the bit vector. Then, the stream address buffer issues
prefetch requests for the reconstructed instruction block addresses
if they do not exist in the instruction cache (step 4 in Figure 4(b)).

The stream address buffer also monitors the retired instructions. A
retired instruction that falls into a spatial region maintained by the
stream address buffer advances the stream by triggering additional
spatial region record reads from the history buffer (step 5 in
Figure 4(b)) and issues prefetch requests for the instruction blocks
in the new spatial regions.

As an optimization, SHIFT employs multiple stream buffers (four
in our design) to replay multiple streams, which may arise due to
frequent traps and context switches in server workloads. The least-
recently-used stream is evicted upon allocating a new stream.
When the active stream address buffer reaches its capacity, the old-
est spatial region record is evicted to make space for the incoming
record.

For the actual design parameters we performed the corresponding
sensitivity analysis and found that a spatial region size of eight, a
lookahead of five and a stream address buffer capacity of twelve
achieve the maximum performance (results not shown in the paper
due to space limitation).

4.2 Virtualized SHIFT Design
The baseline SHIFT design described in Section 4.1 relies on dedi-
cated history storage. The principal advantage of dedicated storage
is that it ensures non-interference with the cache hierarchy. How-
ever, this design choice carries several drawbacks, including (1)
new storage structures for the history buffer and the index table,
(2) lack of flexibility with respect to capacity allocation, and (3)
considerable storage expense to support multiple histories as
required for workload consolidation. To overcome these limita-
tions, we embed the SHIFT history buffer in the LLC leveraging
the virtualization framework [8].

History Virtualization. To virtualize the instruction history buf-
fer, SHIFT first allocates a portion of the physical address space
for the history buffer. History buffer entries are stored in the LLC
along with regular instruction and cache blocks. For the index
table entries, SHIFT extends the LLC tag array to augment the
existing instruction block tags with pointers to the shared history
buffer records.

SHIFT reserves a small portion of the physical address space that
is hidden from the operating system. The reserved address space
starts from a physical address called the History Buffer Base
(HBBase) and spans a contiguous portion of the physical address
space. The size of the reserved physical address space for the his-
tory buffer can change based on the instruction working set size of
a workload.

The history buffer is logically a circular buffer; however, the actual
storage is organized as cache blocks. To access a spatial region
record in the history buffer, the value of the pointer to the spatial
region record is added to HBBase to form a physical address and
an LLC lookup is performed for that physical address. Each cache
block that belongs to the history buffer contains multiple spatial
region records, therefore, each history buffer read and write opera-
tion spans multiple spatial region records. The LLC blocks that
belong to the history buffer are non-evictable, which ensures that
the entire history buffer is always present in the LLC. Non-eviction
support is provided at the cache controller through trivial logic that
compares a block’s address to the address range reserved for the
history. As an alternative, a cache partitioning scheme (e.g., Van-
tage [31]) can easily guarantee the required cache partition for the
history buffer.

The index table, which contains pointers to the spatial region
records in the history buffer, is embedded in the LLC by extending
the tag array with pointer bits. This eliminates the need for a dedi-
cated index table and provides an index lookup mechanism for free
by coupling index lookups with instruction block requests to LLC
(details below). Although each tag is augmented with a pointer, the
pointers are used only for instruction blocks. Each instruction
block tag in the LLC can point to the most recent occurrence of the
corresponding instruction block address in the history buffer. The
width of the pointer is a function of the history buffer size and is
independent of the LLC capacity. In our design, each pointer is 15
bits allowing for an up to 32K-entry history buffer.

In Figure 5, the shaded areas indicate the changes in the LLC due
to history virtualization. The LLC tag array is augmented with

History Buffer

A, 0110

Access stream: A, A+2, A+3, B, ...

A, 0110
Spatial region record:
(Trigger, bit vector)

Write
pointer

Index Table

A

1

3 2
A

Index Table

Miss: A

History Buffer

A, 0110
B, 1101
C, 0111

Stream Address
Buffer

C, 0111
B, 1101
A, 0110

A, 0110

Prefetch Requests: A, A+2, A+3, ...

1 2

3

4

5

(a) (b)

Figure 4. SHIFT’s logical components and data flow to (a) record and (b) replay temporal instruction streams.

pointers and a portion of the LLC blocks are reserved for the his-
tory buffer. The LLC blocks reserved for the history buffer are
distributed across different sets and banks; however, we show the
history buffer as a contiguous space in the LLC to simplify the
figure.

Recording. Figure 5(a) illustrates how the SHIFT logic next to the
history generator core records the retire-order instruction stream in
the shared and virtualized history buffer. First, the history genera-
tor core forms spatial region records as described in Section 4.1.
Because the history buffer is accessed at cache-block granularity in
virtualized SHIFT, the history generator core accumulates the spa-
tial region records in a cache-block buffer (CBB), instead of
sending each spatial region record to the LLC one by one (step 1).
However, upon each spatial region record insertion into the CBB,
the history generator core issues an index update request to the
LLC for the spatial region’s trigger address by sending the current
value of the write pointer (step 2). The LLC performs a tag lookup
for the trigger instruction block address and if the block is found in
the LLC, its pointer is set to the write pointer value sent by the his-
tory generator core. After sending the index update request, the
history generator core increments the write pointer.

Once the CBB becomes full, its content needs to be inserted into
the virtualized history buffer. To accomplish this, the SHIFT logic
next to the history generator core computes the write address by
adding the value of the write pointer to HBBase (step 3), and then
flushes the CBB into the LLC to the computed write address (step
4).

Replaying. While the history generator core is continuously writ-
ing its instruction access history into the LLC-resident history
buffer, the rest of the cores executing the workload read the history
buffer to anticipate their instruction demands. Figure 5(b) illus-
trates how each core replays the shared instruction stream.

SHIFT starts replaying a new stream when there is a miss in the
instruction cache. For every demand request for an instruction
block, the LLC sends the instruction block and the index pointer
stored next to the tag of the instruction block to the requesting core
(step 1). The SHIFT logic next to the core constructs the physical
address for the history buffer by adding the index pointer value to
HBBase and sends a request for the corresponding history buffer

block (step 2). Finally, the LLC sends the history buffer block to
the stream address buffer of the core (step 3).

Upon arrival of a history buffer block, the stream address buffer
allocates a new stream and places the spatial region records in the
history buffer block into the new stream. The stream address buffer
constructs instruction block addresses and issues prefetch requests
for them (step 4) as described in Section 4.1. If a retired instruction
matches with an address in the stream address buffer, the stream is
advanced by issuing a history read request to the LLC following
the index pointer maintained as part of the stream in the stream
address buffer (i.e., by incrementing the index pointer by the num-
ber of history buffer entries in a block and constructing the
physical address as in step 2) .

Hardware cost. Each spatial region record, which spans eight
consecutive instruction blocks, maintains the trigger instruction
block address (34 bits) and 7 bits in the bit vector (assuming a 40-
bit physical address space and 64-byte cache blocks). A 64-byte
cache block can accommodate 12 such spatial region records. A
SHIFT design with 32K history buffer entries (i.e., spatial region
records) necessitates 2,731 cache lines for an aggregate LLC foot-
print of 171KB.

With history entries stored inside the existing cache lines and given
the trivial per-core prefetch control logic, the only source of mean-
ingful area overhead in SHIFT is due to the index table appended
to the LLC tag array. The index table augments each LLC tag with
a 15-bit pointer into the 32K-entry virtualized history buffer. In an
8MB LLC, these extra bits in the tag array constitute the 240KB
storage overhead (accounting for the unused pointers for associ-
ated with regular data blocks in the LLC).

4.3 SHIFT Design for Workload Consolidation
Multiple server workloads running concurrently on a manycore
CMP also benefit from SHIFT, as SHIFT relies on virtualization
allowing for a flexible history buffer storage mechanism. SHIFT
requires two minor adjustments in the context of workload consol-
idation. First, a history buffer per workload. should be instantiated
in the LLC. SHIFT’s 171KB (2% of an 8MB LLC) history buffer
size is dwarfed by the LLC capacities of contemporary server pro-
cessors and the performance degradation due to the LLC capacity
reserved for SHIFT is negligible. So, we instantiate one history
buffer per workload. Second, the operating system or the hypervi-

Access stream: ..., A, A+2, A+3, B, ...

A, 0110Spatial region
record:

1
CBB:

LLC Tag Data

X, 1101 A, 0110 B, 1101

Index

2

Tag Index

Miss A
1

+

HB
Base

2

LLC

Stream
Address Buffer

B, 1101
A, 0110

A, 0110

Prefetch Requests: A, A+2, A+3, ...

3

4

HB
Base

Write
pointer

+

HB Address

3

4

History
buffer

A

X, 1101 A, 0110 B, 1101

Data

X, 1101 A, 0110 B, 1101

A

(a) (b)

Figure 5. SHIFT’s virtualized history and data flow to (a) record and (b) replay temporal instruction streams. Virtualized history
components (index pointers and shared history buffer) are shaded in the LLC.

sor needs to assign one history generator core per workload and set
the history buffer base address (HBBase) to the HBBase of the cor-
responding history buffer for all cores in the system. After these
two adjustments, the record and replay of instruction streams work
as described in Section 4.2.

Even with extreme heterogeneity (i.e., a unique workload per
core), SHIFT provides a storage advantage over PIF as the history
buffers are embedded in the LLC data array and the size of the
index table embedded in the LLC tag array does not change.
Because the size of the index pointers only depends on the size of
the corresponding history buffer, it does not change with the num-
ber of active per-workload history buffers.

5. EVALUATION

5.1 Methodology
We evaluate SHIFT and compare it to the state-of-the-art instruc-
tion prefetcher with per-core private instruction history, PIF [14],
using trace-based and cycle-accurate simulations of a 16-core
CMP, running server workloads. For our evaluation, we use Flexus
[44], a Virtutech Simics-based, full-system multiprocessor simula-
tor, which models the SPARC v9 instruction set architecture. We
simulate CMPs running the Solaris operating system and executing
the server workload suite listed in Table I.

We use trace-based experiments for our opportunity study and ini-
tial predictor results by using traces with 32 billion instructions
(two billion per core) in steady state. For the DSS workloads, we
collect traces for the entire query execution. Our traces include
both the application and the operating system instructions.

For performance evaluation, we use the SimFlex multiprocessor
sampling methodology [44], which extends the SMARTS sam-
pling framework [46]. Our samples are collected over 10-30
seconds of workload execution (for the DSS workloads, they are
collected over the entire execution). For each measurement point,
we start the cycle-accurate simulation from checkpoints with
warmed architectural state and run 100K cycles of cycle-accurate
simulation to warm up the queues and the interconnect state, then
collect measurements from the subsequent 50K cycles. We use the
ratio of the number of application instructions to the total number
of cycles (including the cycles spent executing operating system

code) to measure performance; this metric has been shown to accu-
rately reflect overall system throughput [44]. Performance
measurements are computed with an average error of less than 5%
at the 95% confidence level.

We model a tiled SHIFT architecture with a lean-OoO core mod-
eled after an ARM-Cortex A15 [40]. For the performance density
study, we also consider a fat-OoO core (representative of contem-
porary Xeon-class cores) and a lean in-order core (similar to an
ARM Cortex-A8 [6]), which all operate at 2GHz to simplify the
comparison. The design and architectural parameter assumptions
are listed in Table I. For performance density studies, we scale the
published area numbers for the target cores to the 40nm technol-
ogy. Cache parameters, including the SRAMs for PIF’s history
buffer and index table, are estimated using CACTI [24].

State-of-the-art prefetcher configuration. We compare SHIFT’s
effectiveness and history storage requirements with the state-of-
the-art instruction prefetcher, PIF [14]. Like other stream-based
instruction and data prefetchers [15, 43], PIF employs a per-core
history buffer and index table. PIF records and replays spatial
region records with eight instruction blocks. Each spatial region
record maintains the trigger instruction block address (34 bits) and
7 bits in the bit vector. Hence, each record in the history buffer
contains 41 bits. PIF requires 32K spatial region records in the his-
tory buffer targeting 90% instruction miss coverage [14], also
validated with our experiments. As a result, the history buffer is
164KB for each core in total.

Each entry in PIF’s index table contains an instruction block
address (34 bits) and a pointer to the history buffer (15 bits) adding
up to 49 bits per entry. According to our sensitivity analysis, the
index table requires 8K entries for the target 90% instruction miss
coverage. The actual storage required for the 8K entry index table
is 49KB per core. PIF’s per-core history buffer and index table
together occupy 0.9mm2 area.

We also evaluate a PIF design with a total storage cost equal to that
of SHIFT. Since SHIFT stores the history buffer entries inside
existing LLC cache blocks, its only source of storage overhead is
the 240KB index table embedded in the LLC tag array. An equal-
cost PIF design affords 2K spatial region records in the history
buffer and 512 entries in the index table per core. We refer to this

Processing
Nodes

UltraSPARC III ISA, sixteen 2GHz cores
Fat-OoO (25mm2): 4-wide dispatch/retire-

ment, 128-entry ROB, 32-entry LSQ
Lean-OoO (4.5mm2): 3-wide dispatch/retire-

ment, 60-entry ROB, 16-entry LSQ
Lean-IO (1.3mm2):

2-wide dispatch/retirement

I-Fetch Unit

32KB, 2-way, 64B-blocks,
2-cycle load-to-use L1-I cache

Hybrid branch predictor
(16K gShare & 16K bimodal)

L1D Caches 32KB, 2-way, 64B blocks,
2-cycle load-to-use, 32 MSHRs

L2 NUCA
Cache

Unified, 512KB per core, 16-way,
64B blocks, 16 banks,

5-cycle hit latency, 64 MSHRs
Main Memory 45 ns access latency
Interconnect 4x4 2D mesh, 3 cycles/hop

OLTP – Online Transaction Processing (TPC-C)

DB2 IBM DB2 v8 ESE, 100 warehouses (10GB), 64
clients, 2 GB buffer pool

Oracle Oracle 10g Enterprise Database Server,
100 warehouses (10 GB), 16 clients, 1.4 GB SGA

DSS – Decision Support Systems (TPC-H)
Qry 2,
Qry 17

IBM DB2 v8 ESE,
480MB buffer pool, 1GB database

Media Streaming

Darwin Darwin Streaming Server 6.0.3,
7500 clients, 60GB dataset, high bitrates

Web Frontend (SPECweb99)

Apache
Apache HTTP Server v2.0,
16K connections, fastCGI,

worker threading model
Web Search

Nutch Nutch 1.2/Lucene 3.0.1,
230 clients, 1.4 GB index, 15 GB data segment

Table I. System and application parameters.

PIF design as PIF_2K and the original PIF design as PIF_32K to
differentiate between the two design points in the rest of the paper.

5.2 Instruction Miss Coverage

To show SHIFT’s effectiveness, we first compare the fraction of
instruction cache misses predicted by SHIFT to PIF [14]. For the
purposes of this study, we only track the predictions that would be
made through replaying recurring instruction streams in stream
address buffers and do not prefetch or perturb the instruction cache
state.

Figure 6 shows the fraction of instruction cache misses correctly
predicted for all of the cores in the system averaged across all
workloads, as the number of spatial region records in the history
buffer increases. The history size shown is the aggregate for PIF in
the 16-core system evaluated, whereas for SHIFT, it is the overall
size of the single shared history buffer.

Because the history buffer can maintain more recurring temporal
instruction streams as its size increases, the prediction capabilities
of both designs increase monotonically with the allocated history
buffer size. Because the aggregate history buffer capacity is dis-
tributed across cores, PIF’s coverage always lags behind SHIFT.
For relatively small aggregate history buffer sizes, PIF’s small per-
core history buffer can only maintain a small fraction of the
instruction working set size. As the history buffer size increases,
PIF’s per-core history buffer captures a larger fraction of the
instruction working set. For all aggregate history buffer sizes,
SHIFT can maintain a higher fraction of the instruction working
set compared to PIF by employing a single history buffer, rather
than distributing it across cores. As all the cores can replay
SHIFT’s shared instruction stream history, SHIFT’s miss coverage
is always greater than PIF for equal aggregate storage capacities.
Because the history sizes beyond 32K return diminishing perfor-
mance benefits, for the actual SHIFT design, we pick a history
buffer size of 32K records.

We compare SHIFT’s actual miss coverage with PIF for each
workload, this time accounting for the mispredictions as well, as
mispredictions might evict useful but not-yet-referenced blocks in
the cache. For this comparison, we use the two PIF design points
described in Section 5.1.

Figure 7 shows the instruction cache misses eliminated (covered)
and the mispredicted instruction blocks (overpredicted) normal-
ized to the instruction cache misses in the baseline design without
any prefetching. On average, SHIFT eliminates 81% of the instruc-

tion cache misses with 16% overprediction, while PIF_32K
eliminates 92% of the instruction cache misses with 13% overpre-
diction, corroborating prior results [14]. However, PIF_2K, which
has the same aggregate storage overhead as SHIFT, can eliminate
only 53% of instruction cache misses on average, with a 20% over-
prediction ratio. The discrepancy in miss coverage between
PIF_2K and SHIFT is caused by the limited instruction stream his-
tory stored by each core’s smaller history buffer in PIF, which falls
short of capturing the instruction working set.

In conclusion, by sharing the instruction history generated by a
single core, all cores running a common server workload attain
similar benefits to per-core instruction prefetching, but with a
much lower storage overhead.

5.3 Performance Comparison
We compare SHIFT’s performance against PIF_32K, PIF_2K and
the next-line prefetcher normalized to the performance of the base-
line system with lean-OoO cores, where no instruction prefetching
mechanism is employed in Figure 8.

The difference in PIF_32K and SHIFT’s speedups stems from two
main differences. First, SHIFT has slightly lower miss coverage
compared to PIF_32K, as shown in Figure 7. Second, SHIFT’s his-
tory buffer is embedded in the LLC resulting in accesses to the
LLC for reading the history buffer, which delays the replay of
streams until the history buffer block arrives at the core. Moreover,
history buffer reads and writes to LLC incur extra LLC traffic as
compared to PIF_32K. To compare the performance benefits
resulting solely from SHIFT’s prediction capabilities, we also plot
the performance results achieved by SHIFT assuming a dedicated
history buffer with zero access latency (ZeroLat-SHIFT).

The relative performance improvements of zero-latency SHIFT
and PIF_32K match the miss coverages shown in Figure 7. On
average, zero-latency SHIFT provides 20% performance improve-
ment, while PIF_32K improves performance by 21%. A realistic
SHIFT design results in 1.5% speedup loss compared to zero-
latency SHIFT, due to the latency of accessing the history buffer in
the LLC and the traffic created by transferring history buffer data
over the network. Overall, despite its low history storage cost,
SHIFT retains over 90% of the performance benefit (98% of the
overall absolute performance) that PIF_32K provides.

In comparison to PIF_2K, SHIFT achieves higher speedups for all
the workloads as a result of its higher miss coverage as Figure 7
shows. Due to its greater effective history buffer capacity, SHIFT

0

20

40

60

80

100

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K inf

L1
-I M

iss
 C

ov
er

ag
e (

%
)

Aggregate History Size (spatial region records)

SHIFT PIF

PIF_2K

PIF_32K

Figure 6. Percentage of instruction misses predicted.

0

20

40

60

80

100

120

140

PI
F_

2K
PI

F_
32

K
SH

IF
T

PI
F_

2K
PI

F_
32

K
SH

IF
T

PI
F_

2K
PI

F_
32

K
SH

IF
T

PI
F_

2K
PI

F_
32

K
SH

IF
T

PI
F_

2K
PI

F_
32

K
SH

IF
T

PI
F_

2K
PI

F_
32

K
SH

IF
T

PI
F_

2K
PI

F_
32

K
SH

IF
T

OLTP
DB2

OLTP
Oracle

DSS
Q2

DSS
Q17

Media
Streaming

Web
Frontend

Web
Search

L1
-I M

iss
es

 (%
)

Covered Uncovered Overpredicted

Figure 7. Percentage of instruction misses covered and
overpredicted.

outperforms PIF_2K for all the workloads (by 9% on average). For
the workloads with bigger instruction working sets (e.g., OLTP on
Oracle), SHIFT outperforms PIF_2K by up to 26%.

Finally, we compare SHIFT’s performance to the next-line
prefetcher. Although the next-line prefetcher does not incur any
storage overheads, it only provides 9% performance improvement
due to its low miss coverage (35%) stemming from its incapability
of predicting misses to discontinuous instruction blocks.

5.4 LLC Overheads
SHIFT introduces two types of LLC overhead. First, the history
buffer occupies a portion of the LLC, effectively reducing its
capacity. Our results indicate that the performance impact of
reduced capacity is negligible. With SHIFT occupying just 171KB
of the LLC capacity, the measured performance loss with an 8MB
LLC is under 1%.

The second source of overhead is due to the extra LLC traffic, gen-
erated by (1) read and write requests to the history buffer; (2)
useless LLC reads as a result of mispredicted instruction blocks,
which are discarded before used by the core; and (3) index updates
issued by the history generator core. Figure 9 illustrates the extra
LLC traffic generated by SHIFT normalized to the LLC traffic
(due to both instruction and data requests) in the baseline system
without any prefetching. History buffer reads and writes increase
the LLC traffic by 6%, while discards account for the 7% of the
baseline LLC traffic on average. The index updates (not shown in
the graph) are only 2.5% of the baseline LLC traffic; however, they
only increase the traffic in the LLC tag array.

In general, we note that LLC bandwidth is ample in our system, as
server workloads have low ILP and MLP, plus the tiled design pro-
vides for a one-to-one ratio of cores to banks, affording very high
aggregate LLC bandwidth. With average LLC bandwidth utiliza-
tion well under 10%, the additional LLC traffic even for the worst-
case workload (web frontend) is easily absorbed and has no bear-
ing on performance in our studies.

5.5 Workload Consolidation
Figure 10 shows the performance improvement attained by SHIFT
in comparison to the next-line prefetcher, PIF_2K and PIF_32K, in
the presence of multiple workloads running on a server CMP. In
this experiment, we use the 16-core Lean-OoO server processor
described in Section 5.1. We consolidate two traditional (OLTP on
Oracle and web frontend) and two emerging (media streaming and

web search) server workloads. Each workload runs on four cores
and has its own software stack (i.e., separate OS images). For
SHIFT, each workload has a single shared history buffer with 32K
records embedded in the LLC.

We see that the speedup trends for the various design options fol-
low the same trend as the standalone workloads, as shown in
Section 5.3. SHIFT delivers 95% of PIF_32K’s absolute perfor-
mance and outperforms PIF_2K by 12% and the next-line
prefetcher by 11% on average.

Zero-latency SHIFT delivers 25% performance improvement over
the baseline, while SHIFT achieves 22% speedup on average. The
3% difference mainly results from the extra LLC traffic generated
by virtualized SHIFT. The LLC traffic due to log reads remains the
same in the case of workload consolidation as all the cores read
from their corresponding shared history embedded in the LLC.
However, the index updates and log writes increase with the num-
ber of workloads, as there is one history generator core per
workload. While log writes increase the fetch traffic by 1.1%,
index updates, which only increase the traffic in the LLC tag array,
correspond to 15% of the baseline fetch accesses.

Overall, we conclude that in the presence of multiple workloads,
SHIFT’s benefits are unperturbed and remain comparable to the
single-workload case.

5.6 Performance Density Implications
To quantify the performance benefits of the different prefetchers as
a function of their area cost, we compare SHIFT’s performance-
density (PD) with PIF_32K and PIF_2K. We consider the three
core designs described in Section 2.3 namely, Fat-OoO, Lean-
OoO, and Lean-IO.

SHIFT improves performance-density over PIF_32K as a result of
eliminating the per-core instruction history, while retaining similar
performance benefits. Compared to PIF_32K, SHIFT improves the
overall performance by 16 to 20%, depending on the core type, at a
negligible area cost per core (0.96mm2 in total, as opposed to
PIF_32K’s 14.4mm2 cost in aggregate in a 16-core CMP). While
PIF_32K offers higher absolute performance, the relative benefit is
diminished due to the high area cost. As a result, SHIFT improves
PD over PIF_32K for all three core microarchitectures. As
expected, the biggest PD improvement is registered for lean cores
(16% and 59% for Lean-OoO and Lean-IO respectively); however,

1

1.1

1.2

1.3

1.4

1.5
Sp

ee
du

p
NextLine PIF_2K PIF_32K ZeroLat-SHIFT SHIFT

Figure 8. Performance comparison.

0

5

10

15

20

LL
C

Tr
af

fic
 In

cr
ea

se
 (%

) LogRead LogWrite Discard
26%

Figure 9. LLC traffic overhead.

even the fat-core design enjoys a 2% improvement in PD due to
SHIFT’s low area cost.

In comparison to PIF_2K, SHIFT achieves higher miss coverage
due to the better capacity management of the aggregate history
buffer storage. Although PIF_2K occupies the same aggregate
storage area as SHIFT, SHIFT almost doubles the performance
improvement for the three core types, as a result of its higher miss
coverage. Consequently, SHIFT improves performance density
over PIF_2K by around 9% on average for all the core types.

SHIFT improves the absolute performance-density for both lean-
core designs and the fat-core design over a no-prefetch system,
while providing 98% of performance of the state-of-the-art instruc-
tion prefetcher, demonstrating the feasibility of area-efficient high-
performance instruction prefetching for servers.

5.7 Power Implications
SHIFT introduces power overhead to the baseline system due to
two factors: (1) history buffer reads and writes to/from the LLC
and (2) index reads and writes to/from the LLC. To quantify the
overall power overhead induced by SHIFT, we use CACTI [24] to
estimate the LLC power (both for index pointers in the tag array
and history buffers in the data array) and custom NoC power mod-
els to estimate the link, router switch fabric and buffer power in the
NoC [21]. We find the additional power overhead due to history
buffer and index activities in the LLC to be less than 150mW in
total for a 16-core CMP. This corresponds to less than 2% power
increase per Lean-IO core, which is the lowest-power core evalu-
ated in our studies. We thus conclude that the power consumption
due to SHIFT is negligible.

6. DISCUSSIONS

6.1 Choice of History Generator Core
We show SHIFT’s miss coverage and performance improvement
by employing one history generator core picked at random
throughout the paper. In our experience, in a sixteen-core system,
there is no sensitivity to the choice of the history generator core.

Although the cores executing a homogeneous server workload
exhibit common temporal instruction streams, there are also spon-
taneous events that might take place both in the core generating the
shared instruction history and the cores reading from the shared
instruction history, such as the OS scheduler, TLB miss handlers,
garbage collector, and hardware interrupts. In our experience, such
events are rare and only briefly hurt the instruction cache miss cov-
erage due to the pollution and fragmentation of temporal streams.

In case of a long-lasting deviation in the program control flow of
the history generator core, a sampling mechanism that monitors the
instruction miss coverage and changes the history generator core
accordingly can overcome the disturbance in the shared instruction
history.

6.2 Virtualized PIF
Although virtualization could be readily used with prefetchers
using per-core history, such designs would induce high capacity
and bandwidth pressure in the LLC. For example, virtualizing
PIF’s per-core history buffers would require 2.7MB of LLC capac-
ity and this requirement grows linearly with the number of cores.
Furthermore, as each core records its own history, the bandwidth
and power consumption in the LLC also increase linearly with the
number of cores. By sharing the instruction prefetcher history,
SHIFT not only saves area but also minimizes the pressure on the
LLC compared to virtualized per-core instruction prefetchers.

7. RELATED WORK

Instruction fetch stalls have long been recognized as a dominant
performance bottleneck in servers [2, 10, 13, 18, 20, 29, 41]. Sim-
ple next-line instruction prefetchers varying in prefetch degree
have been ubiquitously employed in commercial processors to
eliminate misses to subsequent blocks [28, 32, 33] and fail to elim-
inate instruction cache misses due to discontinuities in the program
control flow caused by function calls, taken branches and
interrupts.

A class of instruction prefetchers rely on the branch predictor run-
ning ahead of the fetch unit to predict instruction cache misses
caused by discontinuities [12, 30, 36, 42]. To explore future code
paths, an idle thread [20], a helper thread [1], speculative threading
mechanisms [37, 48] or run-ahead execution [25] can be
employed. Although these techniques do not require additional his-
tory, they are limited by the lookahead and accuracy of the branch
predictor.

To overcome the lookahead limitation, the discontinuity prefetcher
[35] maintains the history of discontinuous transitions between
two instruction blocks. However, the lookahead of the discontinu-
ity prefetcher is limited to one target instruction block for each
source block. TIFS [15] records streams of discontinuities in its
history, enhancing the lookahead of discontinuity prefetching. PIF
[14], records the complete retire-order instruction cache access his-
tory, capturing both discontinuities and next-line misses. SHIFT
maintains the retire-order instruction cache access history like PIF.
Unlike prior stream-based instruction prefetchers, SHIFT main-
tains a single shared history, allowing all cores running a common
workload to use the shared history to predict future instruction
misses.

The SHIFT design adopts its key history record and replay mecha-
nisms from previously proposed per-core data and instruction
prefetchers [14, 15, 34, 43]. To facilitate sharing the instruction
history, SHIFT embeds the history buffer in the LLC as proposed
in predictor virtualization [8].

A number of orthogonal studies mitigate instruction cache misses
by exploiting code commonality across multiple threads [4, 11].
These approaches distribute the code footprint across private
instruction caches to leverage the aggregate on-chip instruction
cache capacity. In a similar manner, SHIFT relies on the code path
commonality, but it does not depend on the aggregate instruction
cache capacity, which might be insufficient to accommodate large

1

1.1

1.2

1.3

1.4

1.5
Sp

ee
du

p
NextLine PIF_2K PIF_32K ZeroLat-SHIFT SHIFT

Figure 10. Speedup for workload consolidation.

instruction footprints. Moreover, SHIFT supports multiple work-
loads running concurrently, while these techniques might lose their
effectiveness due to the contention for instruction cache capacity
in the presence of multiple workloads.

Another way to exploit the code commonality across multiple
threads is to group similar requests and time-multiplex their execu-
tion on a single core, so that the threads in a group can reuse the
instructions, which are already brought into the instruction cache
by the lead thread [5, 17]. Unfortunately, these approaches are
likely to hurt response latency of individual threads, as each thread
is queued for execution and has to wait for the other threads in the
group to execute.

Prior software-base approaches proposed optimizing the code lay-
out to avoid conflict misses [27, 38, 47], inserting instruction
prefetch instructions at compile time [23], and exploiting the recur-
ring call-graph history [3]. These techniques can be used with
SHIFT to further improve instruction miss coverage and reduce the
storage cost.

Concurrent with our work, RDIP [19] correlates instruction cache
miss sequences with the call stack content. RDIP associates the
history of miss sequences with a signature, which summarizes the
return address stack content. In doing so, RDIP reduces the history
storage requirements by not recording the entire instruction
streams as in stream-based prefetchers. However, RDIP’s miss
coverage is still limited by the amount of per-core storage. SHIFT,
on the other hand, amortizes the cost of the entire instruction
stream history across multiple cores, obviating the need for per-
core history storage reduction.

8. CONCLUSION

Instruction fetch stalls are a well-known cause of performance loss
in server processors due to the large instruction working sets of
server workloads. Sophisticated instruction prefetch mechanisms
developed by researchers specifically for this workload class have
been shown to be highly effective in mitigating the instruction stall
bottleneck by recording, and subsequently replaying, entire
instruction sequences. However, for high miss coverage, existing
prefetchers require prohibitive storage for the instruction history
due to the large instruction working sets and complex control flow.
While high storage overhead is acceptable in fat-core processors
whose area requirements dwarf those of the prefetcher, we find the
opposite to be true in lean-core server chips.

This work confronted the problem of high storage overhead in
stream-based prefetchers. We observed that the instruction history
among all of the cores executing a server workload exhibits signif-
icant commonality and showed that it is amenable to sharing.
Building on this insight, we introduced SHIFT – a shared history
instruction prefetcher. SHIFT records the instruction access history
of a single core and shares it among all of the cores running the
same workload. In a 16-core CMP, SHIFT delivers over 90% of
the performance benefit of PIF, a state-of-the-art instruction
prefetcher, while largely eliminating PIF’s prohibitive per-core
storage overhead. With a lean in-order core microarchitecture,
SHIFT improves performance per mm2 by up to 59% compared to
PIF, indicating SHIFT’s advantage in lean-core processor designs.

9. ACKNOWLEDGEMENTS

The authors would like to thank Christos Kozyrakis, Onur Kocber-
ber, Stavros Volos, Djordje Jevdjic, Javier Picorel, Almutaz
Adileh, Pejman Lotfi-Kamran, Sotiria Fytraki, and the anonymous

reviewers for their insightful feedback on earlier drafts of this
paper. This work was partially supported by Swiss National Sci-
ence Foundation, Project No. 200021_127021.

10. REFERENCES

[1] T. M. Aamodt, P. Chow, P. Hammarlund, H. Wang, and J. P.
Shen. Hardware support for prescient instruction prefetch. In
Proceedings of the International Symposium on High Perfor-
mance Computer Architecture, Feb. 2004.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a modern processor: Where does time go? In
Proceedings of the International Conference on Very Large
Data Bases, Sept. 1999.

[3] M. Annavaram, J. M. Patel, and E. S. Davidson. Call graph
prefetching for database applications. ACM Transactions on
Computer Systems, 21(4), Dec. 2003.

[4] I. Atta, P. Tözün, A. Ailamaki, and A. Moshovos. SLICC:
Self-assembly of instruction cache collectives for OLTP
workloads. In Proceedings of the International Symposium on
Microarchitecture, Dec. 2012.

[5] I. Atta, P. Tözün, X. Tong, A. Ailamaki, and A. Moshovos.
STREX: Boosting instruction cache reuse in OLTP workloads
through stratified execution. In Proceedings of the Interna-
tional Symposium on Computer Architecture, June 2013.

[6] M. Baron. The F1: T1’s 65nm Cortex-A8. Microprocessor
Report, 20(7):1–9, July 2006.

[7] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele.
Many-core key-value store. In Proceedings of the Interna-
tional Green Computing Conference and Workshops, 2011.

[8] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi. Predictor
virtualization. In Proceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems, Mar. 2008.

[9] Calxeda. http://www.calxeda.com/.
[10] Q. Cao, P. Trancoso, J.-L. Larriba-Pey, J. Torrellas,

R. Knighten, and Y. Won. Detailed characterization of a Quad
Pentium Pro server running TPC-D. In International Confer-
ence on Computer Design, Oct. 1999.

[11] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation
spreading: Employing hardware migration to specialize CMP
cores on-the-fly. In Proceedings of the International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, Oct. 2006.

[12] I.-C. K. Chen, C.-C. Lee, and T. N. Mudge. Instruction
prefetching using branch prediction information. In Proceed-
ings of the International Conference on Computer Design,
Oct. 1997.

[13] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the clouds: A study of
emerging scale-out workloads on modern hardware. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems,
Mar. 2012.

[14] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive instruction
fetch. In Proceedings of the International Symposium on
Microarchitecture, Dec. 2011.

[15] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos. Temporal instruction fetch streaming. In
Proceedings of the International Symposium on Microarchi-
tecture, Dec. 2008.

[16] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi. Database servers on chip multi-
processors: Limitations and opportunities. In Proceedings of
the Conference on Innovative Data Systems Research, Jan.
2007.

[17] S. Harizopoulos and A. Ailamaki. STEPS towards cache-resi-
dent transaction processing. In Proceedings of the
International Conference on Very Large Data Bases, Aug.
2004.

[18] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker. Performance characterization of a Quad Pentium
Pro SMP using OLTP workloads. In Proceedings of the Inter-
national Symposium on Computer Architecture, June 1998.

[19] A. Kolli, A. Saidi, and T. Wenisch. RDIP: Return-address-
stack directed instruction prefetching. In Proceedings of the
International Symposium on Microarchitecture, Dec. 2013.

[20] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M.
Levy, and S. S. Parekh. An analysis of database workload
performance on simultaneous multithreaded processors. In
Proceedings of the International Symposium on Computer
Architecture, June 1998.

[21] P. Lotfi-Kamran, B. Grot, and B. Falsafi. NOC-Out: Microar-
chitecting a scale-out processor. In Proceedings of the
International Symposium on Microarchitecture, Dec. 2012.

[22] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos,
O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji,
E. Ozer, and B. Falsafi. Scale-out processors. In Proceedings
of the International Symposium on Computer Architecture,
June 2012.

[23] C.-K. Luk and T. C. Mowry. Cooperative prefetching:
Compiler and hardware support for effective instruction
prefetching in modern processors. In Proceedings of the Inter-
national Symposium on Microarchitecture, Dec. 1998.

[24] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Opti-
mizing NUCA organizations and wiring alternatives for large
caches with CACTI 6.0. In Proceedings of the International
Symposium on Microarchitecture, Dec. 2007.

[25] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead
execution: An effective alternative to large instruction
windows. IEEE Micro, 23(6):20–25, Nov.-Dec. 2003.

[26] K. J. Nesbit and J. E. Smith. Data cache prefetching using a
global history buffer. In Proceedings of the International
Symposium on High Performance Computer Architecture,
Feb. 2004.

[27] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn,
J. Larriba-Pey, P. G. Lowney, and M. Valero. Code layout
optimizations for transaction processing workloads. In
Proceedings of the International Symposium on Computer
Architecture, June 2001.

[28] A. Ramirez, O. J. Santana, J. L. Larriba-Pey, and M. Valero.
Fetching instruction streams. In Proceedings of the Interna-
tional Symposium on Microarchitecture, Dec. 2002.

[29] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.
Barroso. Performance of database workloads on shared-
memory systems with out-of-order processors. In Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operating Systems, Nov. 1998.

[30] G. Reinman, B. Calder, and T. Austin. Fetch directed instruc-
tion prefetching. In Proceedings of the International
Symposium on Microarchitecture, Dec. 1999.

[31] D. Sanchez and C. Kozyrakis. Vantage: Scalable and efficient
fine-grain cache partitioning. In Proceedings of the Interna-
tional Symposium on Computer Architecture, June 2011.

[32] O. J. Santana, A. Ramirez, and M. Valero. Enlarging instruc-
tion streams. IEEE Transactions on Computers, 56(10):1342–
1357, 2007.

[33] A. J. Smith. Sequential program prefetching in memory hier-
archies. Computer, 11(12):7–21, 1978.

[34] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi.
Spatio-temporal memory streaming. In Proceedings of the
International Symposium on Computer Architecture, June
2009.

[35] L. Spracklen, Y. Chou, and S. G. Abraham. Effective instruc-
tion prefetching in chip multiprocessors for modern
commercial applications. In Proceedings of the International
Symposium on High Performance Computer Architecture,
Feb. 2005.

[36] V. Srinivasan, E. S. Davidson, G. S. Tyson, M. J. Charney,
and T. R. Puzak. Branch history guided instruction
prefetching. In Proceedings of the International Symposium
on High Performance Computer Architecture, Jan. 2001.

[37] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream
processors: Improving both performance and fault tolerance.
In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, Nov. 2000.

[38] J. Torrellas, C. Xia, and R. Daigle. Optimizing instruction
cache performance for operating system intensive workloads.
In Proceedings of the International Symposium on High
Performance Computer Architecture, Jan. 1995.

[39] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and A. Ailamaki.
From A to E: Analyzing TPC’s OLTP benchmarks: the obso-
lete, the ubiquitous, the unexplored. In Proceedings of the
International Conference on Extending Database Technology,
Mar. 2013.

[40] J. Turley. Cortex-A15 "Eagle" flies the coop. Microprocessor
Report, 24(11):1–11, Nov. 2010.

[41] R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, and J. Emer.
Instruction fetching: Coping with code bloat. In Proceedings
of the International Symposium on Computer Architecture,
June 1995.

[42] A. V. Veidenbaum. Instruction cache prefetching using multi-
level branch prediction. In Proceedings of the International
Symposium on High-Performance Computing, Nov. 1997.

[43] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim,
A. Ailamaki, and B. Falsafi. Temporal streaming of shared
memory. In Proceedings of the International Symposium on
Computer Architecture, June 2005.

[44] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: Statistical sampling of
computer system simulation. IEEE Micro, 26(4):18–31, July-
Aug. 2006.

[45] B. Wheeler. Tilera sees opening in clouds. Microprocessor
Report, 25(7):13–16, July 2011.

[46] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In Proceedings of the Interna-
tional Symposium on Computer Architecture, June 2003.

[47] C. Xia and J. Torrellas. Instruction prefetching of systems
codes with layout optimized for reduced cache misses. In
Proceedings of the International Symposium on Computer
Architecture, June 1996.

[48] C. B. Zilles and G. S. Sohi. Execution-based prediction using
speculative slices. In Proceedings of the International Sympo-
sium on Computer Architecture, June 2001.

