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Cross-lingual Automatic Speech Recognition using
Tandem Features

Partha Lal, Simon King Senior Member, IEEE

Abstract—Automatic speech recognition depends on large
amounts of transcribed speech recordings in order to estimate the
parameters of the acoustic model. Recording such large speech
corpora is time-consuming and expensive; as a result, sufficient
quantities of data exist only for a handful of languages — there
are many more languages for which little or no data exist. Given
that there are acoustic similarities between speech in different
languages, it may be fruitful to use data from a well-resourced
source language to estimate the acoustic models for a recogniser
in a poorly-resourced target language.

Previous approaches to this task have often involved making
assumptions about shared phonetic inventories between the
languages. Unfortunately pairs of languages do not generally
share a common phonetic inventory. We propose an indirect
way of transferring information from a source language acoustic
model to a target language acoustic model without having to make
any assumptions about the phonetic inventory overlap. To do
this, we employ tandem features, in which class-posteriors from a
separate classifier are decorrelated and appended to conventional
acoustic features. Tandem features have the advantage that the
language of the speech data used to train the classifier need not
be the same as the target language to be recognised. This is
because the class-posteriors are not used directly, so do not have
to be over any particular set of classes.

We demonstrate the use of tandem features in cross-lingual
settings, including training on one or several source languages.
We also examine factors which may predict a priori how much
relative improvement will be brought about by using such tandem
features, for a given source and target pair.

In addition to conventional phoneme class-posteriors, we also
investigate whether articulatory features (AFs) — a multi-stream,
discrete, multi-valued labelling of speech — can be used instead.
This is motivated by an assumption that AFs are less language-
specific than a phoneme set.

Index Terms—Automatic speech recognition, Multilayer per-
ceptrons

I. INTRODUCTION

Training acoustic models for automatic speech recognition
(ASR) typically requires hundreds of hours of transcribed
speech data (e.g., [1]). Whilst such data exist for English and
a handful of other languages, there are thousands of languages
for which there is only a little data [2].

In the work presented here, we focus exclusively on acoustic
modelling and not other aspects of the recogniser — for
instance, we assume that a lexicon and language model exist
for the language to be recognised. Our work examines ways
in which training speech data in one or more languages can
be used to improve the accuracy of a recogniser in a particular
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target language. This is achieved by encapsulating information
learnt from data in the parameters of a classifier, which is then
applied to the target language. In this paper, we will use the
term acoustic model to refer specifically to the hidden Markov
Models (HMMs) used to perform recognition; this is distinct
from the classifier used to encapsulate information from data
in one language, in order to transfer it to another language.

This classifier — a neural network — is learned from data
in one or more source languages and then applied to data
in a target language. The classes will be sub-word units,
such as phonemes. To use the trained classifier directly to
perform ASR would require that the languages are labelled
with a common set of sub-word units or that a mapping is
learnt from the sub-word units in the source language(s) to the
target language. Neither of these is easy to achieve or entirely
satisfactory. We use the classifier output indirectly and thus
avoid the need for any mapping between label sets.

An established method for cross-lingual acoustic model
training is that of Polyphone Decision Tree Specialization
(PDTS) [3]. In a standard mono-lingual context-dependent
acoustic model, clusters of related contexts are treated as the
same, according to a decision tree learnt from source language
data. Where PDTS differs is that the tree is then further grown
with target language data. We pursue an alternative, tandem
feature-based approach in order to avoid difficult decisions
about phoneme correspondences across languages; however,
it would be possible to use our approach in combination with
PDTS.

Phonemes are the most common sub-word unit used in ASR
but, since our proposed indirect method does not depend on
using any particular set for the classifier, we can consider
alternatives. The properties we might look for in a sub-word
unit set include:
Realized in the same way in different languages

This means that a classifier trained in one language is
more likely to produce useful classifications on data from
some other language. Since nominally identical phonemes
(e.g. sharing the same IPA symbol) can in fact be realized
differently in different languages [4], phonemes may not
be the best choice for cross-lingual recognition.

Evenly distributed across languages
For instance, we if we trained a classifier on a language
which has few, or zero, instances of a unit that occurs
frequently in the target language, this may result in poor
performance.

Easily labelled
Speech data usually have only word level transcriptions
— the lexicon is then used to derive a phone-level



2 DRAFT FOR IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

transcription. Any alternative to phonemes must also be
somehow derived from words.

Few in number and acoustically distinct
This makes the classification problem easier.

The alternative to phonemes that we consider here is a
set of articulatory features (AFs), described in more detail
in Section V-A, which are a discrete multi-stream labelling
of speech that encodes some properties of speech production.
AFs have most of the desirable properties listed above: the
concept applies to all languages; they have similar coverage
in different languages ( [5, page 98] and Section IV-D1);
individual AF classifiers use fewer classes than phonemes.
Previous work (e.g. [6]) has shown that AFs can be recognised
from acoustic observations alone. Whilst manual labelling of
AFs is not easy, we can derive an approximate AF labelling
from phoneme labels. Note that the acoustic models will still
be of conventional phone-like [7] sub-word units.

II. BACKGROUND

A. Tandem features for automatic speech recognition

1) Phoneme-based Tandem Features: Tandem features
were introduced in [8] for a noisy digits task and then in
[9] for a noisy, medium-vocabulary spontaneous speech task
(both in English). Tandem features are the concatenation of
conventional acoustic features (e.g. MFCCs) to posterior-based
features; the posterior-based features are typically posterior
probabilities provided by a discriminatively-trained classifier,
processed by a dimensionality reducing transform — see
Section IV. In [9], phone-classifying MLPs were used to
generate the posteriors. Substantial improvements were found
in conjunction with context-independent acoustic models, and
smaller but still significant gains with context-dependent mod-
els plus Maximum Likelihood Linear Regression (MLLR).
In general, tandem features consistently improve accuracy,
compared to conventional acoustic features alone, e.g. [10].

2) Articulatory Feature-based Tandem Features: Since the
posterior probabilities from the classifier are processed and
then effectively considered as just another form of acoustic
feature, there is no requirement for the classes over which
the posteriors are estimated to be consistent with any other
component of the system (specifically, the sub-word units used
in the acoustic models and pronunciation dictionary). They
can use a different phoneme inventory or any other set of
classes. Articulatory features (AFs) are an obvious alternative
to phonemes for tandem features, as first reported in [11]
where, on a small/medium vocabulary spontaneous speech
task, they performed as well as phonemes.

B. Cross-lingual ASR using Tandem Features

Because the posterior-estimating classifier is effectively
acting as a sophisticated form of acoustic feature extraction, it
is possible to use a classifier trained on one data set to estimate
posterior-based features for other data. The earliest example of
this is [12], in which data from a spontaneous speech corpus is
used to train tandem features that are then used in a continuous
digit recognition task. The effect of adding various amounts
of task-specific data to the training set was also investigated.

That work used English language corpora, the English part
of the OGI Multilingual Corpus [13] and the Spine corpus
[14], with the transfer being between different tasks. The
first instance of tandem features used cross-lingually is [15]
— MLPs were trained with conversational telephone speech
data in English and then used to generate MLP features for
use in Mandarin and Levantine Arabic recognisers. Consistent
improvements in word error rate were observed in both cases
and the authors state that phonetic distinction shared at the
level of articulatory features may explain why the MLP
features represent the acoustic space well.

Following on from [11], [16] reports the use of AF-based
tandem features from a classifier trained on English continuous
telephone speech data to generate tandem features for a
Mandarin broadcast news task. However, whilst phoneme-
based tandem features (from an MLP trained on English data)
reduced WER on the Mandarin task from 21.5% to 21.2%,
AF-based tandem features (also from MLPs trained on English
data) actually increased WER.

In the work we present in this paper, we demonstrate
consistent WER reductions using both phoneme- and AF-
based tandem features in cross-lingual settings.

Another example of tandem features being used cross-
lingually is [17], in which English phoneme MLPs and En-
glish AF MLPs1 are used to generate tandem features for a
Hungarian telephone speech recognition task. As well as those
two cross-lingual systems and monolingual tandem and non-
tandem baselines, a system that used an adapted MLP was
produced. The adapted MLP took the English phoneme MLP
and retrained some model parameters with Hungarian data.

Some results from that work include
• Both English phoneme and AF MLPs provide an im-

provement over the non-tandem baseline but do not
perform any better than using tandem features from the
Hungarian phoneme MLP. Domain and channel differ-
ences may have contributed to this result.

• Using the adapted MLP resulted in word error rates
statistically significantly better than all other systems.

In [19] tandem features are used but the cross-lingual
element comes about through retraining of the MLP. The
task addressed is the challenging Callhome corpus of conver-
sational telephone speech. An MLP was trained to classify
German and Spanish speech using a pooled phoneme set.
It was then applied to English — output activations were
observed as English speech was passed forward through the net
and the mutual information between English phoneme labels
and pooled German-Spanish phonemes was calculated. That
information was used to learn a mapping between English and
German-Spanish phonemes and the MLP underwent further
training with a limited amount of target language data, now
relabelled with German-Spanish phonemes.

Recognition accuracy improved with the use of non-target
language speech data. The main differences between that work
and ours is in their use of MLP training as the tool for cross-
lingual transfer as well as their use of novel acoustic features.

1Again, the AF MLPs from [18] that were trained on 2000 hours of Fisher
corpus data were used.
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Our method does not require retraining of the classifiers or
relabelling of the MLP outputs with a new phone set.

[20] features the use of AF posteriors in a Kullback-
Leibler divergence-based HMM (KL-HMM). A typical KL-
HMM takes phoneme posteriors at each frame and computes
the KL-divergence between them and a reference multinomial
distribution defined for each state. The state sequence that min-
imizes the total KL-divergence is found by Viterbi decoding.

That paper showed that by using a multi-stage series of
AF MLPs to estimate AF posteriors it is possible to perform
phoneme recognition as accurately as with phoneme MLPs
on the TIMIT corpus. Furthermore, AF posteriors can easily
be combined with phoneme posteriors in a KL-HMM system
to give an improvement in accuracy relative to a phoneme
posterior only system.

C. Novel contributions of our work

In the context of the prior work described in this section,
the novel contributions of this work can be summarised as:

• We show that tandem features can be used cross-lingually
and can result in a statistically significant improvement
over a non-tandem baseline

• We demonstrate that a set of MLPs classifying articu-
latory features can generate better tandem features than
an MLP classifying phonemes, resulting in reduced word
error rates

• We investigate the use of cross-lingual tandem features
when only limited amounts of target language data are
available. In some situations, pooling data from multiple
source languages to train a language-independent MLP
is shown to be more effective than an MLP trained
exclusively on the limited target language corpus.

III. DATA

We need a multilingual transcribed speech corpus with
which to train our MLPs and GMM-HMMs. The GlobalPhone
corpus was chosen because it contains enough data in each
language for baseline recognisers to be built and because
it covered a wide range of languages. Ten of the available
languages were selected such that a wide range of phonetic
phenomena are seen and some groups of similar languages
exist. So far, experiments have only been performed with six
of those languages, due to a lack of language models for the
other four.

Our choice of languages covers a range of language families
— their relation to each other is described in Figure 1.
The phonetic characteristics of each of the language families
included, in particular those aspects that differ between fam-
ilies, are briefly given below. Variation in the set of phonetic
phenomena exhibited in source and target languages is one
of the challenges faced in cross-lingual speech recognition
and so choosing a set of languages with a diverse range of
properties should provide more widely-applicable results from
experiments.
Chinese In Mandarin Chinese, syllables consist of a vowel

nucleus, which can be a monophthong, diphthong or
triphthong, and optionally have an onset and coda. The

• Sino-Tibetan → Chinese
• Indo-European

– Germanic
∗ North → East Scandinavian → Danish-Swedish
→ Swedish

∗ West → High German → German → Middle
German → East Middle German → German

– Balto-Slavic → Slavic → East-Slavic → Russian
– Italic → Romance → Italo-Western → Western →

Gallo-Iberian → Ibero-Romance → West Iberian
∗ Portuguese-Galician → Portuguese
∗ Castilian → Spanish

Fig. 1. The placement of the languages used in our experiments within the
Ethnologue language hierarchy.

Number of speakers
Language Training Development Evaluation Total

(hours)M F Σ M F Σ M F Σ
Chinese 53 58 111 6 5 11 5 5 10 31
German 62 3 65 4 2 6 4 2 6 18
Portuguese 45 41 86 4 4 8 4 3 7 26
Russian 51 44 95 5 5 10 5 5 10 22
Spanish 34 45 79 5 5 10 4 4 8 22
Swedish 40 39 79 5 4 9 5 5 10 22

TABLE I
THE NUMBER OF SPEAKERS IN GLOBALPHONE IN EACH CORPUS SPLIT,

WITH GENDER, AND THE TOTAL SIZE OF THE CORPUS IN HOURS.

tone of the vowel is phonemic. Consonant clusters are
rare in the syllable onset. In Mandarin, only /n/ and /N/
are valid codas. [21]

Germanic Swedish features a unique voiceless palatal-velar
fricative realization of /Ê/ [22, pages 171–2, 330; 173–
6]. It also possibly has more than one type of lip
rounding gesture in vowels [22, page 295]. Both German
and Swedish have phonemic vowel length. German and
Russian have broadly similar movement patterns for
labiodental fricatives [22, page 140].

Romance Spanish has an alveolar trill /r/ that also appears
in Russian [22, page 218]. Spanish is unusual amongst
the world’s languages in having dental fricatives [23]. An
uncommon aspect of Portuguese is that, whilst laterals in
most languages have some place of articulation, it has
completely unoccluded laterals [22, page 193].

GlobalPhone consists of recordings of speakers reading
from a newspaper in their native language. Recordings were
made under a range of ‘quiet’ conditions using identical
recording equipment although recording location varied. The
amount of data available in each language, as well as the stan-
dard partitioning into training, cross-validation (development)
and test (evaluation), plus the gender split of the speakers is
described in Table I. The sizes of the available GlobalPhone
lexica in each language are given in Table II. The phoneme
inventory for each language is described in Table III.



4 DRAFT FOR IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

Language Pronunciations Words
Chinese 73388 73387
German 48979 46037
Portuguese 54163 51987
Russian 28818 27062
Spanish 41286 28803
Swedish 25402 25257

TABLE II
GLOBALPHONE LEXICON SIZES FOR EACH LANGUAGE.

Shared
by this
many
languages

Number of
phonemes

Polyphonemes

Consonants Vowels
All 10 f, k, l, m, n, p, s,

t
i, u

5 7 b, d, g, r a, e, o
4 5 j, S, v, x, z
3 4 N, ð, ts y
2 29 ç, dj, L, ù, tj, ü,w E, ai, a:, ä, 5, au,

ei, e:, ë, 9, eu, i:,
ï, O, ø, ø:, o:, ö,
y:, u:, ü

Language Number of
monophonemes
(total phonemes)

Monophonemes

Chinese 24(45) kh, C, th, tsh, tù,
tùh, tC,tCh

A,AU, AI, ia, iAU,
iE, iO, iou, ou, 7,
ua, uaI, uei, yœ,
uO

German 1(44) - 5
Portuguese 15(48) K ã, "ã, 5, ẽ, "ẽ, ĩ, "̃i,

I, õ, "õ, ũ, "ũ, U
Russian 16(49) bj, lj, mj, pj, P, rj,

sj, C:, C:j, zj, üj, Sj,
ts, tsj, vj

W

Spanish 8(43) D, G, ð, R, T, tS, B oi
Swedish 14(52) ã, ks, í, ï, ú A:, E:, æ, æ:, O, œ,

œ:, 8, 0:
Σ 78

TABLE III
PHONEME DISTRIBUTION ACROSS LANGUAGES. THIS TABLE IS IN FACT A

VERSION OF [5, TABLE 4.3] LIMITED TO THE SIX LANGUAGES USED
HERE. POLYPHONEMES ARE PHONEMES APPEARING IN MORE THAN ONE

LANGUAGES, MONOPHONEMES APPEAR IN ONLY ONE.

A. Cross-corpus normalization

Whilst the GlobalPhone corpus benefits from the fact that
the same recording equipment was used throughout (and
sampling rates, bit depths etc. were also consistent), recording
sessions were conducted at different locations around the
world, in different sized rooms and occasionally under dif-
ferent noise conditions. This will inevitably result in acoustic
differences that are independent of the words being spoken.
This section describes efforts to address this issue.

Prior work in this area includes [24], which involved
estimating a corpus-normalizing feature transform for each
corpus. Training maximised the likelihood of the training data
by alternately updating the transforms and the GMM means
and variances, until convergence.

Here we focus on the point at which the data from the
different corpora meet, that is, when target language acoustic
observations are passed through the source language MLP. We

apply a linear transformation to those features before feeding
them through the net. Note that, whilst the PLPs used by the
MLP are transformed, the MFCCs modelled with a GMM are
unchanged. The MLP itself remains unchanged throughout this
process. We derive the transform as follows:

1) Use two single state HMMs to model the source lan-
guage training data — one HMM models all speech
frames and the other models silence (initial labels are
derived from the existing word-level transcriptions).
Each HMM state uses a 128 component GMM to model
a 39 dimension PLP feature vector

2) Treat the target language training data as if it were
adaptation data and compute an MLLR transform that
brings it closer to source language speech2

3) Apply that transform to all target language data before
it is passed through the source language MLP

We are able to apply a model transform as if it were a
feature transform here because all speech data is modeled with
one HMM. The same transform is applied to all frames even
though it would have been preferable to apply the transform
learnt for silence to silent frames and the transform learnt for
speech to speech frames. Since speech is significantly different
to silence, this mistreatment of silent data is assumed to have
little effect.

To evaluate the effectiveness of the transform we considered
the following methods:

1) measure the reduction in MLP frame error rate when the
transform is applied or

2) compare the accuracy of tandem systems built from
original vs transformed PLPs or

3) measure the increase in mutual information (MI) be-
tween target language labels and acoustic features before
/ after applying the transform

The first of these isn’t a viable option — it is difficult to draw
meaningful conclusions from MLP frame error rates when
the MLP is being used cross-lingually. Even if there is some
overlap in the source and target phoneme sets, the error rate
observed still appears to be high even though the MLP can be
used to produce useful tandem features3. The second option
would be ideal, except that is is computationally expensive.
The third option was therefore selected.

The comparisons of MI are shown in Table IV — all features
were speaker normalized to zero mean and unit variance,
only the development set was used to compute the results in
this table. We can see that applying the adaptation method
described above generally results in an increase in MI between
acoustic features and reference phoneme labels and that this
holds true for both the PLP features themselves and the
transformed MLP features (the one exception being German).

Note that the use of MI is not contingent on any aspect of the
normalization method and so other cross-corpus normalization
methods could be compared in the same way.

2Only means are adapted in this work, i.e. MLLRMEAN in HTK
3For example, tandem features for a Portuguese recogniser generated with

a Spanish phoneme MLP give a 17% relative drop in WER compared to
baseline. However, passing Portuguese data through the Spanish phoneme
MLP gives a misleadingly high frame error rate of 67.1%.
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Target
Lang.

relative increase in mutual information (%)
PLP MLP features

Chinese 9.5 6.8
German 37.9 -6.0
Portuguese 6.1 4.8
Russian 12.1 4.4
Spanish 18.5 12.7

TABLE IV
MUTUAL INFORMATION INCREASES OBTAINED BY USING MLLR

FEATURE NORMALISATION FOR BOTH THE PLPS THEMSELVES AND THE
RESULTANT MLP FEATURES. FOR THE 2nd AND 3rd COLUMNS, THE

MEAN ACROSS ALL SIX SOURCE LANGUAGES IS SHOWN.

Source Language Word error rate (%)
normalized baseline

Chinese 26.0 27.3
German 25.7 26.3
Portuguese 25.3 25.9
Russian 25.6 25.8
Spanish 22.8 23.2
Swedish 28.5 25.3

TABLE V
WORD ERROR RATES FOR A SPANISH RECOGNISER USING VARIOUS

SOURCE LANGUAGE TANDEM FEATURES, WITH AND WITHOUT
CROSS-CORPUS NORMALIZATION.

As a final check that the increases in MI due to cross-corpus
normalization do result in improvements in WER, we built
recognisers for Spanish using tandem features from each of
the languages. Results (for the development set) are shown
in Table V. Apart from when the Swedish MLP is used,
cross-corpus normalization always results in an improvement
in word error rate for all source languages when applied to
Spanish. This is consistent with the predictions made by the
mutual information measure.

Because of the order in which our experiments was con-
ducted, the normalised features generated by this method were
not arrived at in time for use in subsequent experiments —
no cross-corpus normalization is performed in the work that
follows. However, we would predict a small decrease in WER
across the board by adding normalization.

IV. PHONEME TANDEM FEATURES

The steps required to create a recogniser that uses tandem
features are now described.

1) Train the MFCC baseline system, as described in
Section IV-A

Training
Data

Dev.
Data

Train Tune GMM-
HMM

2) Generate a frame-level phoneme labelling for the cor-
pus by forced-alignment of the MFCC baseline model.
This step also requires a word-level transcription and a
lexicon that maps to phonemes.

GMM-
HMM

Data

Labels

Forced
Alignment Labels

MFCC

word

phoneme

3) Train an MLP using frame-level targets obtained from
the previous step. PLPs4 are extracted from the acoustic
data instead of MFCCs.

Labels

Training
Data

Dev.
Data

Train
Convergence

Test
MLP

phoneme

4) Generate tandem features:
a) Apply that trained classifier to the corpus, esti-

mating phone posteriors at each frame.
b) Take logs of those posteriors. This is equivalent

to omitting the softmax function that is usually
applied in the output layer of the net. Taking
logs results in features that have a more Gaussian
distribution.

c) Transform them using, for example, PCA. PCA is
used to decorrelate and reduce the dimensionality
of the features that are going to be concatenated;
using HLDA (Hetroscedastic Linear Discriminant
Analysis, [25]), or some other similar scheme
would be an option here. The PCA transform is
estimated using the training set5.

d) The massaged MLP output vector is now con-
catenated to a vector of acoustic features; these
could be the same as those input to the MLPs
but a further gain in performance can be attained
if complementary acoustic features are used, e.g.
the MLPs are trained with PLPs, and then MFCCs
are used in this step.

MLP
MLP

forward
pass

Data

PCA Concatenate

Data

PLP

MFCCPOSTERIORS

TANDEM

4PLP_E_D_A_Z in HTK
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5) The new features can be modelled with a GMM-
HMM again using the training schedule described in
Section IV-A

Training
Data

Dev.
Data

Train Tune GMM-
HMM

A. GMM-HMM Training

A conventional GMM-HMM training workflow was used
— HTK [26] was used for this and the tutorial recipe in
HTKBook was used as a starting point. The same training
schedule was used for all GMM-HMMs including the baseline
MFCC-based model (which is also used for generating training
labels for the MLP) and all tandem models. There are a
handful of model parameters that are tuned on the development
set of the relevant corpus:

• the average number components per Gaussian mixture
• the number of triphone models
• word insertion penalties and grammar scales

The language models were provided by Tanja Schultz (cre-
ator of the GlobalPhone corpus). During decoding, a bigram
language model was used for first-pass lattice generation. A
trigram model was then used to rescore those lattices, with the
first-best path through the lattice being used as the recognition
result.

B. Multi-layer Perceptrons

Training and classification were both performed with Quick-
Net [27]. The input to the MLP consists of the PLP coefficients
at the frame to be classified and at the adjacent four frames
in either direction — a nine frame context window. At the
beginning of each utterance the left-hand context consists of
some padding frames — the first frame repeated four times –
with equivalent padding at the end of each utterance.

1) Training: We use three-layer feed forward MLPs and
train them in the conventional way, using back-propagation to
minimize errors on the training set. Training consists of two
steps, jointly referred to as an epoch, that are iterated until
the frame error rate on a cross validation set (identical to the
development set mentioned earlier) converges.
Propagation New training patterns are presented to the net-

work. In a batch update setup as used here, multiple
patterns are presented before weights are updated (the
exact number of patterns is discussed below).
Forward The input is passed forwards through the net-

work and the current weights are used to give output
activations at each layer

Backward At the output layer, the activations are com-
pared with the training targets, to give deltas

5The number of dimensions is reduced such that 95% of the variance is still
accounted for — this conveniently means that we can fairly compare systems
built using different numbers of sub-word units. A script to implement this
heuristic was provided by Özgür Çetin.

Update For each weight:
• Compute the gradient at that point using previously

computed deltas
• Using the gradient to determine which direction

would reduce error, update the weight in that di-
rection by moving an amount proportional to the
learning rate

The initial learning rate used when training the MLPs was
0.005. The “newbob” learning rate schedule was used, mean-
ing that after starting with the initial learning rate we repeat
epochs until the development set frame accuracy increases by
less than 0.5% over the previous epoch. After that, the learning
rate is halved, to home-in with increasing precision on the local
optimum6.

The MLP input was normalised to have zero mean and unit
variance. The number of units in the hidden layer is set such
that the number of free parameters in the net is equal to some
percentage of the total number of data frames7. The number
of free parameters in a net with an I × H × O structure
is I + H + O + H(I + O) where I is the product of the
number of features per frame (39 PLP coefficients) and the
size of the context window (9 frames), H is the size of the
hidden layer, and O is the size of the output layer (i.e., the
number of phonemes in the language being classified). The
actual percentage used was around 35–50% but was tuned for
each language so as to maximize development set accuracy.
A softmax output function is used so that output nodes sum
to one and can be treated as the posterior probability of their
corresponding class.

All MLPs are gender-independent. The presentation order
of the training data was randomized. A batch update of the
parameters is applied during training after each ‘chunk’ of data
is processed. The chunk size is determined dynamically by a
simple heuristic which refers to the memory available on the
executing machine. Chunk size is selected to be as large as
can be held in memory but also such that the final chunk is not
small (a small final chunk would bias the estimated parameters
towards the data appearing in that less representative chunk).

The language-independent MLPs are trained in much the
same way as the monolingual MLPs, with the same schedule
used in training. For both phoneme and AF MLPs we treated
symbols (phonemes or articulator states) as being the same
across languages.

2) Classification: If we were using the MLPs as classifiers,
the output unit with the highest activation — i.e., the one with
the greatest posterior probability — would be selected and the
label corresponding to that unit would be taken to be the label
for the current frame. Classification accuracy is one way to
evaluate the performance of the nets before proceeding to train
the full HMM-GMM Tandem system.

Table VI reports the classification performance of the
language-specific MLPs described in Table VII (since silence
is very easy to classify and, at the same time, not very useful,
all frames labelled as silent in the reference labelling are
ignored).

6http://www.icsi.berkeley.edu/speech/faq/nn-train.html
7This heuristic was suggested by Joe Frankel
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Language Frame error rate(%)
dev eval

Chinese 31.2(32.2) 34.6(35.6)
German 26.5(30.6) 25.2(29.2)
Portuguese 47.7(49.4) 41.1(42.4)
Russian 38.4(39.5) 37.5(38.6)
Spanish 31.8(32.6) 29.0(29.8)
Swedish 39.6(41.3) 37.4(39.2)

TABLE VI
FRAME ERROR RATES FOR ALL USED LANGUAGES ARE REPORTED HERE

— IGNORING THE SILENCE CLASS GIVES THE FIGURES IN PARENTHESES.

Language
units in layer free params

as % of data
frames

Training
corpus
(hh:mm)

Training
time
(hh:mm)

hidden
(×103)

output

Chinese 12.1 44 50 25:50 24:48
German 4.85 44 35 14:35 04:48
Portuguese 8.35 48 40 22:23 12:40
Russian 8.07 45 45 18:38 13:53
Spanish 8.00 43 50 16:48 10:07
Swedish 7.11 52 45 17:02 08:07
German,
Portuguese &
Spanish 19.5 77 - 53:36 > 50

Portuguese,
Spanish &
Swedish

19.1 91 - 56:06 > 90

TABLE VII
INFORMATION ABOUT THE MLPS USED TO CLASSIFY PHONES IN OUR

TANDEM SYSTEM AND THE CORPORA USED TO TRAIN THEM.

C. Results

The results in Table VIII demonstrate a consistent im-
provement in recognition accuracy is obtained for Tandem
features when the source language is identical to the target
language, consistent with results in the literature. A matched
pairs sentence-segment word error statistical significance test
[28] tells us that, at a 95% confidence level, the tandem system
performs significantly better than baseline for all languages —
statistically significant differences are shown in bold face.

Word error rate (%)
Target
language

Source language BaselineCH GE PO RU SP SW
Chinese 17.9 22.7 22.5 23.4 24.0 23.6 23.3
German 25.3 23.5 24.5 25.2 24.9 24.6 26.1
Portuguese 22.4 21.0 18.4 20.4 20.2 21.3 23.5
Russian 34.2 33.9 32.5 30.5 33.1 33.2 34.7
Spanish 18.2 17.9 17.1 17.2 16.0 17.5 18.3

TABLE VIII
WORD ERROR RATES FOR VARIOUS CROSS-LINGUAL PHONEME TANDEM

SYSTEMS.

Table IX shows the word error rates achieved when using
MLPs trained on multiple languages to generate tandem fea-
tures either for a language in the training set, or a different
language. The WERs are better than the MFCC baseline,
although generally significantly worse than when a matched
monolingual MLP is used.

Target
Language

Word error rate (%)
Multi-language Mono-

lingual
Non-
tandem
baseline

{German,
Portuguese,
Spanish}

{Portuguese,
Spanish,
Swedish}

German 23.8 26.1 23.5 26.1
Portuguese 19.8 24.9 18.4 23.5
Spanish 16.7 17.2 16.0 18.3

TABLE IX
WORD ERROR RATES FOR SYSTEMS USING MLPS TRAINED ON MULTIPLE

LANGUAGES – THE OUTPUT LAYER OF THESE NETS IS A SHARED
PHONESET – REPORTED ON THE EVALUATION SET. STATISTICALLY

SIGNIFICANT DIFFERENCES (EITHER BETTER OR WORSE) RELATIVE TO
THE MONOLINGUAL TANDEM SYSTEM ARE SHOWN IN BOLD.

D. Analysis

The improvements in accuracy brought by tandem features
can be explained by a number of factors, the main ones being
access to a wider time context (i.e. the 9-frame window input
to the MLP) and the use of a discriminatively trained classifier.
Some general observations that can be made about the results
presented here include:

• For both Romance languages, the second most effective
source language (after the same language itself) is the
other Romance language. Those two languages also have
a high degree of lexical similarity8.

• Looking at the two Germanic languages, a statistically
significant improvement over baseline occurs when one
of the languages is used to generate tandem features for
the other.

• Chinese belongs to a different language family to the
others and does not receive any improvement from the
use of tandem features generated from nets trained on
other languages.

Whilst these observations may be useful, it could be more
desirable to have a quantitive measure which can predict the
potential gains before a system is actually built. We now
introduce some candidate measures and examine how well
they correlate with word error rate improvements.

1) Share Factor: In order to quantify the degree of overlap
between different phoneme sets, [29, Section 2.3] defines the
phoneme share factor sfN for a set of N languages. The share
factor can be interpreted as the average number of languages
sharing the phonemes of the global (pooled) phoneset.

Here, only a source and target language are involved (N =
2) so the share factor is simply the sum of the sizes of the
two monolingual phonesets, divided by the size of the shared
phoneset. It will range between 1 and 2, indicating completely
distinct or completely overlapping phoneme sets respectively.

2) Triphone Overlap: [30, Table 3.6], somewhat like
[29, Table 4.5], shows what proportion of source language
triphones are covered by target language triphones.

8In places, Ethnologue provides lexical similarity figures. Lexical similarity
is defined here as the percentage of overlap in the words appearing in each
language. The figures provided by Ethnologue are computed by taking a
standardised word list and looking at the similarity of words with a shared
meaning. Spanish and Portuguese overlap by 89%, which is deemed by
Ethnologue to be a high degree of similarity: comparable to that between
dialects.
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Variable Mean correlation coefficient
Share factor 0.91
Triphone overlap 0.90
Mutual information 0.73
MLP FER 0.41

TABLE X
A COMPARISON OF VARIABLES PREDICTING CROSS-LINGUAL

PERFORMANCE OF TANDEM FEATURES.

Unlike [29], the source language model in our work is used
indirectly for target language recognition, so source language
triphones do not actually make an appearance in the target
model. However, triphone overlap may still give some estimate
of linguistic similarity if we assume shared labels in different
languages refer to the same sound.

3) MLP Accuracy: We can also examine the relationship
between the accuracy of the MLP used to generate tandem
features, measured in terms of MLP classification frame error
rate, and the improvement in WER that those features then
provide to the resulting tandem system. Section III-A has
already discussed why it is not possible to measure MLP
accuracy using target language data, so we use the frame error
rate (FER) on source language data as the measure.

4) Mutual Information: The final measure we considered is
the mutual information between the tandem features and target
language phone labels — we can then correlate that to the
tandem system accuracy. The transformed output of the MLP
is used here, rather than full tandem features with MFCCs
appended (i.e. the output of step 4(c) in Section IV). Cepstral
mean and variance normalization is applied on a speaker-level.

5) Comparing Predictors: Correlation coefficients, aver-
aged across each of the target languages, for each measure
listed above are shown in Table X. First of all, we can see that
relatively simple measures have a high degree of correlation
with word error rate. Given a range of options for source
language to use in a cross-lingual system, we can make an
accurate estimate of the best language to use by examining
the monophone share factor or triphone overlap.

However, those measures do not take into account the
amount or quality of data available and so can probably only
be used when the source corpora are similar to each other in
size and type. In fact, these measures only perform so well
here because multiple systems from the same language were
not included in the comparison. If tandem features generated
using less training data, different feature sets or less accurate
reference labels were used when computing the correlation
coefficient then these measures probably would not perform
as well.

Next we look at the mutual information between the tandem
features and target language phone labels. Whilst the mean
correlation is weaker here than for the simpler measures, this
method does have some advantages over them, the primary
one being that the acoustic features have some bearing on
the measure. It also allows us to draw comparisons between
different types of tandem features created from the same MLP,
such as features with or without cross-corpus normalization
(Section III-A).

Target lang. data
(hh:mm) Word error rate (%)

train dev Monolingual Language-independent
14:35 1:58 23.5 23.8

7:11 0:51 24.5 25.4
3:31 0:46 26.2 26.8
1:05 0:21 43.6 39.1

TABLE XI
WORD ERROR RATES FOR GERMAN RECOGNISERS USING PHONEME

TANDEM TRAINED WITH VARYING AMOUNTS OF GERMAN DATA.

Surprisingly, the frame error rate of the source language
MLP has the least correlation of all with word error rate
reduction. This could be explained by the fact that source
language MLP error rates are independent of the choice of
target language. An MLP may accurately predict phonemes for
the language it was trained for but whether it can be used to
produce useful tandem features for some other target language
depends on the choice of source and target languages.

6) Language-independent Results: Table IX also showed
results where language-independent MLPs performed signifi-
cantly worse than when a matched monolingual MLP is used.
This can perhaps be because there is a mis-match between the
MLP training corpus and the data it was applied to. Training
with different corpora in the same language might outperform
a monolingual MLP. This observation is paralleled by a similar
result in [12, Section 3].

The results in this section have shown that monolingual
tandem features provide a statistically significant improvement
in word error rate and that in many cases cross-lingual tandem
features also give a similar improvement. However, the cross-
lingual example does raise the question, if you have access
to target language data, why use tandem cross-lingually?
One circumstance where cross-lingual tandem makes sense
is where we don’t know the target language in advance, and
don’t have the resources to train a target language MLP before
recognition. Another, more realistic, circumstance is where
the amount of source language data is far greater than the
amount of source language data available — Table XI shows
how a language-independent cross-lingual system outperforms
a monolingual system when less than around three hours of
training data is available. Experiments with limited data are
covered in more detail in [30, p73].

V. ARTICULATORY FEATURE TANDEM

Thus far, we have used a single MLP, classifying speech
frames into phonemes. We now compare this to using multiple
MLPs, each of which provides posteriors for a different
articulatory feature.

A. Articulatory Features

Articulatory features (AFs), as used in this work, are a
multi-stream labelling of the speech signal that is loose
representation of the actions of the speech articulators. They
are an abstraction, rather than a complete representation of
the articulators’ precise physical positions. The articulatory
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Feature Values Cardinality
Place labial, labio-dental, alveolar, post-alveolar,

velar, glottal, lateral, none
8

Manner vowel, approximant, fricative, closure, trill 5
Nasality +, - 2
Voicing voiced, voiceless 2
Rounding +, - 2
Vowel German: a, E, 5, e, 9, i, o, ø, u, y 10

Portuguese: a, 5, e, i, I, o, u, U, W 9
Spanish: a, e, i, o, u 5

Height very high, high, mid-high, mid, mid-low,
low, nil

7

Frontness back, central, front, mid, nil, reduced-back,
reduced-front

7

Stress +, - 2

TABLE XII
ARTICULATORY FEATURES AND THEIR VALUES.

features used here (based on [11]) and their values are shown
in Table XII (“silence” is another valid value for all features).

Our motivation for considering AFs is that they are less
language-specific than phonemes: it is easier to devise a
language-independent AF set than a language-independent
phoneme set. Furthermore, because AFs are a factorial repre-
sentation, each feature has fewer possible values and therefore
will suffer less from data sparsity problems than a phoneme
set.

B. Articulatory feature classification

Training the AF MLPs requires frame-level labels for each
AF, which were derived from phoneme labels via the following
three steps:

1) Use the same forced-alignment as for training phoneme
MLPs

2) Split phones that are composed of two parts (including
diphthongs and plosives) into two different labels.

3) Map these new labels to their corresponding articulatory
feature values. The mapping used is listed in [30, Table
A.6]

Details of the AF MLPs are given in Table XIII and
the performance of tandem recognisers using those MLPs
is provided in Tables XIV and XV. We can see that AF
tandem recognisers perform at least as well as phoneme
tandem recognisers for each of the languages examined and in
one case significantly better. Word error rates achieved with
the language-independent MLP are not as low as with the
monolingual ones but a similar pattern of improvement over
phoneme tandem is observed.

VI. CONCLUSIONS

We have shown that tandem features, using either phoneme
MLPs or AF MLPs, can be used successfully in a cross-
lingual scenario — recognition accuracy is significantly better
than in an MFCC-based baseline model. Articulatory feature
MLPs work at least as well as phoneme MLPs for this
purpose, and are especially effective where data from multiple
source languages is used — AF tandem can sometimes be
significantly better than phoneme tandem. An extended report
of this work can be found in [30].

Language
units in layer free params

as % of
data frames

Training
data
(hh:mm)

Training
time
(hh:mm)hidden output

German 5360±
51

6.44±
3.21

35 14:35 2:19–3:51

Portuguese 9312±
78

6.67±
3.08

40 22:23 6:08–9:41

Spanish 8841±
66

5.78±
2.77

50 16:48 3:38–7:01

Swedish 8007±
100

7.11±
4.65

45 17:01 3:00–5:43

German,
Portuguese &
Spanish

22.5±
0.27

7.67±
4.30

- 53:36 21.23–52:56

TABLE XIII
INFORMATION ABOUT THE MLPS USED TO CLASSIFY ARTICULATORY

FEATURES IN OUR TANDEM SYSTEM, AND THE CORPORA USED TO TRAIN
THEM. THE NUMBER OF HIDDEN AND OUTPUT UNITS VARIES BETWEEN

AFS: ONLY MEANS AND STANDARD DEVIATIONS ARE GIVEN HERE.
LIKEWISE, FOR TRAINING TIMES, THE RANGE FROM ONE STANDARD

DEVIATION ABOVE AND BELOW THE MEAN TIME IS STATED.

Target
Language

Word error rate (%)
Articulatory Feature Phoneme Non-tandem baseline

German 23.1(22.5) 23.5(22.1) 26.1(26.9)
Portuguese 17.2(21.4) 18.4(21.8) 23.5(26.1)
Spanish 15.6(22.2) 16.0(23.2) 18.3(27.3)

TABLE XIV
WORD ERROR RATES WHEN AF MLPS ARE USED TO GENERATE TANDEM

FEATURES, WITH PHONEME TANDEM AND NON-TANDEM SYSTEMS
DISPLAYED FOR COMPARISON. RESULTS ARE REPORTED ON THE

EVALUATION SET WITH DEVELOPMENT SET FIGURES IN BRACKETS. AF
TANDEM SYSTEMS THAT ARE STATISTICALLY SIGNIFICANTLY DIFFERENT
TO THEIR CORRESPONDING PHONEME TANDEM SYSTEM ARE SHOWN IN

BOLD.
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