

Edinburgh Research Explorer

Extending resource-bounded functional programming languages
with mutable state and concurrency

Citation for published version:
Gilmore, S, MacKenzie, K & Wolverson, N 2005, 'Extending resource-bounded functional programming
languages with mutable state and concurrency' Scalable Computing: Practice and Experience, vol. 6, no. 4,
pp. 17-30.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Scalable Computing: Practice and Experience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/extending-resourcebounded-functional-programming-languages-with-mutable-state-and-concurrency(640bb3ab-a8a1-41d1-8261-66e35fcb4ca5).html

Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 17�30. http://www.spe.org ISSN 1895-1767© 2005 SWPSEXTENDING RESOURCE-BOUNDED FUNCTIONAL PROGRAMMING LANGUAGESWITH MUTABLE STATE AND CONCURRENCYSTEPHEN GILMORE, KENNETH MACKENZIE AND NICHOLAS WOLVERSON∗Abstrat. Camelot is a resoure-bounded funtional programming language whih ompiles to Java byte ode to run on theJava Virtual Mahine. We extend Camelot to inlude language support for Camelot-level threads whih are ompiled to nativeJava threads. We extend the existing Camelot resoure-bounded type system to provide safety guarantees about the heap usage ofCamelot threads. We demonstrate the usefulness of our onurreny extensions to the language by implementing a multi-threadedgraphial network hat appliation whih ould not have been expressed as naturally in the sequential, objet-free sublanguage ofCamelot whih was previously available.1. Introdution. Funtional programming languages allow programmers to express algorithms oniselyusing high-level language onstruts operating over strutured data, seured by strong type-systems. Togetherthese properties support the prodution of high-quality software for omplex appliation problems. Funtionalprograms in strongly-typed languages typially have relatively few programming errors when ompared to similarappliations implemented in languages without these bene�ial features.These desirable language properties mean that developers shed the burdens of expliit memory manage-ment, but this has the assoiated ost that they typially lose all ontrol over the alloation and dealloation ofmemory. The Camelot language provides an intermediate way between ompletely automati memory manage-ment and unassisted alloation and dealloation in that it provides type-safe storage management by re-bindingof addresses. The address of a datum an be obtained in a pattern math and used in an expression (to store adi�erent data value at that address), overwriting the urrently-held value.The Camelot ompiler targets the Java Virtual Mahine but the JVM does not provide an instrutionto free memory, onsigning this to the garbage olletor, a generational olletor with three generations andimplementations of stop-and-opy and mark-sweep olletions. Camelot allows more preise ontrol of memoryalloation, allowing in-plae modi�ation of user-de�ned data strutures. The Camelot ompiler supports variousresoure-aware type systems whih ensure that memory re-use takes plae in a safe manner and also allow statipredition of heap-spae usage. Camelot uses a uniform representation for types whih are generated by theompiler, allowing data types to exhange storage ells. This uniform representation is alled the diamondtype [10, 12℄, implemented by a Diamond lass in the Camelot run-time. The Camelot language implementsa type system whih assigns types to funtions whih reord the number of parameters whih they onsume,and their types; the type of the result; and the number of diamonds onsumed or freed. The outome is thatthe storage onsumption requirements of a funtion are statially omputed at ompile-time along with thetraditional Hindley-Milner type inferene proedure.The novel ontribution of the present paper is to explain how suh an unusually rih programming modelan be extended to inorporate objet-oriented and onurrent programming idioms. This ontribution is notjust a design: it has been realised in the latest release of the Camelot ompiler.Struture of this paper. In Setion 2 we present the Camelot language in order that the reader may under-stand the operational ontext of the work. We follow this in Setion 3 with a disussion of our objet-orientedextensions to Camelot. This leads on to a presentation of the use of threads in Setion 4 followed by an analysisof the management of threads by the run-time system in Setion 5. Setion 6 explains the relationship betweenthreads in Camelot and threads as traditionally implemented in onurrent funtional languages using �rst-lassontinuations. Setion 7 details the impliations for veri�ation of Camelot programs. Related work is surveyedin Setion 8 and onlusions follow after that.2. The Camelot language. The ore of Camelot is a standard polymorphi ML-like funtional languagewhose syntax is based upon that of O'Caml; the main novelty lies in extensions whih allow the programmer toperform in-plae modi�ations to heap-alloated data-strutures. These features are similar to those desribedin by Hofmann in [11℄, but inlude some extra extensions for free list management. To retain a purely funtionalsemantis for the language in the presene of these extensions a linear type system an be employed: in thepresent implementation, linearity an be enfored via a ompiler swith. We are in the proess of enhaning
∗Laboratory for Foundations of Computer Siene, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3JZ, Sotland17

18 S. Gilmore et al.the ompiler by the addition of other, less restritive type systems whih still allow safe in-plae modi�ations:more details will be given below.Cruial design hoies for the ompilation are transpareny and an exat spei�ation of the ompilationproess. The former ensures that the ompilation does not modify the resoure onsumption in an unpreditableway. The latter provides a formal basis for using resoure information inferred for the high-level language inproofs on the intermediate language.In the following setions we will give a brief desription of the struture of the language. We will then outlinehow the language is ompiled, and in partiular how the memory-management extensions are implemented.2.1. The struture of Camelot. We will give some examples to indiate the basi struture of Camelot;full details an be found in [20℄.Datatypes are de�ned in the normal way:type intlist = Nil | Cons of int * intlisttype 'a polylist = NIL | CONS of 'a * 'a polylisttype ('a, 'b) pair = Pair of 'a *'bValues belonging to user-de�ned types are reated by applying onstrutors and are deonstruted using themath statement:let re length l = math l withNil -> 0| Cons (h,t) -> 1+length tlet test () = let l = Cons(2, Cons(7,Nil))in length lAs an be seen from this example, onstrutor arguments are enlosed in parentheses and are separated byommas. In ontrast, funtion de�nitions and appliations whih require multiple arguments are written in a�urried� style:let add a b = a+blet f x y z = add x (add y z)Despite this notation, the present version of Camelot does not support higher-order funtions; any appli-ation of a funtion must involve exatly the same number of arguments as are spei�ed in the de�nition of thefuntion.2.2. Diamonds and Resoure Control. The Camelot ompiler targets the Java Virtual Mahine, andvalues from user-de�ned datatypes are represented by heap-alloated objets from a ertain JVM lass. Detailsof this representation will be given in Setion 2.4.Consider the following funtion whih uses an aumulator to reverse a list of integers (as de�ned by theintlist type above).let re rev l a = math l withNil -> a| Cons (h,t) -> rev t (Cons (h,a))let reverse l = rev l NilThis funtion alloates an amount of memory equal to the amount oupied by the input list. If no furtherreferene is made to the input list then the heap spae whih it oupies may eventually be relaimed by theJVM garbage olletor.In order to allow more preise ontrol of heap usage, Camelot inludes onstruts allowing re-use of heapells. There is a speial type known as the diamond type (denoted by <>) whose values represent bloks of heap-alloated memory, and Camelot allows expliit manipulation of diamond objets. This is ahieved by equippingonstrutors and math rules with speial annotations referring to diamond values. Here is the reverse funtionrewritten using diamonds so that it performs in-plae reversal:let re rev l a = math l withNil -> a| Cons (h,t)�d -> rev t (Cons (h,a)�d)let reverse l = rev l NilThe annotation ��d� on the �rst ourrene of Cons tells the ompiler that the diamond value d is to bebound to a referene to the spae used by the list ell. The annotation on the seond ourrene of Cons spei�es

Extending Camelot With Mutable State and Conurreny 19that the list ell Cons(h,a) should be onstruted in the diamond objet referred to by d, and no new spaeshould be alloated on the heap.One might not always wish to re-use a diamond value immediately. This an sometimes ause di�ultysine suh diamonds might then have to be returned as part of a funtion result so that they an be reyledby other parts of the program. For example, the alert reader may have notied that the list reversal funtionabove does not in fat reverse lists entirely in plae. When the user alls reverse, the invoation of the Nilonstrutor in the all to rev will ause a new list ell to be alloated. Also, the Nil value at the end of theinput list oupies a diamond, and this is simply disarded in the seond line of the rev funtion (and will besubjet to garbage olletion if there are no other referenes to it).The overall e�et is that we reate a new diamond before alling the rev funtion and are left with an extradiamond after the all had ompleted. We ould reover the extra diamond by making the reverse funtionreturn a pair onsisting of the reversed list and the spare diamond, but this is rather lumsy and programsquikly beome very omplex when using this kind of tehnique.To avoid this kind of problem, unwanted diamonds an be stored on a free list for later use. This is doneby using the annotation ��_� as in the following example whih returns the sum of the entries in an integer list,destroying the list in the proess:let re sum l a = math l withNil�_ -> a| Cons (h,t)�_ -> sum t (a+h)The question now is how the user retrieves a diamond from the free list. In fat, this happens automatiallyduring onstrutor invoation. If a program uses an undeorated onstrutor suh as Nil or Cons(4,Nil) thenif the free list is empty the JVM new instrution is used to alloate memory for a new diamond objet on theheap; otherwise, a diamond is removed from the head of the free list and is used to onstrut the value. Itmay oasionally be useful to expliitly return a diamond to the free list and an operator free: <> -> unit isprovided for this purpose.There is one �nal notational re�nement. The in-plae list reversal funtion above is still not entirelysatisfatory sine the Nil value arries no data but is nonetheless alloated on the heap. We an overome thisby rede�ning the intlist type astype intlist = !Nil | Cons of int * intlistThe exlamation mark direts the ompiler to represent the Nil onstrutor by the JVM null referene. Withthe new de�nition of intlist the original list-reversal funtion performs true in-plae reversal: no heap spaeis onsumed or destroyed when the reverse funtion is applied. The ! annotation an be used for a single zero-argument onstrutor in any datatype de�nition. In addition, if every onstrutor for a partiular datatype isnullary then they may all be preeded by!, in whih ase they will be represented by integer values at runtime.We have deliberately hosen to expose this hoie to the programmer (rather than allowing the ompiler toautomatially hoose the most e�ient representation) in keeping with our poliy of not allowing the ompilerto perform optimisations whih have unexpeted results on resoure onsumption.The features desribed above are very powerful and an lead to many kinds of program error. For example,if one applied the reverse funtion to a sublist of some larger list then the small list would be reversed properly,but the larger list ould beome partially reversed. Perhaps worse, a diamond objet might be used in severaldi�erent data strutures of di�erent types simultaneously. Thus a list ell might also be used as a tree node, andany modi�ation of one struture might lead to modi�ations of the other. The simplest way of preventing thiskind of problem is to require linear usage of heap-alloated objets, whih means that variables bound to suhobjets may be used at most one after they are bound. Details of this approah an be found in Hofmann'spaper [11℄. Strit linearity would require one to write the list length funtion as something likelet re length l = math l withNil -> Pair (0, Nil)| Cons(h,t)�d ->let p = length tin math p withPair(n, t1)�d1 -> Pair(n+1, Cons(h,t1)�d)�d1It is neessary to return a new opy of the list sine it is illegal to refer to l after alling length l.Our ompiler has a swith to enfore linearity, but the example demonstrates that the restritive nature

20 S. Gilmore et al.of linear typing an lead to unneessary ompliations. Aspinall and Hofmann [1℄ give a type system whihrelaxes the linearity ondition while still allowing safe in-plae updates, and Mihal Kone£ný generalises thisstill further in [15, 16℄. As part of the MRG projet, Kone£ný has implemented a typeheker for a variant ofthe type system of [15℄ adapted to Camelot.A di�erent approah to providing heap-usage guarantees is given by Hofmann and Jost in [13℄, where analgorithm is presented whih an be used to statially infer heap-usage bounds for funtional programs of asuitable form. In ollaboration with the MRG projet, Ste�en Jost has implemented a variant of this inferenealgorithm for Camelot: the implementation is desribed in [14℄. Both of these implementations are urrentlystand-alone programs, but we are in the proess of integrating them with the Camelot ompiler.One of our goals in the design of Camelot was to de�ne a language whih ould be used as a testbed fordi�erent heap-usage analysis methods. The inlusion of expliit diamonds �ts the type systems of [1, 15, 16℄, andthe inlusion of the free list failitates the Hofmann-Jost inferene algorithm, whih requires that all memorymanagement takes plae via a free list.2.3. Compilation of expressions. Camelot is initially ompiled into the Grail intermediate language[5, 19℄ whih is essentially a funtional form of Java byteode. This proess is failitated by an initial phase inwhih several transformations are applied to the abstrat syntax tree.2.3.1. Monomorphisation. Firstly, all polymorphism is removed from the program. For polymorphitypes (αn, . . . , α1) t suh as α list we examine the entire program to determine all instantiations of the typevariables, and ompile a separate datatype for eah distint instantiation. Similarly, whenever a polymorphifuntion is de�ned the program is examined to �nd all uses of the funtion and a monomorphi funtion of theappropriate type is generated for eah distint instantiation of types.2.3.2. Normalisation. After monomorphisation there is a phase referred to as normalisation whih trans-forms the Camelot program into a form whih losely resembles Grail.Firstly the ompiler ensures that all variables have unique names. Any dupliations are resolved by gener-ating new names. This allows us to map Camelot variable names diretly onto Grail variable names (whih inturn map onto JVM loal variable loations) with no danger of lashes arising.Next, we give names to intermediate results in many ontexts by replaing omplex expressions with vari-ables. For example, the expression f(a + b + c) would be replaed by an expression of the form let t1 =
a + b in let t2 = t1 + c in f(t2). The introdution of names for intermediate results an produe a largenumber of Grail (and hene JVM) variables. After the soure ode has been ompiled to Grail the number ofloal variables is minimised by applying a standard register alloation algorithm (see [30℄).A �nal transformation ensures that let-expressions are in a �straight-line� form. After all of these trans-formations have been performed expressions have been redued to a form whih we refer to as normalisedCamelotThe struture of normalised Camelot (whih is in fat in a type of A-normal form [9℄) is su�iently loseto that of Grail that it is fairly straightforward to translate from the former to the latter. Another bene�t ofnormalisation is that it is easier to write and implement type systems for normalised Camelot. The fat thatthe omponents of many expressions are atoms rather than omplex subexpressions means that typing rulesan have very simple premisses.2.4. Compilation of values. Camelot has various primitive types (int, float, et.) whih an betranslated diretly into orresponding JVM types. The ompilation of user-de�ned datatypes, however, israther more ompliated. Objets belonging to datatypes are represented by members of a single JVM lasswhih we will refer to as the diamond lass. Objets of the diamond lass ontain enough �elds to representany member of any datatype de�ned in the program. Eah instane X of the diamond lass ontains an integertag �eld whih identi�es the onstrutor with whih X is assoiated. The diamond lass also ontains a stati�eld pointing to the free list. The free list is managed via the stati methods allo (whih returns the diamondat the head of the free list, or reates a new diamond by alling new if the free list is empty), and free whihplaes a diamond objet on the free list. The diamond lass also has overloaded stati methods alled makeand fill, one instane of eah for every sequene of types appearing in a onstrutor. The make methods areused to implement ordinary onstrutor appliation; eah takes an integer tag value and a sequene of argumentvalues and alls allo to obtain an instane of the diamond lass, and then alls a orresponding fill method

Extending Camelot With Mutable State and Conurreny 21to �ll in the appropriate �elds with the tag and the arguments. The fill methods are also used when theprogrammer reuses an existing diamond to onstrut a datatype value.It an be argued that this representation is ine�ient in that datatype values are often represented by JVMobjets whih are larger than they need to be. This is true, but is di�ult to avoid due to the type-safe natureof JVM memory management whih prevents one from re-using the heap spae oupied by a value of one typeto store a value of a di�erent type. We wish to be able to reuse heap spae, but this an be impossible if objetsan ontain only one type of data. With the urrent sheme one an easily write a heapsort program whihoperates entirely in-plae. List ells are large enough to be reused as heap nodes and this allows a heap to bebuilt using ells obtained by destroying the input list. One the heap has been built it an in turn be destroyedand the spae reused to build the output list. In this ase, the amount of memory oupied by a list ell islarger than it needs to be, but the overall amount of store required is less than would be the ase if separatelasses were used to ontain list ells and heap nodes.In the urrent ontext it an be laimed that it is better to have an ine�ient representation about whih wean give onrete guarantees than an e�ient one whih about we an say nothing. Most of the programs whihwe have written so far use a limited number of datatypes so that the overhead introdued by the monolithirepresentation for diamonds is not too severe. However, it is likely that for very large programs this overheadwould beome unaeptably large. One possibility whih we have not yet explored is that it might be possibleto ahieve more e�ient heap usage by using data�ow tehniques to follow the �ow of diamonds through theprogram and detet datatypes whih are never used in an overlapping way. One ould then equip a programwith several smaller diamond lasses whih would represent suh non-overlapping types.These problems ould be avoided by ompiling to some platform other than the JVM (for example toC or to a speialised virtual mahine) where ompation of heap regions would be possible. The Hofmann-Jost algorithm is still appliable in this situation, so it would still be feasible to produe resoure guarantees.However, it was a fundamental deision of the MRG projet to use the JVM, based on the fats that the JVMis widely deployed and very well-known, and that resoure usage is a genuine onern in many ontexts wherethe JVM is used. Our present approah allows us to produe onrete guarantees at the ost of some overhead;we hope that at a later stage a more sophistiated approah (suh as the one suggested above) might allow usto redue the overheads while still obtaining guaranteed resoure bounds.2.5. Remarks. There are various ways in whih Camelot ould be extended. The lak of higher-orderfuntions is inonvenient, but the resoure-aware type systems whih we use are presently unable to deal withhigher-order funtions, partly beause of the fat that these are normally implemented using heap-alloatedlosures whose size may be di�ult to predit. A possible strategy for dealing with this whih we are urrentlyinvestigating is Reynolds' tehnique of defuntionalization [24℄ whih transforms higher-order programs into�rst-order ones, essentially by performing a transformation of the soure ode whih replaes losures withmembers of datatypes. This has the advantage that extra spae required by losures is exposed at the sourelevel, where it is amenable to analysis by the heap-usage inferene tehniques mentioned earlier.3. Objet-oriented extensions. The ore Camelot language as desribed in Setion 2 above enables theprogrammer to write a program with a preditable resoure usage; however, only primitive interation with theoutside world is possible, through ommand line arguments, �le input and printed output. To be able to writea full interfae for a game or utility to be run on a mobile devie, Camelot programs must be able to interfaewith external Java libraries. Similarly, the programmer may wish to utilise devie-spei� libraries, or Java'sextensive lass library.This setion desribes our objet-oriented extension to Camelot. This is primarily intended to allow Camelotprograms to aess Java libraries. It would also be possible to write resoure-erti�ed libraries in Camelot foronsumption by standard Java programs, or indeed use the objet system for OO programming for its own sake,but giving Camelot programs aess to the outside world is the main objetive.In designing an objet system for Camelot, many hoies are made for us, or at least tightly onstrained.We wish to reate a system allowing inter-operation with Java, and we wish to ompile an objet system toJVML. So we are almost fored into drawing the objet system of the JVM up to the Camelot level, and annotseriously onsider a fundamentally di�erent system.On the other hand, the type system is strongly in�uened by the existing Camelot type system. Thereis more sope for hoie, but implementation an beome omplex, and an overly omplex type system is

22 S. Gilmore et al.undesirable from a programmer's point of view. We also do not want to interfere with type systems for resouresas mentioned above.We shall �rst attempt to make the essential features of Java objets visible in Camelot in a simple form,with the view that a simple abbreviation or module system an be added at a later date to make things morepalatable if desired.3.1. Basi Features. We shall view objets as reords of possibly mutable �elds together with relatedmethods, although Camelot has no existing reord system. We de�ne the usual operations on these objets,namely objet reation, method invoation, �eld aess and update, and asting and mathing. As one mightexpet we hoose a lass-based system losely modelling the Java objet system. Consequently we must a-knowledge Java's uses of lasses for enapsulation, and assoiate stati methods and �elds with lasses also.We now onsider these features. The examples below illustrate the new lasses of expressions we add toCamelot.Stati method alls There is no oneptual di�erene between stati methods and funtions, ignoring the useof lasses for enapsulation, so we an treat stati method alls just like funtion alls.java.lang.Math.max a bStati �eld aess Some libraries require the use of stati �elds. We should only need to provide aess toonstant stati �elds, so they orrespond to simple values.java.math.BigInteger.ONEObjet reation We learly need a way to reate objets, and there is no need to deviate from the newoperator. By analogy with standard Camelot funtion appliation syntax (i.e. urried form) we have:new java.math.BigInteger "101010" 2Instane �eld aess To retrieve the value of an instane variable, we writeobjet#fieldwhereas to update that value we use the syntaxobjet#field <- valueassuming that field is delared to be a mutable �eld.It ould be argued that allowing unfettered external aess to an objet's variables is against the spiritof OO, and more to the point inappropriate for our small language extension, but we wish to allow easyinteroperability with any external Java ode.Method invoation Drawing inspiration from the O'Caml syntax, and again using a urried form, we haveinstane method invoation:myMap#put key valueNull values In Java, any method with objet return type may return the null objet. For this reason we adda onstrutisnull ewhih tests if the expression e is a null value.Casts and typease It may be oasionally be neessary to ast objets up to superlasses, for example tofore the intended hoie between overloaded methods. We will also want to reover sublasses, suhas when removing an objet from a olletion. Here we propose a simple notation for up-asting:obj :> ClassThis notation is that of O'Caml, also borrowed by MLj (desribed in [3℄). To handle down-asting weshall extend patterns in the manner of typease (again like MLj) as follows:math obj with o :> C1 -> o.a()| o :> C2 -> o.b()| _ -> obj.()Here o is bound in the appropriate subexpressions to the objet obj viewed as an objet of type C1 orC2 respetively. As in datatype mathes we require that every possible ase is overed; here this meansthat the default ase is mandatory. We also require that eah lass is a sublass of the type of obj, andsuggest that a ompiler warning should be given for any redundant mathes.Unlike MLj we hoose not to allow downasting outside of the new form of math statement, partlybeause at present Camelot has no exeption support to handle invalid down-asts.As usual, the arguments of a (stati or instane) method invoation may be sublasses of the method's argumenttypes, or lasses implementing the spei�ed interfaes.

Extending Camelot With Mutable State and Conurreny 23The following example demonstrates some of the above features, and illustrates the ease of interoperability.Note that the type of the parameter l is spei�ed by a onstraint here. Type inferene does not ross lassboundaries in Camelot.let onvert (l: string list) =math l with [℄ -> new java.util.LinkedList ()| h::t ->let ll = onvert tin let _ = ll#addFirst hin ll3.2. De�ning lasses. One we have the ability to write and ompile programs using objets, we may aswell start writing lasses in Camelot. We must be able to reate lasses to implement allbaks, suh as in theSwing GUI system whih requires us to write stateful adaptor lasses. Otherwise, as mentioned previously, wemay wish to write Camelot ode to be alled from Java, for example to reate a resoure-erti�ed library foruse in a Java program, and de�ning a lass is a natural way to do this. Implementation of these lasses willobviously be tied to the JVM, but the form these take in Camelot has more sope for variation.We allow the programmer to de�ne a lass whih may expliitly sublass another lass, and implement anumber of interfaes. We also allow the programmer to de�ne (possibly mutable) �elds and methods, as wellas stati methods and �elds for the purpose of reating a spei� lass for interfaing with Java. We naturallyallow referene to this.The form of a lass delaration is given below. Items within angular brakets 〈. . .〉 are optional.
classdecl ::= lass cname = 〈scname with〉 body end

body ::= 〈interfaces〉 〈fields〉 〈methods〉

interfaces ::= implement iname 〈interfaces〉

fields ::= field 〈fields〉

methods ::= method 〈methods〉This de�nes a lass alled cname, implementing the spei�ed interfaes. The optional scname gives the nameof the diret superlass; if it is not present, the superlass is taken to be the root of the lass hierarhy, namelyjava.lang.Objet. The lass cname inherits the methods and values present in its superlass, and these maybe referred to in its de�nition.As well as a superlass, a lass an delare that it implements one or more interfaes. These orresponddiretly to the Java notion of an interfae. Java libraries often require the reation of a lass implementing apartiular interfae�for example, to use a Swing GUI one must reate lasses implementing various interfaesto be used as allbaks. Note that at the urrent time it is not possible to de�ne interfaes in Camelot, theyare provided purely for the purpose of interoperability.Now we desribe �eld delarations.
field ::= field x : τ | field mutable x : τ | val x : τInstane �elds are de�ned using the keyword field, and an optionally be delared to be mutable. Stati �eldsare de�ned using val, and are non-mutable. In a sense these mutable �elds are the �rst introdution of side-e�ets into Camelot. While the Camelot language is de�ned to have an array type, this has largely been ignoredin our more formal treatments as it is not fundamental to the language. Mutable �elds, on the other hand,are fundamental to our notion of objet orientation, so we expet any extension of Camelot resoure-ontrolfeatures to objet-oriented Camelot to have to deal with this properly.Methods are de�ned as follows, where 1 ≤ i1, . . . , im ≤ n.

method ::= maker(x1:τ1) . . . (xn:τn) 〈: super xi1
. . . xim

〉 = exp

| method m(x1:τ1) . . .(xn:τn) : τ = exp

| method m() : τ = exp

| let m(x1:τ1) . . . (xn:τn) : τ = exp

| let m() : τ = exp

24 S. Gilmore et al.Again, we use the usual let syntax to delare what Java would all stati methods. Stati methods are simplymonomorphi Camelot funtions whih happen to be de�ned within a lass, although they are invoked usingthe syntax desribed earlier. Instane methods, on the other hand, are atually a fundamentally new additionto the language. We onsider the instane methods of a lass to be a set of mutually reursive monomorphifuntions, in whih the speial variable this is bound to the urrent objet of that lass.We an onsider the methods as mutually reursive without using any additional syntax (suh as andbloks) sine they are monomorphi. ML uses and bloks to group mutually reursive funtions beause itslet-polymorphism prevents any of these funtions being used polymorphially in the body of the others, but thisis not an issue here. In any ase this impliit mutual reursion feels appropriate when we are ompiling to theJava Virtual Mahine, and have to ome to terms with open reursion.In addition to stati and instane methods, we also allow a speial kind of method alled a maker. This isjust what would be alled a onstrutor in the Java world, but as in [8℄ we use the term maker in order to avoidonfusion between objet and datatype onstrutors. The maker term above de�nes a maker of the ontaininglass C suh that if new C is invoked with arguments of type τ1 . . . τn, an objet of lass C is reated, thesuperlass maker is exeuted (this is the zero-argument maker of the superlass if none is expliitly spei�ed),expression exp (of unit type) is exeuted, and the objet is returned as the result of the new expression. Everylass has at least one maker; a lass with no expliit maker is taken to have the maker with no arguments whihinvokes the superlass zero-argument maker and does nothing. This impliit maker is inserted by the ompiler.3.3. Polymorphism. We remarked earlier that stati methods are basially monomorphi Camelot fun-tions together with a form of enapsulation, but it is worth onsidering polymorphism more expliitly. objet-oriented Camelot methods, whether stati or instane methods, are not polymorphi. That is, they have subtypepolymorphism but not parametri polymorphism (generiity), unlike Camelot funtions whih have parametribut not subtype polymorphism. This is not generally a problem, as most polymorphi funtions will involvemanipulation of polymorphi datatypes, and an be plaed in the main program, whereas most methods willbe interfaing with the Java world and thus should onform to Java's subtyping polymorphism.3.4. Translation. As mentioned earlier, the present Camelot ompiler targets the JVM, via the inter-mediate language Grail. Translating the objet-oriented features whih have just been desribed is relativelystraightforward, as the JVM (and Grail) provide what we need. A detailed formal desription of the translationproess an be found in [31℄3.5. Objets and Resoure Types. As desribed earlier, the use of diamond annotations on Camelotprograms in ombination with ertain resoure-aware type systems allows the heap usage of those programsto be inferred, as well as allowing some in-plae update to our. Clearly the presene of mutable objets inobjet-oriented Camelot also provides for in-plae update. However by allowing arbitrary objet reation wealso repliate the unbounded heap-usage problem solved for datatypes. Perhaps more seriously, we are allowingCamelot programs to invoke arbitrary Java ode, whih may use an unlimited amount of heap spae.Firstly onsider the seond problem. Even if we have some way to plae a bound on the heap spae used byour new OO features within a Camelot program, external Java ode may use arbitrary amounts of heap. Thereseem to be a few possible approahes to this problem, none of whih are partiularly satisfatory. We oulddeide to only allow the use of external lasses if they ame with a proof of bounded heap usage. Construtinga resoure-bounded Java lass library or inferring resoure bounds for an existing library would be a massiveundertaking, although perhaps less problemati with the smaller lass libraries used with mobile devies. Thissuggestion seems somewhat unrealisti.Alternatively, we ould simply allow the resoure usage of external methods to be stated by the programmeror library reator. This extends the trusted omputing base in the sense of resoures, but seems a morereasonable solution. The other alternative�onsidering resoure-bound proofs to only refer to the resouresdiretly onsumed by the Camelot ode�seems unrealisti, as one ould easily (and even aidentally) heatby using Java libraries to do some memory-onsuming �dirty work�.The issue of heap-usage internal to objet-oriented Camelot programs seems more tratable, although wedo not propose a solution here. A �rst attempt might mimi the tehniques used earlier for datatypes; perhapswe an adapt the use of diamonds and linear type systems? The use of diamonds for in-plae update is irrelevanthere, and indeed relies on the uniform representation of datatypes by objets of a partiular Java lass. Sinewe are hardly going to represent every Java objet by an objet of one lass we ould not hope to have suh adiret orrelation between diamonds and hunks of storage.

Extending Camelot With Mutable State and Conurreny 25However, we ould imagine an abstrat diamond whih represents the heap storage used by an arbitraryobjet, and require any instane of new to supply one of these diamonds, in order that the total number ofobjets reated is limited. Unfortunately relamation of suh an abstrat diamond would only orrespond tomaking an objet available to garbage olletion, rather than de�nitely being able to re-use the storage. Evenso, suh a system might be able to give a measure of the total number of objets reated and the maximumnumber in ative use simultaneously.4. Using threads in Camelot. Previously the JVM had been used simply as a onvenient run-timefor the Camelot language but the objet-oriented extensions desribed above allow the Java namespae to beaessed from a Camelot appliation. Thus a Camelot appliation an now reate Java objets and invoke Javamethods. Figure 4.1 shows the implementation of a remote input reader in RoundTable, a networked hatappliation written in Camelot. This example lass streams input from a network onnetion and renders it ina display area in the graphial user interfae of the appliation.(* Thread to read from the network, passing data to a display objet *)lass remote = java.lang.Threadwith�eld input : java.io.BufferedReader�eld disp : displaymaker (i : java.io.BufferedReader)(d : display) =let _ = input ← i in disp ← dmethod run() : unit =let line = this#input#readLine()in if isnullobj line then () elselet _ = this#disp#append linein this#run()endFig. 4.1. An extrat from the RoundTable hat appliation showing the OO extensions to CamelotThis example shows the Camelot syntax for method invoation (obj#meth()), �eld aess (obj#field) andmutable �eld update (f <- exp). Both of these are familiar from Objetive Caml.This example also shows that even in the objet-oriented fragment of the Camelot language that the naturalde�nition style for unbounded repetition is to write reursive method alls. The Camelot ompiler onverts tail-alls of instane methods (suh as this#run) into while-loops so that methods implemented as in Figure 4.1run in onstant spae and do not over�ow the Java run-time stak. In ontrast reursive method alls in Javaare not optimised in this way and would lead to the program over�owing the stak.A sreenshot of a window from the RoundTable appliation is shown in Figure 4.2. This shows date-and-time-stamped messages arriving spontaneously in the window. The appliation o�ers the ability to threadmessages by ontent or to sort them by time. The sorting routine is guaranteed by typeheking to run inonstant spae beause addresses of ons ells in the list of messages are re-yled using the free list as desribedin Setion 2.2.
Fig. 4.2. Sreenshot of the Camelot RoundTable appliation

26 S. Gilmore et al.The extension of the Camelot ompiler to support interoperation with Java failitates the implementationof graphial appliations suh as these. The Java APIs used by this appliation inlude the Swing graphialuser interfae omponents, networking, threads and pluggable look-and-feel omponents suh as the Skin look-and-feel shown above.5. Management of threads. In designing a thread management system for Camelot our strongest re-quirement was to have a system whih works harmoniously with the storage management system already inplae for Camelot. One aspet of this is that the resoure onsumption of a single-threaded Camelot programan be omputed in line with the reasoning explained in Setion 1.In moving from one to multiple threads the most important question with respet to memory usage is thefollowing. Should the free list of storage whih an be reused be a single stati instane shared aross all threads;or should eah thread separately maintain its own loal instane of the free list?In the former ase the aessor methods for the free list must be synhronised in order for data struturesnot to beome disordered by onurrent write operations. Synhronisation inurs an overhead of loking andunloking the parent of the �eld when entering and leaving a ritial region. This imposes a run-time penalty.In the latter ase there is no requirement for aess to the free list to be synhronised; eah thread has itsown free list. In this ase, though, the free memory on eah free list is private, and not shared. This means thatthere will be times when one thread alloates memory (with a Java new instrution) while another thread hasunused memory on its loal free list. This imposes a penalty on the program memory usage, and this form ofthread management would lead to programs typially using more memory overall.We have hosen the former sheme; we have a single stati instane of a free list shared aross all threads. Ourprograms will take longer than their optimum run-time but memory performane will be improved. Cruially,preditability of memory onsumption is retained.There are several possible variants on this seond sheme whih we onsidered. They were not right for ourpurposes but might be right for others. One interesting alternative is a hybrid of the two approahes is whereeah thread had a bounded (small) loal free list and �ushes this to the global free list when it beomes full.This would redue the overhead of alls to aess the synhronised global free list, while preventing threads fromkeeping too many unused memory ells loally. This ould be a suitable ompromise between the two extremesbut the analysis of this approah would inevitably be more ompliated than the approah whih we adopted(a single stati free list).A seond alternative would be to implement weak loal free lists. In this onstrution eah thread would haveits own private free list implemented using weak referenes whih are referenes that are not strong enough bythemselves to keep an objet alive if no genuine referenes to it are retained. Weak referenes are typially usedto implement ahes and seondary indexes for data strutures. Other high-level garbage-olleted languagessuh as O'Caml implement weak referenes also. This sheme was not usable by us beause the Camelotompiler also targets small JVMs on handheld devies and the J2ME does not provide the neessary lass(java.lang.ref.WeakReferene).The analysis of memory onsumption of Camelot programs is based on the onsumption of memory by heap-alloated data strutures. The present analysis of Camelot programs is based on a single-threaded arhiteture.To assist with the development of an analysis method for multi-threaded Camelot programs we require thatdata strutures in a multi-threaded Camelot program are not shared aross threads. For example, it is notpossible to hold part of a list in one thread and the remainder in another. This requirement means that thespae onsumption of a multi-threaded Camelot program is obtained as the sum of per-thread spae alloationplus the spae requirements of the threads themselves.At present our type system takes aount of heap alloations but does not take aount of stak growth.Thus Camelot programs an potentially (and sometimes do in pratie) fail at runtime with ajava.lang.StakOverflowError exeption if the programmer overuses the idiom of working with families ofmutually-reursive funtions and methods whih ompute with deeply-nested reursion.Even sophistiated funtional language ompilers for the JVM su�er from this problem and some, suhas MLj [4, 3℄, do not even implement tail-all elimination in ases where the Camelot ompiler does. Severalauthors onsider the absene of support for tail all elimination to be a failing of the JVM [2, 22℄. An approahto eliminating tail alls suh as that used by Funnel [25℄ would be a useful next improvement to the Camelotompiler. Tehniques suh as trampolining have also been shown to work for the JVM [29℄. The prinipalreason why the JVM does not automatially perform tail-all optimisation is that the Java seurity model may

Extending Camelot With Mutable State and Conurreny 27require inspetion of the stak to ensure that a partiular method has su�ient privileges to exeute anothermethod; eliminating tail-alls would lead to the disarding of stak frames whih ontain the neessary seurityinformation. However, Clements and Felleisen have reently proposed another seurity model whih allowssafe tail-all optimisation [7℄; they laim that this requires only a minor hange to the mehanism urrentlyused by the JVM (and other platforms), so there may be some hope that future JVM implementations willsupport proper tail-all optimisation and thus simplify the proess of implementing funtional languages forthe JVM.6. A simple thread model for Camelot. To retain preditability of memory behaviour in Camelot werestrit the programming model o�ered by Java's threads.Firstly, we disallow use of the stop and suspend methods from Java's threads API. These are depreatedmethods whih have been shown to have poor programming properties in any ase. Use of the stop methodallows objets to be exposed in a damaged state, part-way through an update by a thread. Use of suspendfreezes threads but these do not release the objets whih they are holding loks on, thereby often leadingto deadloks. Dispensing with pre-emptive thread interruption means that there is a orrespondene betweenCamelot threads and lightweight threads implemented using �rst-lass ontinuations, all/ and throw, asare usually to be found in multi-threaded funtional programming languages [6, 18℄.Seondly, we require that all threads are run, again for the purposes of supporting preditability of memoryusage. In the Java language thread alloation (using new) is separated from thread initiation (using the startmethod in the java.lang.Thread lass) and there is no guarantee that alloated threads will ever be run atall. In multi-threaded Camelot programs we require that all threads are started at the point where they areonstruted.Finally, we have a single onstrutor for lasses in Camelot beause our type system does not supportoverloading. This must be passed initial values for all the �elds of the lass (beause the thread will initiateautomatially). All Camelot threads exept the main thread of ontrol are daemon threads, whih means thatthe Java Virtual Mahine will not keep running if the main thread exits.let re threadname(args) =let locals = subexps in threadname(args)let threadInstance =new threadname(actuals) in . . .

 lass threadnameHolder (args) = java.lang.Threadwithlet re threadname() =let locals = subexps in threadname()method run() : unit =let _ = this#setDaemon(true)in threadname()endlet threadInstance =new threadnameHolder (actuals) inlet _ = threadInstance#start() in . . .Fig. 6.1. Derived forms for thread reation and use in CamelotThis simpli�ed idiom of thread use in Camelot allows us to de�ne derived forms for Camelot threads whihabbreviate the use of threads in the language. These derived forms an be implemented by lass hoisting,moving a generated lass de�nition to the top level of the program. This translation is outlined in Figure 6.1.7. Threads and (non-)termination. The Camelot programming language is supported not only by astrong, expressive type system but also by a program logi whih supports reasoning about the time and spaeusage of programs in the language. However, the logi is a logi of partial orretness, whih is to say that theorretness of the program is guaranteed only under the assumption that the program terminates. It would

28 S. Gilmore et al.be possible to onvert this logi into a logi of total orretness whih would guarantee termination instead ofassuming it but proofs in suh a logi would be more di�ult to produe than proofs in the partial orretnesslogi.It might seem nonsensial to have a logi of partial orretness to guarantee exeution times of programs(�this program either terminates in 20 seonds or it never does�) but even these proofs about exeution times havetheir use. They are used to provide a bound on the running time of a program so that if this time is exeeded theprogram may be terminated foribly by the user or the operating system beause after this point it seems thatthe program will not terminate. Suh a priori information about exeution times would be useful for shedulingpurposes. In Grid-based omputing environments Grid servie providers shedule inoming jobs on the basis ofestimated exeution times supplied by Grid users. These estimates are sometimes signi�antly wrong, leadingthe sheduler either to foribly terminate an over-running job due to an under-estimated exeution time or toshedule other jobs poorly on the basis of an over-estimated exeution time.Beause of the presene of threads in the language we now have meaningful (impure, side-e�eting) funtionswhih do not terminate so a strong funtional programming approah [27℄ requiring proofs of termination forevery funtion would be inappropriate for our purposes.8. Related work. The ore of the Camelot programming language is a strit, all-by-value �rst-orderfuntional programming language in the ML family extended with expliit memory dealloation ommands andan extended type system whih expresses the ost of funtion appliation in terms of an inrease in the sizeof the alloated memory on the heap. Other authors have addressed a similar programming model with somevariations. Lee, Yang and Yi [17℄ present a stati analysis approah whih is used in applying a soure-leveltransformation to insert expliit free ommands into the program text. Their analysis allows uses of expliitmemory dealloation whih are not expressible in Camelot due to the linearity requirement of the Camelottype system. Vasonelos and Hammond [28℄ present a type system whih is superior to ours in applying tohigher-order funtional programs. Our primary ost omputation is memory alloation whereas their primaryfous is on run-time abstrated as the number of beta-redutions in the abstrat semanti interpretation ofthe funtion term against the operational semantis of the language. Our work di�ers from both of these inonsidering multi-threaded, not only single-threaded programs.We have made referene to MLj, the aspets of whih related to Java interoperability are desribed in [3℄.MLj is a fully formed implementation of Standard ML, and as suh is a muh larger language than we onsiderhere. In partiular, MLj an draw upon features from SML suh as modules and funtors, for example, allowingthe reation of lasses parameterised on types. Suh �exibility omes with a prie, and we hope that therestritions of our system will make the erti�ation of the resoure usage of objet-oriented Camelot programsmore feasible.By virtue of ompiling an ML-like language to the JVM, we have made many of the same hoies that havebeen made with MLj. In many ases there is one obvious translation from high level onept to implementation,and in others the appropriate language onstrut is suggested by the Java objet system. However we have alsomade di�erent hoies more appropriate to our purpose, in terms of transpareny of resoure usage and thedesire for a smaller language. For example, we represent objets as reords of mutable �elds whereas MLj usesimmutable �elds holding referenes.There have been various other attempts to add objet oriented features to ML and ML-like languages.O'Caml provides a lean, �exible objet system with many features and impressive type inferene�a formalisedsubset is desribed in [23℄. As in objet-oriented Camelot, objets are modelled as reords of mutable �elds plusa olletion of methods. Many of the additional features of O'Caml ould be added to objet-oriented Camelotif desired, but there are some ompliations aused when we onsider Java ompatibility. For example, thereare various ways to ompile parameterised lasses and polymorphi methods for the JVM, but making thesefeatures interat leanly with the Java world is more subtle.The power of the O'Caml objet system seems to ome more from the distintive type system employed.O'Caml uses the notion of a row variable, a type variable standing for the types of a number of methods. Thismakes it possible to express �a lass with these methods, and possibly more� as a type. Where we would havea method parameter taking a partiular objet type and by subsumption any subtype, in O'Caml the type ofthat parameter would inlude a row variable, so that any objet with the appropriate methods and �elds ouldbe used. This allows O'Caml to preserve type inferene, but this is less important for our appliation, and doesnot map leanly to the JVM.

Extending Camelot With Mutable State and Conurreny 29A lass mehanism for Moby is de�ned in [8℄ with the priniple that lasses and modules should be orthogonalonepts. Laking a module system, Camelot is unable to take suh an approah, but both Moby and O'Camlhave been a guide to onrete representation. Many other relevant issues are disussed in [21℄, but again lakof a module system�and our desire to avoid this to keep the language small�gives us a di�erent perspetiveon the issues.9. Conlusions and further work. Our ongoing programme of researh on the Camelot funtionalprogramming language has been investigating resoure onsumption and providing stati guarantees of resoureonsumption at the time of program ompilation. Our thread management system provides a layer of abstrationover Java threads. This ould allow us to modify the present implementation to multi-task several Camelotthreads onto a single Java thread. The reason to do this would be to irumvent the ungenerous thread limit onsome JVMs. This extension remains as future work but our present design strongly supports suh an extension.We have disussed a very simple thread pakage for Camelot. A more sophistiated one, perhaps based onThimble [26℄, would provide a muh more powerful programming model.A possibly pro�table extension of Camelot would be to use defuntionalization [24℄ to eliminate mutualtail-reursion. Given a set of mutually reursive funtions F whose results are of type t, we de�ne a datatypes whih has for eah of the funtions in F a onstrutor with arguments orresponding to the funtion'sarguments. The olletion of funtions F is then replaed by a single funtion f: s -> t whose body is amath statement whih arries out the omputations required by the individual funtions in F . In this waythe mutually reursive funtions an be replaed by a single tail-reursive funtion, and we already have anoptimisation whih eliminates reursion for suh funtions. This tehnique is somewhat lumsy, and are isrequired in reyling the diamonds whih are required to ontain members of the datatypes required by s.Another potential problem is that several small funtions are e�etively ombined into one large one, and thereis thus a danger that that 64k limit for JVM methods might be exeeded. Nevertheless, this tehnique doesoverome the problems related to mutual reursion without a�eting the transpareny of the ompilation proessunduly, and it might be possible for the ompiler to perform the appropriate transformations automatially.We intend to investigate this in more detail.Aknowledgements. The authors are supported by the Mobile Resoure Guarantees projet (MRG, projetIST-2001-33149). The MRG projet is funded under the Global Computing pro-ative initiative of the Futureand Emerging Tehnologies part of the Information Soiety Tehnologies programme of the European Commis-sion's Fifth Framework Programme. The other members of the MRG projet provided helpful omments on anearlier presentation of this work. Java is a trademark of SUN Mirosystems.REFERENCES[1℄ D. Aspinall and M. Hofmann, Another type system for in-plae update, in Pro. 11th European Symposium on Program-ming, Grenoble, vol. 2305 of Leture Notes in Computer Siene, Springer, 2002.[2℄ N. Benton, Some shortomings of, and possible improvements to, the Java Virtual Mahine. This is an unpublished notewhih is available on-line at http://researh.mirosoft.om/∼nik/jvmritique.pdf, June 1999.[3℄ N. Benton and A. Kennedy, Interlanguage working without tears: Blending SML with Java, in Proeedings of the 4thACM SIGPLAN Conferene on Funtional Programming, Paris, Sept. 1999, ACM Press.[4℄ N. Benton, A. Kennedy, and G. Russell, Compiling Standard ML to Java byteodes, in Proeedings of the 3rd ACMSIGPLAN Conferene on Funtional Programming, Baltimore, sep 1998, ACM Press.[5℄ L. Beringer, K. MaKenzie, and I. Stark, Grail: a funtional form for imperative mobile ode, in Eletroni Notes inTheoretial Computer Siene, V. Sassone, ed., vol. 85, Elsevier, 2003.[6℄ E. Biagioni, K. Cline, P. Lee, C. Okasaki, and C. Stone, Safe-for-spae threads in Standard ML, Higher-Order andSymboli Computation, 11 (1998), pp. 209�225.[7℄ J. Clements and M. Felleisen, A tail-reursive mahine with stak inspetion, ACM Transations on ProgrammingLanguages and Systems. To appear.[8℄ K. Fisher and J. Reppy, Moby objets and lasses, 1998. Unpublished manusript.[9℄ C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen, The essene of ompiling with ontinuations, in ProeedingsACM SIGPLAN 1993 Conf. on Programming Language Design and Implementation, PLDI'93, Albuquerque, NM, USA,23�25 June 1993, vol. 28(6), ACM Press, New York, 1993, pp. 237�247.[10℄ M. Hofmann, A type system for bounded spae and funtional in-plae update, Nordi Journal of Computing, 7 (2000),pp. 258�289.[11℄ , A type system for bounded spae and funtional in-plae update, Nordi Journal of Computing, 7 (2000), pp. 258�289.[12℄ M. Hofmann and S. Jost, Stati predition of heap spae usage for �rst-order funtional programs, in Pro. 30th ACMSymp. on Priniples of Programming Languages, 2003.

30 S. Gilmore et al.[13℄ , Stati predition of heap spae usage for �rst-order funtional programs, in Pro. 30th ACM Symp. on Priniples ofProgramming Languages, New Orleans, 2003.[14℄ S. Jost, lfd_infer: an implementation of a stati inferene on heap-spae usage., in Proeedings of SPACE'04, Venie,2004. To appear.[15℄ M. Kone£ný, Funtional in-plae update with layered datatype sharing, in TLCA 2003, Valenia, Spain, Proeedings,Springer-Verlag, 2003, pp. 195�210. Leture Notes in Computer Siene 2701.[16℄ , Typing with onditions and guarantees for funtional in-plae update, in TYPES 2002 Workshop, Nijmegen, Proeed-ings, Springer-Verlag, 2003, pp. 182�199. Leture Notes in Computer Siene 2646.[17℄ O. Lee, H. Yang, and K. Yi, Inserting safe memory reuse ommands into ML-like programs, in Proeedings of the 10thAnnual International Stati Analysis Symposium, vol. 2694 of Leture Notes in Computer Siene, Springer-Verlag, 2003,pp. 171�188.[18℄ P. Lee, Implementing threads in Standard ML, in Advaned Funtional Programming, Seond International Shool, Olympia,WA, USA, August 26-30, 1996, Tutorial Text, J. Launhbury, E. Meijer, and T. Sheard, eds., vol. 1129 of Leture Notesin Computer Siene, Springer, 1996, pp. 115�130.[19℄ K. MaKenzie,Grail: a funtional intermediate language for resoure-bounded omputation. LFCS, University of Edinburgh,2002. Available at http://groups.inf.ed.a.uk/mrg/publiations/.[20℄ K. MaKenzie and N. Wolverson, Camelot and Grail: Resoure-aware funtional programming for the JVM, in Trendsin Funtional Programming, Intellet, 2004, pp. 29�46.[21℄ D. MaQueen, Should ML be objet-oriented?, Formal Aspets of Computing, 13 (2002).[22℄ E. Meijer and J. Miller, Tehnial Overview of the Common Language Runtime (or why the JVM is not my favouriteexeution environment). URL: http://dos.msdnaa.net/ark/Webfiles/whitepapers.htm, 2001.[23℄ D. Remy and J. Vouillon, Objetive ML: An e�etive objet-oriented extension to ML, Theory and Pratie of ObjetSystems, 4 (1998), pp. 27�50.[24℄ J. C. Reynolds,De�nitional interpreters for higher-order programming languages, Higher-Order and Symboli Computation,11 (1998), pp. 363�397.[25℄ M. Shinz and M. Odersky, Tail all elimination on the Java Virtual Mahine, in Proeedings of Babel'01, vol. 59 ofEletroni Notes in Theoretial Computer Siene, 2001.[26℄ I. Stark, Thimble � Threads for MLj, in Proeedings of the First Sottish Funtional Programming Workshop, no. RM/99/9in Department of Computing and Eletrial Engineering, Heriot-Watt University, Tehnial Report, 1999, pp. 337�346.[27℄ D. Turner, Elementary strong funtional programming, in Proeedings of the First International Symposium on FuntionalProgramming Languages in Eduation, R.Plasmeijer and P.Hartel, eds., vol. LNCS 1022, Nijmegen, Netherlands, De.1995, Springer.[28℄ P. B. Vasonelos and K. Hammond, Inferring osts for reursive, polymorphi and higher-order funtional programs,in Proeedings of the 15th International Workshop on the Implementation of Funtional Languages, G. Mihaelson andP. Trinder, eds., LNCS, Springer-Verlag, 2003. To appear.[29℄ D. Wakeling, Compiling lazy funtional programs for the Java Virtual Mahine, Journal of Funtional Programming, 9(1999), pp. 579�603.[30℄ N. Wolverson, Optimisation and resoure bounds in Camelot ompilation. Final-year projet report, University of Edin-burgh, 2003. Available at http://groups.inf.ed.a.uk/mrg/publiations/wolverson.ps.[31℄ N. Wolverson and K. MaKenzie, O'Camelot: adding objets to a resoure-aware funtional language, in Proeedings ofTFP2003, Intellet, 2004, pp. 47�62.Edited by: Frédéri LoulergueReeived: June 15, 2004Aepted: June 9, 2005

