

Edinburgh Research Explorer

Proof-carrying Bytecode

Citation for published version:
Gilmore, S & Prowse, M 2005, 'Proof-carrying Bytecode' Electronic Notes in Theoretical Computer Science,
vol. 141, no. 1, pp. 3-18. DOI: 10.1016/j.entcs.2005.02.038

Digital Object Identifier (DOI):
10.1016/j.entcs.2005.02.038

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2005.02.038
https://www.research.ed.ac.uk/portal/en/publications/proofcarrying-bytecode(1fce211f-01b0-4ef2-ae32-c631af7f278f).html

Proof-carrying Bytecode

Stephen Gilmore and Matthew Prowse1 ,2

Laboratory for Foundations of Computer Science
The University of Edinburgh, Edinburgh, Scotland

Abstract

In the Mobile Resource Guarantees project’s Proof Carrying Code implementation, .class files are
associated with Isabelle [9] proof scripts containing proofs of bounds on their resource consumption.
By using the tools gf and isabelle on the consumer-side, it is possible to verify after download,
that a piece of code conforms to a particular resource policy specified by the consumer, and prevent
execution in the event that it does not. We present here a prototype implementation using certain
features of the J2SE 5.0 Platform [10]. The (unmodified) bytecode and its proof are packaged as
a JAR file for convenient distribution. The codebase uses Java agents providing the Instrumen-
tation interface, and implements a custom permission class and Security Manager. The external
tools are invoked from within Java. Two system commands makeMRGjar and MRGjava provide a
convenient way of using this implementation.

1 Introduction

The purpose of bytecode representations of software is to provide a compact,
transmissible representation of compiled code. This allows a compiled program
to remain independent of the architecture on which it was compiled, with the
bytecode acting as a transport format for the program. Transporting code
from provider to consumer raises many issues about such use. The downloaded
code might be accidentally or maliciously harmful; there may be differences in
functionality between the compilation site and the execution site; or there may
be differences between the performance capabilities at the end-points, leading
to the downloaded code failing to function because it violates a resource bound
of the client machine.

1 Email: stg@inf.ed.ac.uk
2 Email: mprowse@inf.ed.ac.uk

Electronic Notes in Theoretical Computer Science 141 (2005) 3–18

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.02.038

mailto:stg@inf.ed.ac.uk
mailto:mprowse@inf.ed.ac.uk
http://www.elsevier.com/locate/entcs

Some of the above problems of bytecode use are well-addressed by modern,
well-engineered virtual machines such as the JVM but others are explicitly not
addressed. Bounding the consumption of resources at the execution site is not
considered in the Java security architecture. Denial-of-service attacks and
failures induced by the violation of a program resource bound are considered
to be outside the scope of influence of Java typing and Java security.

In the proof-carrying code (PCC) [8] approach, programs can be coupled
with proofs which verify desirable properties of the program. This concept
radically changes the trust relationship between code producer and code con-
sumer. A security-conscious consumer of code can now download and use code
without needing to trust or believe that the code producer is supplying benign
code, free from operational flaws. In a PCC architecture proofs may be very
expensive to produce but they are very efficient to check, thereby allowing
code producers to couple programs and proofs so that a code consumer may
separately re-check the proof before executing the program code.

The Mobile Resource Guarantees (MRG) project [7] combines the above
themes, applying PCC techniques to bytecode in order to certify those proper-
ties of bytecode programs which are not ensured by the execution environment
of the virtual machine. Although the pairing of bytecode programs (intended
to be portable) and proof-carrying code (intended to be downloaded) might
seem to be a natural one, to the best of our knowledge this is the first time
that PCC techniques have been applied to bytecode. In [8] and elsewhere, the
technique is applied to assembly language code, for example to develop safe
assembly language extensions to ML programs.

The Mobile Resource Guarantees project is working towards developing a
framework whereby a piece of mobile code can be transmitted by an untrusted
code producer across an insecure network, accompanied by an unforgeable
and efficiently-checkable proof script that the run-time behaviour (in terms
of resource consumption) will remain within some pre-specified bound. The
diagram in Figure 1 shows the components of the intended framework.

The operational instance in which we work is obtaining certified, struc-
tured bytecode via compilation of a high-level impure functional program-
ming language with objects and classes, Camelot [11,6,5]. Camelot programs
are similar to a dialect of Objective Caml but in contrast to that language
which has its own bytecode format and virtual machine, Camelot has nei-
ther. Instead Camelot programs are compiled into a structured dialect of
Java bytecode called Grail [1] and executed on a modern release of the JVM.
The Grail language is based on the λJVM language [4] used in the Flint/ML
compiler. Grail class files and associated proofs are packaged into JAR archive
and downloaded for execution on a configured, PCC-aware instance of Sun’s

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–184

Grail
Program

JVM
Program

Grail
Program

Proof
(Grail)Proof

(Grail)

Camelot
Program

JVM Program
JVM Program

P r o d u c e r C o n s u m e r

Network
GF

HLL compiler
Proof Checker

VM
OK?

GDF

Fig. 1. Mobile Resource Guarantees framework

J2SE 5.0 JVM. The specific concern of the present paper is in describing
the “back end” of this operation, detailing how the JVM interfaces with the
Isabelle theorem prover to check the proof carried with the code.

PCC architectures trade on certificates. Generating the certificate is a
time-consuming process performed by the code producer. The source files
are compiled to bytecode, and using type inference and possibly additional
annotations given by the programmer, the certificate can be generated. The
Java class file format has been chosen as a compact, platform independent
vehicle for code, and is transmitted together with the certificate, a condensed
formal proof in the form of an Isabelle proof script. These are then placed in
a JAR file for convenience.

Before executing the bytecode, we wish to verify that runtime behaviour
(resource usage) will conform to some resource policy, typically that it will
run in space linearly bounded by the size of the input. In the event that
verification of this property is not possible, execution should be prevented.

The JVM already ensures that untrusted applets execute in a somewhat
secured environment (sandboxing), but to introduce the necessary runtime
checks would be costly in terms of performance. If it is not possible to verify
that the code will conform to a given resource policy we might wish to allow
execution under close observation. Under these circumstances, instrumenting
the code with runtime checks may be a reasonable alternative.

Here we present an implementation of the above framework using certain
features of Sun’s newest release of the Java Platform, J2SE 5.0. The approach
is to instrument the newly obtained code with an additional security check

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–18 5

that is performed just as execution begins. We supply our own subclass of
the class java.security.SecurityManager to handle our new permission,
and we can throw an exception in the event of a failed check thus preventing
execution.

Structure of this paper:

In the next section we discuss the design and implementation of the support
required by the PCC architecture. Following on from this we detail the veri-
fication process and discuss JVM configuration. We give an example showing
the system in practical use and then give conclusions on the work. The work
uses a programming language named Camelot, discussed in the appendix.

2 Design and Implementation

The target platform of the mobile code is the Java Virtual Machine. There
are many implementations of JVMs for different systems, and some are more
restrictive than others in terms of the language features and libraries they
implement. In building this prototype, it has been our aim to investigate
a number of the new (and existing) features of Sun’s latest Java Platform
Standard Edition 5.0 that may be applicable in our context. Although some
choices made in the implementation preclude deployment on all JVM plat-
forms, J2SE 5.0 provides a wide range of interesting features.

An advantage of this implementation is that irrespective of their source,
class files can be used unmodified. Although we do modify the class as it is
loaded, by instrumenting the main method with an additional security check,
the file as stored in the filesystem remains unmodified, and the process there-
fore appears transparent.

The appropriate configuration of the JVM for controlling execution in the
manner suggested here requires of few components. Below, we treat each
package and class required in turn, describing both its role and how it is used.

2.1 Description of Packages

2.1.1 mrg.proofchecker

The MRGProofChecker class implements a check method which is used to
initiate the proof verification process by launching an Isabelle process. The
boolean return value of the check method depends on the exit status of this
process. See the next section for details.

The execution uses the Runtime.exec method, which returns a Process

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–186

object. The waitFor() method is called on this object requiring the process
to terminate, and obtaining an exit value, before continuing execution.

2.1.2 mrg.security

An MRGPermission is a named subclass of BasicPermission, which has no
actions. During the execution of a program, an instance of MRGPermission

can be used in a call to the checkPermission method of the instance of the
Java SecurityManager which is currently active. If no SecurityException

is thrown during this call, the deduction which is made is that the code has
permission to execute.

The MRGSecurityManager class is a subclass of SecurityManager, im-
plementing a check for the custom MRGPermission. The checkPermission

method is written to handle MRGPermission objects. Permission is granted
or denied according to the return value of:

MRGProofChecker.check();

If this returns true then the checkPermission method returns quietly and ex-
ecution will continue, otherwise an instance of SecurityException is thrown
and execution will terminate if the thrown exception is not subsequently
caught.

To use a custom Security Manager, the following command line switch is
given to the java command:

-Djava.security.manager=mrg.security.MRGSecurityManager

2.1.3 mrg.javaagent

There are two classes contained within the package mrg.javaagent: they are
mrg.javaagent.MRGAgent and mrg.javaagent.MRGTransformer. The for-
mer represents an instance of a “Java agent”, a new feature in the J2SE 5.0
platform which uses the latter to transform bytecode before it is loaded into
memory and initialised 3 .

The package java.lang.instrument provides services which allow Java
agents to instrument programs running on the JVM. The class MRGAgent is
implemented with a single method, premain. When the JVM uses this class
as an agent, the premain method will be called before the main method of the
class being executed (hence the name “premain”). To achieve this, a switch
of the following form is given to the java command:

3 This use of the term “agent” has nothing to do with mobile code agents, Java or otherwise.
It is rather a facilitity to hook code into the JVM.

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–18 7

-javaagent:<jarpath>[=<options>]

To specify a specific class to be used as an agent, it must be contained within
the .jar file specified, and the associated metadata file (the “manifest” file)
must contain an entry Premain-Class which references it.

The signature of the premain method is:

public static void premain(String arg, Instrumentation i)

and it is through using the argument object i (implementing the Instrumen-

tation interface of the newly-added java.lang.instrument package) that
we can perform bytecode instrumentation. During the premain method body,
we make a call to:

i.addTransformer(new MRGTransformer());

This will cause the transform(...) method of the new MRGTransformer

instance to be called once for each subsequent class to be loaded by the JVM.

The class MRGTransformer is a bytecode transformer which implements the
interface java.lang.instrument.ClassFileTransformer. The implementa-
tion of the transform method uses the code manipulation features of the Byte
Code Engineering Library (BCEL) to instrument the class being executed. A
security check is prepended to the main method before it is constructed in
memory and initialised.

An argument of the transform method is a byte buffer of the class cur-
rently being loaded. If this is the class being executed from the command line,
a modified classfile buffer is returned. All other classes that the JVM loads
are left unmodified.

Inserting a security check into the main method results in the code self-

checking before execution, ensuring that it does indeed have permission to
execute. The security check inserted into the main method is bytecode corre-
sponding to the following Java statements:

SecurityManager s = System.getSecurityManager();

if (s == null) throw new SecurityException("...");

s.checkPermission(new MRGPermission());

To implement this check, we insert a number of new constant pool entries
and bytecode instructions to the class and its main method. The Byte Code
Engineering Library allows us to do this with relatively little programming
effort, although it is a fairly heavyweight package, currently a codebase of
nearly 500 kilobytes.

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–188

3 Performing the Verification

The certificate containing the proof of the program’s bounded resource coun-
sumption is distributed as an Isabelle .thy file. Contained within the .jar

file, it is first extracted and saved to a temporary file. The proof makes
reference to the structure of the program itself, and thanks to the careful con-
struction of the .class file, the (functional) Grail form of the program can
be reconstructed. This process is called functionalisation 4 .

By saving to a temporary file the original .class file of the program, it can
be run through gf to obtain an Isabelle .thy file containing the Grail abstract
syntax. Now these two Isabelle files, along with a precompiled heap file, VCG,
are sufficient to perform the proof verification.

Invoking Isabelle as a batch process requires a small bootstrap file called
ROOT.ML. As this file can be read on standard input by the Isabelle process,
a temporary file is not needed and the OutputStream of the Process object
corresponding to the Isabelle invocation can be used instead. The input is of
the following form:

add_path <temp_dir>

use_thy <cert_name>

handle _ => OS.Process.exit OS.Process.failure

The way in which the Isabelle process indicates a failed execution of a
proof script is by throwing an exception, which is not reflected by the exit
status of the process itself. The last line will terminate the process with a
failure exit status in the event that such an exception is thrown. This exit
status is received by the calling Java code, and a decision to allow execution
of the program or not can then be made based upon the success of failure of
the proof verification.

4 Launching with MRGjava

In order to launch a correctly configured JVM for our purposes we need to
link to the implementations of the run-time support for PCC, install the proof-
aware resource manager and establish the Java agent to pre-emptively modify
the supplied class to invoke the security manager.

4 The tool gf is called the Grail Functionaliser, whereas the tool gdf is the Grail De-

Functionaliser.

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–18 9

4.1 JVM Configuration

First of all the JVM itself needs to be configured with an appropriate classpath,
the Java agent, and the security manager. Three switches are given to the
java process:

• -cp <path to bcel.jar>:<path to mrg.jar>:<program .jar>

• -javaagent:<path to mrg.jar>

• -Djava.security.manager=mrg.security.MRGSecurityManager

4.2 Filenames and Paths

The following properties are set using the -D option:

• mrg.jvm.home

• mrg.classname

• mrg.tmp.directory

The directory that contains the library JAR files, the executables, and the
Isabelle heapfile is passed into the JVM using the mrg.jvm.home property. The
simple classname of the class executed is set as the value of mrg.classname.
(This is used as the root of the names of the corresponding certificate and
abstract syntax representation of the program, used by Isabelle.) Finally, a
directory for temporary files can be specified using the mrg.tmp.directory

property.

4.3 The MRGjava command

The MRGjava command conveniently calls java setting the appropriate options
and properties. The environment variable MRGJVMHOME should be set to the
directory containing the libraries and executables. This is the value assigned
to the mrg.jvm.home property for use by the JVM.

The command can take several arguments. The usage format is shown
below:

MRGjava [-d] [-nocheck] jarFile [arg1 [, arg2 [, ...]]]

The only required argument is the path to a JAR file which the user wishes to
execute, (provided that MRGJVMHOME is set). The -d options enable debugging
output, and the -nocheck option will skip all the code modification and proof
checking, simply executing the class directly. Any remaining arguments after

the JAR file path are passed to the class being executed.

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–1810

5 Example

The steps involved in going from source code and compilation to proof verifi-
cation and execution of the insertion sort algorithm are presented here. Two
slightly different forms of insertion sort have been used: a simple version
which involves fresh allocations on the free list 5 at runtime (InsSort1), and
a version that performs in-place sort (using no additional freelist elements),
InsSort2.

5.1 Source Code

For simplicity, the definitions of several auxiliary functions have been omitted,
such as those used to convert a list of strings to a list of integers. The substance
of the Camelot source code of InsSort1 is as follows.

type iList = !Nil | Cons of int ∗ iList

let ins a l =
match l with

Nil −> Cons(a,Nil)
| Cons(x,t) −>

if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l =
match l with

Nil −> Nil
| Cons(a,t) −> ins a (sort t)

let start args =
let l1 = (stringList to intList args)
in let = print string (”Input :\n”ˆ(show list l1)ˆ”\n”)
in let l2 = sort l1
in let = print string (”Result:\n”ˆ(show list l2)ˆ”\n”)
in ()

The original list remains in memory, and the sorted list is a newly created
list.

5 See the appendix on Camelot for an explanation of the Camelot free list.

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–18 11

Camelot contains language constructs which are distinctive from those
in typical functional programming languages, including destructive matching.
By adding the @ modifier to the Cons matches in the definitions of ins and
sort, they become destructive matches and the algorithm then operates in-
place and eliminates any additional allocations on the free list at runtime.
Making these changes to the source of InsSort2, the extract below shows the
revised definitions:

let ins a l =
match l with

Nil −> Cons(a,Nil)
| Cons(x,t)@ −>

if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l =
match l with

Nil −> Nil
| Cons(a,t)@ −> ins a (sort t)

5.2 Compilation, Certificate Generation and Packaging

Preparing a program for distribution from Camelot source is made very easy
using the makeMRGjar shell script. Given a source file named <classname>.cmlt,
the command makeMRGjar <classname> is all that is required to compile a
program, generate its certificate and package it all in a .jar file. Running
this command on the InsSort1 example produces the following output:

makeMRGjar InsSort

Trying to create .jar for InsSort...

Compiled InsSort to JVML

Compiled InsSort$dia_0 to JVML

Successfully created InsSort.jar

#

5.3 Execution

To invoke an appropriately configured JVM to check and execute a program
with a certificate, the command MRGjava <jarpath> [<args>] performs all
the necessary work. Below is shown the result of executing the example:

MRGjava examples/InsSort1.jar 5 4 3 2 1

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–1812

Input :

[5, 4, 3, 2, 1]

Result:

[1, 2, 3, 4, 5]

#

5.4 Failure to Verify

The transcript of execution directly above shows the execution of insertion
sort given successful verification of conformance to the resource policy. In the
event of unsuccessful verification, the following message appears, offering the
user a choice to continue or not.

*** !!! ERROR !!! ERROR !!! ***

*** ***

*** MRGProofChecker failed to verify the given class file. ***

*** This code may have undesirable effects. ***

*** ***

*** To execute the code anyway, respond ’yes’ to the ***

*** following question... ***

*** ***

Do you wish to execute unverified code:

6 Further Work

There may be cases where proof verification fails, such as over-restrictive re-
source policies on target machines, or transmission errors. Using bytecode
instrumentation, one could implement additional runtime checks, at the be-
ginning and/or end of basic blocks of code, ensuring correct entry/exit be-
haviour. These checks could be carefully chosen to ensure correct operation,
at the expense of an increase in processing time, and perhaps memory con-
sumption to some extent too. Properties that could be tested might include
ensuring argument list lengths are within agreed bounds, object instantiations
are limited to specific portions of the code, etc.

The approach used here of integrating the proof verification with the Java
Security Manager falls down when targeting small devices that use J2ME for
example. Such platforms do not implement a Security Manager as such, nor

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–18 13

can agents be used in the same way. A refinement or alternative approach
must be adopted for this to work on such platforms.

7 Conclusions

We have shown that a combination of a modern JVM with a pre-processing
phase for bytecode and an independent prover can be used as the foundation of
a proof-carrying code infrastructure for bytecode. Programs and proofs can be
packaged together using standard file formats such as the Java archive format
(JAR). The proofs in our project are specialised ones focussing on resource
consumption, especially heap-space consumption of functions as inferred by a
resource-aware type system for the high-level object/functional language used
as input to the system, Camelot.

The PCC framework rests on relatively heavyweight tools such as the Byte
Code Engineering Library and the Isabelle generic theorem prover. The re-
quirement for extra security checking on downloaded code imposes a run-time
penalty on programs which could be reduced by tuning our present prototype
implementation to include a custom proof-checker component. In particular,
we believe that the Isabelle tactics which we use in checking the proof could
themselves be improved by using better representations of programs and cer-
tificates. Thus the bottleneck is not the use of the Isabelle technology but our
tactics which run on top of Isabelle. Such engineering improvements would
be necessary to make the promising technology presented here a practical,
everyday facility.

Acknowledgement

This research was supported by the Mobile Resource Guarantees (MRG)
project (IST-2001-33149) which is funded by the EC under the FET proac-
tive initiative on Global Computing. The Camelot compiler used in the MRG
project was developed by Kenneth MacKenzie and Nicholas Wolverson. The
Isabelle tactics and proof scripts used in the present work were developed for
the MRG project by David Aspinall, Lennart Beringer and Hans-Wolfgang
Loidl. The gf and gdf tools were developed by Kenneth MacKenzie, using
Standard ML code from Peter Bertelsen’s SML-JVM.

References

[1] Lennart Beringer, Kenneth MacKenzie, and Ian Stark. Grail: a functional form for imperative
mobile code. In Vladimiro Sassone, editor, Electronic Notes in Theoretical Computer Science,
volume 85. Elsevier, 2003.

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–1814

[2] Martin Hofmann. A type system for bounded space and functional in-place update. Nordic
Journal of Computing, 7(4):258–289, 2000.

[3] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order
functional programs. In Proc. 30th ACM Symp. on Principles of Programming Languages,
2003.

[4] Christopher League, Valery Trifonov, and Zhong Shao. Functional Java bytecode. In Proc. 5th
World Conf. on Systemics, Cybernetics, and Informatics, July 2001. Workshop on Intermediate
Representation Engineering for the Java Virtual Machine.

[5] K. MacKenzie and N. Wolverson. Camelot compiler
and Grail compiler and decompiler. Archive of Standard ML software available for download
at http://groups.inf.ed.ac.uk/mrg/camelot.

[6] K. MacKenzie and N. Wolverson. Camelot and Grail: Resource-aware functional programming
for the JVM. In Trends in Functional Programming, pages 29–46. Intellect, 2004.

[7] The Mobile Resource Guarantees project. http://groups.inf.ed.ac.uk/mrg.

[8] George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Proceedings of the Symposium
on Principles of Programming Languages, pages 106–119, Paris, France, January 1997. ACM
Press.

[9] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[10] Sun Microsystems, Inc. Java 2 Platform, Standard Edition 1.5.0,
http://java.sun.com/j2se/1.5.0/, May 27, 2004.

[11] N. Wolverson and K. MacKenzie. O’Camelot: adding objects to a resource-aware functional
language. In Proceedings of TFP2003, pages 47–62. Intellect, 2004.

A Performance

With every new technique comes an interest in performing a quantative com-
parison with existing methods. Figure A.1 shows a comparison of the runtimes
of our InsSort2 algorithm using both java, and MRGjava (without invoking
isabelle). The overhead incurred by invoking MRGjava averages 1 or 2 sec-
onds. The time taken for isabelle to perform the proof verification is rela-
tively significant. The current proof for insertion sort takes 12 to 20 seconds
to process.

Although the additional work performed by our augmented JVM is con-
stant, regardless of the size of input, there is the additional layer of processing
(the MRGjava script itself) whose performance may be related somehow to the
number of arguments it receives on the command line. Further work would
be necessary here to pin down the cause for the non-constant overhead.

B Camelot

The Camelot compiler targets the Java Virtual Machine and provides language
support for reusing memory. The JVM does not provide an instruction to

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–18 15

http://groups.inf.ed.ac.uk/mrg/camelot
http://groups.inf.ed.ac.uk/mrg
http://java.sun.com/j2se/1.5.0/

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

Fig. A.1. Runtimes of java and MRGjava on InsSort2 (no proof checking). Runtime in seconds
against length of input list.

free memory, consigning this to the garbage collector, a generational collector
with three generations and implementations of stop-and-copy and mark-sweep
collections. The Camelot run-time disposes of unused addresses by adding
them to a free list of unused memory. On the next allocation caused by the
program the storage is retrieved from the head of the free list instead of being
allocated by the JVM new instruction. When the free list becomes empty the
necessary storage is allocated by new.

This storage mechanism works for Camelot, but not for Java, because
Camelot uses a uniform representation for types which are generated by the
compiler, allowing data types to exchange storage cells. This uniform repre-
sentation is called the diamond type [2,3], implemented by a Diamond class in
the Camelot run-time. The type system of the Camelot language assigns types
to functions which record the number of parameters which they consume, and
their types; the type of the result; and the number of diamonds consumed or
freed.

One example of a situation where type-safe reuse of addresses can be used
is in a list updating function. As with the usual non-destructive list process-
ing, this applies a function to each element of a list in turn, building a list
of the images of the elements under the function. In contrast to the usual
implementation of a function such as map, the destructive version applies the
function in-place by overwriting the contents of each cons cell with the image
of the element under the function as it traverses the list.

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–1816

The following simple function increments each integer in an integer list.
The Camelot concrete syntax is similar to the concrete syntax of Caml. Where
addresses are not manipulated, as here, a Camelot function can also be com-
piled by Caml.

let rec incList lst =
match lst with

[] −> []
| h :: t −> (h + 1) :: incList t

This non-destructive version of list processing allocates as many cons-cells as
there are elements in the list. With the destructive implementation the storage
in the list is reused by overwriting the stored integers with their successors.
Thus this version does not allocate any storage.

let rec destIncList lst =
match lst with

[] −> []
| (h :: t)@d −> ((h + 1) :: destIncList t)@d

In a higher-order version of this function, a destructive map, we would have
the memory conservation property that if the function parameter does not
allocate storage then an application of the destructive map function would
not either.

Selective use of in-place update in this way can be used to realise defor-

estation, a program transformation which eliminates unnecessary intermediate
data structures which are built as a computation proceeds.

As an example of a function which is not typable in Camelot we can
consider the following one. This function attempts to create a modified copy of
a list, interleaved with the original list. The (deliberate) error in implementing
this function is to attempt to store the cons cells at the front of the list and
the cons cell in second place at the same location, d.

let rec incListCopy lst =
match lst with

[] −> []
| (h :: t)@d −>

let tail = ((h + 1) :: t)@d
in (h :: tail)@d (∗ Error : d used twice ! ∗)

This function is faulted by the Camelot compiler with the following diagnostic
error message.

File "incListCopy.cmlt", line 4-5, characters 18-80:

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–18 17

!let tail = ((h + 1) :: t)@d

! in (h :: tail)@d.............

! Variable d of type <> used non-linearly

The destIncList function above demonstrates storage re-use in Camelot.
As an example of programmed control of storage deallocation consider the
destructive sum function shown below. Summing the elements of an integer
list—or more generally folding a function across a list—is sometimes the last
operation performed on the list, to derive an accumulated result from the
individual values in the list. If that is the case then at this point the storage
occupied by the list can be reclaimed and it is convenient to do this while we
are traversing the list.

let rec destSumList lst =
match lst with

[] −> 0
| (h :: t)@ −> h + destSumList t

Matching the location of the object against a wildcard pattern (the symbol)
indicates that this address is not needed (because it is not bound to a name)
and thus it can be freed. The destSumList function frees the storage which
is occupied by the spine of the list as it traverses the list. In a higher-order
version such as destructive fold we would have the memory reclamation capa-
bility that the function passed in as a parameter could also free the storage
occupied by the elements of the list, if these were other storage-occupying
objects such as lists or trees.

Camelot classes contain methods which can invoke functions which are not
associated with any class. At the interface between the object sublanguage
and the functional sublanguage of Camelot it is necessary to specify the types
of the formal parameters of a function. Thus, in the following (contrived)
example it is necessary to specify the type of the parameter of the id function.

(∗ An example Camelot class with a method calling a
function which is defined outside the class ∗)

class callExample =
method myName() : string = id ”callExample”

end

let id (s : string) = s

As usual, within the functional sublanguage a type inference procedure re-
moves almost all need for the programmer to supply type information.

S. Gilmore, M. Prowse / Electronic Notes in Theoretical Computer Science 141 (2005) 3–1818

	Introduction
	Design and Implementation
	Description of Packages

	Performing the Verification
	Launching with MRGjava
	JVM Configuration
	Filenames and Paths
	The MRGjava command

	Example
	Source Code
	Compilation, Certificate Generation and Packaging
	Execution
	Failure to Verify

	Further Work
	Conclusions
	References
	Performance
	Camelot

