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Abstract

Background: An increase in non-B HIV-1 infections among men who have sex with men (MSM) in the United Kingdom (UK)
has created opportunities for novel recombinants to arise and become established. We used molecular mapping to
characterize the importance of such recombinants to the UK HIV epidemic, in order to gain insights into transmission
dynamics that can inform control strategies.

Methods and Results: A total of 55,556 pol (reverse transcriptase and protease) sequences in the UK HIV Drug Resistance
Database were analyzed using Subtype Classification Using Evolutionary Algorithms (SCUEAL). Overall 72 patients shared
the same A1/D recombination breakpoint in pol, comprising predominantly MSM but also heterosexuals and injecting drug
users (IDUs). In six MSM, full-length single genome amplification of plasma HIV-1 RNA was performed in order to
characterize the A1/D recombinant. Subtypes and recombination breakpoints were identified using sliding window and
jumping profile hidden markov model approaches. Global maximum likelihood trees of gag, pol and env genes were drawn
using FastTree version 2.1. Five of the six strains showed the same novel A1/D recombinant (8 breakpoints), which has been
classified as CRF50_A1D. The sixth strain showed a complex CRF50_A1D/B/U structure. Divergence dates and
phylogeographic inferences were determined using Bayesian Evolutionary Analysis using Sampling Trees (BEAST). This
estimated that CRF50_A1D emerged in the UK around 1992 in MSM, with subsequent transmissions to heterosexuals and
IDUs. Analysis of CRF50_A1D/B/U demonstrated that around the year 2000 CRF50_A1D underwent recombination with a
subtype B strain.

Conclusions: We report the identification of CRF50_A1D, a novel circulating recombinant that emerged in UK MSM around
1992, with subsequent onward transmission to heterosexuals and IDUs, and more recent recombination with subtype B.
These findings highlight the changing dynamics of HIV transmission in the UK and the converging of the two previously
distinct MSM and heterosexual epidemics.
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Introduction

The dynamics of the HIV epidemic are changing in the United

Kingdom (UK). By the end of 2010, approximately 91,500 people

were estimated to be living with HIV, including 40,100 men who

have sex with men (MSM), 47,000 heterosexual men and women

and 2,300 injecting drug users (IDUs) [1]. In previous years,

heterosexual infections, which were mostly imported, had over-

taken infections in MSM, 81% of which are indigenously

acquired. However, the trend has now reversed, reflecting a

decline in the number of infections acquired abroad, and a

corresponding increase in the number of infections acquired in the

UK [1]. These changes have considerable potential to modify

established epidemic patterns.

Mapping the molecular epidemiology of HIV infection can

provide valuable insights into transmission networks and thereby

inform prevention and containment strategies.
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As seen in other Western countries, including Italy and the

United States [2,3], in the UK the HIV epidemic among MSM

was traditionally composed of nearly uniformly subtype B

infections, contrasting with the variety of non-B subtypes found

in heterosexual infections, which are predominantly imported

from sub-Saharan Africa [4,5]. Non-B infections have been

increasing in recent years in MSM [2,6,7]. Under favorable

conditions such as those found in populations at risk of multiple

HIV exposures, novel recombinant strains can emerge and

become established, supplanting previous patterns of infection.

The emergence of recombinant HIV-1 strains among UK MSM

was proposed by Gifford et al. in 2007, based upon the detection of

a potentially novel subtype A recombinant in phylogenetic

analyses of pol gene sequences [6].

The aim of this study was to seek firmer evidence that novel

recombinant forms of HIV are emerging in the UK MSM

population. Through the screening of a large national database

containing reverse transcriptase and protease sequences from

patients undergoing drug resistance testing in routine care, and

subsequent near full-length, single genome sequencing (SGS) of

clinical isolates, we identified a novel A1/D circulating recombi-

nant form, now registered as CRF50_A1D, which first emerged in

the UK around 1992. We show that over time, CRF50_A1D

spread geographically and entered heterosexual and IDU trans-

mission networks, followed by recombination with a subtype B

strain and emergence of the unique recombinant form (URF)

CRF50/B/U. These findings indicate that the two previously

distinct HIV epidemics in MSM and heterosexuals have started to

converge in the UK, creating opportunities for greater HIV

genetic diversification.

Methods

Study population
The UK HIV Drug Resistance Database (HIV-DRD) (http://

www.hivrdb.org.uk/) and Public Health England (previously the

Health Protection Agency) provided access to pol sequences and

demographic and clinical data. The HIV-DRD is a national

repository of protease and reverse transcriptase sequences

obtained by Sanger sequencing in patients undergoing drug

resistance testing in routine care. At the time of the analysis, there

were 55,556 sequences in the database from both antiretroviral

treatment (ART)-naı̈ve and ART-experienced patients. Based

upon data from Gifford et al. indicating that a potentially novel

subtype A (sub-subtype A1) recombinant was circulating among

MSM in the UK [6], sequences from patients infected with sub-

subtype A1 were selected from the database for further analysis.

The REGA Subtyping tool and bootscanning analysis using

Simplot v3.5.1 were used to subtype recombinant sequences [8].

Subsequent subtyping was performed using Subtype Classification

Using Evolutionary Algorithms (SCUEAL) [9]. Stored plasma

samples from six selected patients were retrieved for further

sequence analysis.

Ethics statement
The Ethics Committee of the Royal Free Hospital in London

approved the anonymized use of stored plasma samples collected

during routine care. Personnel from the HIV-DRD selected

patients with different identifiers that attended centers with more

than 1000 patients in follow-up and were not known to be related,

and communicated the HIV-DRD identifier to the center of care

to allow sample retrieval from storage. Samples were anonymized

prior to shipment to the laboratory for sequencing.

Near full-length single genome sequencing
Near full-length SGS was performed using a protocol adapted

from the Centre for HIV/AIDS Vaccine Immunology (CHAVI-

MBSC 2009, unpublished) and optimised for plasma specimens

with low HIV-1 RNA levels. Briefly, 140 ml of plasma was adjusted

through either dilution or centrifugation to contain 20,000 HIV-1

RNA copies. RNA was extracted using the QiAmp Viral RNA

Mini kit (Qiagen, Hilden, Germany) according to the manufac-

turer’s instructions, with a final elution volume of 65 ml. All

extracted RNA was immediately transcribed with Superscript III

First Strand Synthesis Supermix (Life Technologies, Paisley, UK)

using the following protocol per reaction: 0.25 mM of reverse

primer 1.R3.B3R 59-ACTACTTGAAGCACTCAAGGCAAGC-

TTTATTG (CHAVI-MBSC 2009, unpublished), 1.87 ml nuclease

free water, 2.5 ml annealing buffer and 15 ml (5,000 copies) RNA

template were denatured at 65uC for 5 minutes. Reactions were

placed on ice for at least 1 minute before adding 25 ml of reaction

mixture and 5 ml of enzyme mixture. Reverse transcription was

performed at 50uC 90 minutes, 55uC 90 minutes, 85uC 5 min-

utes. An extra 2 ml of Superscript III RT Enzyme was added prior

to increasing the temperature to 55uC.

A two-step protocol was used to ensure single genome

amplification. The first step was a limiting dilution to assess that

cDNA was amplifying at rates suggesting near-ideal extraction and

reverse transcription conditions, i.e. that the undiluted cDNA

contained 100 copies/ml. Following this, cDNA was amplified

using a 1:200 cDNA dilution (a theoretical input of 1 copy/

reaction). In circumstances where the extracted number of HIV-1

RNA copies was below 20,000 copies, or the limiting dilution plate

suggested that the sample was amplifying suboptimally, dilutions

were adjusted accordingly.

Both first round and nested PCR reactions used the Platinum

PCR Supermix High Fidelity Kit (Life Technologies, Paisley, UK).

First round reactions comprised 45 ml PCR supermix, 0.25 mM

each forward primer 1.U5.B1F 59CCTTGAGTGCTTCAAG-

TAGTGTGTGCCCGTCTGT and reverse primer 1.R3.B3R,

0.5 ml nuclease free water and 2 ml cDNA. Cycling conditions

were 94uC 2 minutes, followed by 40 cycles of 94uC 15 s, 60uC
30 s, 68uC 9.5 m, and a final extension at 68uC 20 minutes.

Nested PCR reactions were identical to the first round reactions,

excepting the use of forward primer 2.U5.B4F 59-AG-

TAGTGTGTGCCCGTCTGTTGTGTGACTC, reverse primer

2.R3.B6R 59-TGAAGCACTCAAGGCAAGCTTTATTGAGGC,

and 45 cycles of PCR. The resulting 9 kb product spanned HXB2

nucleotides 552–9636.

Positive nested PCR reactions were identified using 1% agarose

gel electrophoresis. Filtered PCR products were directly sequenced

using fluorescently labeled dideoxy chain terminators (BigDye

Terminator v3.1 Cycle Sequencing Assay, Life Technologies) and

an automated ABI 37306l sequencer. Sequencing primers were

either sourced from the in-house protocols of the Molecular

Biology and Sequencing Core at the Centre for HIV/AIDS

Vaccine Immunology or protocols available in published literature

[10–12], or designed using Primer3 version 4.0 (http://frodo.wi.

mit.edu/primer3) (Supplementary information 1). Sequencing

reactions were repeated until near full bi-directional coverage

was obtained, and sequences were assembled using SeqScape

version 2.6 software (Life Technologies). Fragment sequences from

individual sequencing primers were examined for mixed bases;

where evidence of amplification of .1 target molecule was found,

amplification and sequencing was repeated.

Identification of HIV-1 CRF50_A1D
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Phylogenetic and recombination analyses
Recombination analyses and subtype assignation was performed

using the Recombinant Identification Program (RIP) (http://

www.hiv.lanl.gov/content/sequence/RIP/RIP.html), jpHMM

(http://jphmm.gobics.de) and Simplot [13]. For RIP and Simplot

analyses, a window size of 400 bp and a step size of 20 were used.

Sequences were gap-stripped and genetic distances were calculated

using Kimura 2-p parameters. Simplot analyses were performed

using a full-length reference alignment of 78 pure subtype

sequences. Bootscanning of the query sequence was performed

using subtypes A1, B, D, and F2 with informative sites analysis.

Recombination breakpoints were set using the highest statistically

significant X2 value around the 50% crossover point between

subtypes. The statistical significance of the identified breakpoints

was assessed using Fisher’s exact test. Following breakpoint

assignment, slices of the alignment corresponding to putative pure

subtype regions between each breakpoint were created and saved

for downstream analyses. Likelihood mapping of each slice was

used to assess phylogenetic signal prior to maximum likelihood

analysis and was performed using TreePuzzle [14].

Likelihood parameters for each putatively pure subtype region

of the HIV genome were estimated using PAUP version 4.0

(Sinauer Associates, Massachusetts, USA). Maximum likelihood

analysis was performed using the PhyML implementation housed

at the ATGC server (http://www.atgc-montpellier.fr/phyml/).

1000 bootstrapping replicates were performed, with the exception

of alignment slices 5 and 8, which were restricted to 100 replicates

to limit computational requirements.

Phylogenetic trees were visualized using Dendroscope version

2.3 (available from http://ab.inf.uni-tuebingen.de/data/software/

dendroscope3/download/welcome.html) and FigTree v1.3.1

(http://tree.bio.ed.ac.uk/software/figtree/). Schematics of final-

ized recombinant structures were drawn using the Recombinant

HIV-1 Drawing Tool (RDT), available from the Los Alamos

website (http://www.hiv.lanl.gov/content/sequence/DRAW_CRF/

recom_mapper.html).

Beyond full-length sequencing, further instances of

CRF50_A1D infections were identified using BLAST to compare

three representative CRF50_A1D sequences (33365, 8179, 40534)

to the sequences contained in the HIV-DRD. The top 500 hits for

each sequence were analyzed for recombination profiles and

breakpoints using jpHMM and SCUEAL. Sequences with

identical subtype classifications and with a jpHMM breakpoint

that fell within the SCUEAL 95% confidence interval were

considered CRF50_A1D matches for further investigation.

The likely global origin of the parental subtype A1 and D strains

of CRF50 was investigated using global subtype alignments

containing subtype A1 or D sequences from every country in

the Los Alamos National HIV Database with a greater than 10%

representation of either subtype. These sequences were selected by

geographical region only and no further data was sought. One

alignment for each subtype was generated for partial gag, pol, and

env genes. The pol gene trees were supplemented with pure subtype

A and D sequences from the HIV-DRD. Approximate maximum

likelihood analysis was performed using FastTree 2.1 using a

GTR+CAT model (http://meta.microbesonline.org/fasttree/).

The emergence and distribution of identified CRF50_A1D

sequences in the UK was analyzed using time-scaled analyses

implemented in BEAST. The 72 putative CRF50_A1D sequences

were aligned with 8 reference A1 and D sequences from East

Africa, the 4 closest sequence matches in the NCBI database, and

4 subtype C sequences as an outgroup. A total of 36MCMC runs

of 16108 states were performed and combined for each analysis.

The GTR+C nucleotide model was used with a relaxed, log-

normal molecular clock and a Bayesian skyline coalescent with a

constant population distribution and 10 skyline groups. For

discrete phylogeographic analyses phylogeographic operators as

detailed in (http://beast.bio.ed.ac.uk/Discrete_Phylogeographic_

Analysis) were used with a resampled time-scaled tree as input. In

order to preserve patient anonymity, the locations of individual

clinics were not used as inputs into the phylogeographic analysis.

Instead, the geographic location for patients was determined using

aggregated center data which groups clinics together in approx-

imate locations; the central latitude/longitude point of each

aggregate was used as patient location. Following BEAST analysis,

phylogeographic trees were converted to .kml format and

visualized in Google Earth.

The A1/D recombinant structure was registered with the Los

Alamos National Database as CRF50_A1D. All six full-length

sequences were submitted to Genbank (accession numbers:

JN417236-JN417241); the reference sequence for CRF50_A1D

is JN417236.

Results

Identification and amplification of putative novel
recombinant sequences

Following screening of 55,556 HIV-1 pol gene sequences in the

HIV-DRD, sequences from eight subjects were identified that

appeared to share a novel recombinant structure. Stored plasma

samples from six of these eight subjects were retrieved from three

centers in the UK. The samples had been collected between 2000

and 2011 and stored at 280uC under routine conditions. The

HIV-1 RNA load measured at the time of sample collection

ranged from 9,148 to 500,000 copies/ml and the available sample

volumes ranged from 270 to 1500 ml. The optimal 20,000 HIV-1

RNA copies for sequencing were recovered from three of the six

samples; all six specimens, however, were successfully amplified at

lower than the 30% Poisson distribution set-point for single

genome amplification following limiting dilution.

Recombination analyses
RIP analysis of six specimens showed a putatively identical A1/

D structure with five of the six clinical isolates analyzed (33365,

8179, 40534, 11762, 12792); the sixth isolate (34567) showed a

complex A1/B/D structure (data not shown). jpHMM analysis

similarly identified five isolates with largely identical A1/D

structures (33365, 8179, 40543, 11762, 12792) and one isolate

with a complex A1/A2/D/B/U structure (34567) (Figure 1). The

Figure 1. jpHMM analysis of six recombinant HIV-1 sequences. Putative recombinant HIV-1 sequences were submitted to the online
implementation of jpHMM at the GOBICS server. The program used its own stored reference alignment and statistical algorithm to determine
subtype classifications, breakpoint locations and 95% confidence intervals. Breakpoint locations and confidence intervals are marked on each plot
and are equivalent to HXB2 numbering. In each plot, subtype A1 is represented in red, subtype A2 in coral (plot d only), subtype D in lavender, and
subtype B in blue (plot d only). Areas of subtype uncertainty are grey. Five specimens (a, b, c, e, and f) showed largely identical A1/D structures,
whereas one specimen (d) showed a complex A1/A2/D/B/U structure. a) Specimen 33365; b) Specimen 8179; c) Specimen 40534; d) Specimen 34567;
e) Specimen 11762; f) Specimen 12792.
doi:10.1371/journal.pone.0083337.g001
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breakpoint locations for the five A1/D specimens are summarized

in Table 1. Generally, the jpHMM breakpoint locations and

subtype classifications showed a good level of consistency among

the five A1/D specimens, and with the structure suggested by the

RIP screening. Two potential structural discrepancies were

suggested by jpHMM. With specimen 11762, the p2–p7 regions

of gag showed a lower degree of subtype A1 identity than observed

with the other four A1/D specimens; however, overlapping

confidence intervals indicated that the uncertainty was unlikely

to reflect a true structural difference. With specimens 33365 and

12792, two regions of env were designated as subtype D/uncertain

in the jpHMM plots; however bootscanning of these regions

confirmed the subtype D classification (Figure 2).

Breakpoints identified using bootscanning and informative sites

analyses were consistent with those identified using jpHMM. All

five A1/D specimens (33365, 8179, 40534, 11762, 12792) showed

identical bootscanning plots, with five subtype A1 regions and four

subtype D regions.

The jpHMM analysis of specimen 34567 further clarified the

recombinant structure of this complex isolate. Two clear regions

with the same structure as the five A1/D specimens were

identified, at the very beginning of gag, which had an identical

A1/D breakpoint (116268), and from the breakpoint in tat/rev

(5983623) to the end of the genome. This suggested that this

specimen resulted from a further recombination event between the

A1/D recombinant and a subtype B strain.

Maximum likelihood analyses
Maximum likelihood trees of putative non-recombinant frag-

ments drawn using PhyML with PAUP-defined parameters

showed that each fragment of each specimen clustered with the

pure subtype (A1 or D) indicated by the bootscanning analysis.

Results obtained with A1/D specimens 33365, 8179, and 40534,

and complex specimen 34567 are shown in Figure 3. The A1/D

structure was predominantly subtype A1 in pol and the accessory

genes; subtype D in env; and fairly evenly split between subtype A1

and D in gag. Three breakpoints were located in gag, one in pol, one

in tat/rev, and three in env, respectively. In gag, a breakpoint was

located at either end of p24, suggesting that the entire coding

region for the antigen was swapped in the recombination event.

Similarly, the third breakpoint was located at the junction of the

p7/p1 regions, suggesting that entire coding regions were swapped

in the recombination event. The distribution of subtypes in gag by

protein was A1 (p17, p2, p7) and D (p24, p1, p6).

The single D/A1 breakpoint in pol was located approximately

250 bp from the start of the protease; the remainder of the pol gene

was subtype A1, as were vif and vpr. The breakpoint located at

HXB2 6007 fell in the overlap of tat and rev; both of these genes

were A1/D mosaics. Vpu was solely subtype D. Although env was

largely subtype D, three of the hypervariable regions (V1–V3)

were subtype A1.

The maximum likelihood analysis confirmed that the A1/D

isolates clustered monophyletically across the entire genome

(Figure 3). The complex isolate 34567 clustered with the A1/D

isolates in 7/9 genomic regions; in 2/9 regions this specimen

clustered with subtype B reference sequences, confirming that this

specimen was a recombinant of the A1/D structure and a subtype

B infection (Figures 3 and 4).

Emergence and distribution of CRF50_A1D
Analysis of the UK HIV-DRD identified a further 67 sequences

showing a recombination profile that matched that of

CRF50_A1D. The global approximate maximum likelihood trees

were built using sequences from East Africa (Kenya, Tanzania,

Rwanda, Uganda, Burundi), Central Africa (DRC), Western

Africa (Cameroon), Eastern Europe (Latvia, Belarus, Georgia,

Russia) and the UK, due to the prevalence of subtypes A and D in

these regions. In the approximate maximum likelihood analysis of

global alignments of gag, pol and env gene subtype A and D

sequences the CRF50 sequences clustered monophyletically with

Figure 2. Bootscanning plots for five A1/D recombinants. Bootscanning plots from Simplot sliding window analysis using a window size of
400 bp, a step size of 20 bp and 100 bootscanning replicates. The y axis shows the percentage of permuted trees that the query sequence clustered
with the closest subtype match from the reference alignment. The x axis shows the nucleotide position of the sequence (not HXB2 numbering).
Subtype A is represented in red, subtype D in lavender, and subtype F (outgroup) in grey. All five specimens (33365, 8179, 40534, 11762, 12792)
showed identical bootscanning plots, with five subtype A1 regions and four subtype D regions. A) Specimen 33365; b) Specimen 8179; c) Specimen
40534; d) Specimen 11762; e) Specimen 12792.
doi:10.1371/journal.pone.0083337.g002

Table 1. jpHMM-assigned breakpoint locations (with 95% confidence intervals) for five HIV-1 A1/D recombinant sequencesa.

Break point Study number Gene Region

33365 8179 40534 11762 12792

1 1162 (1154–1170) 1159 (1147–1171) 1167 (1148–1186) 1177 (1154–1200) 1156 (1141–1171) gag p24

2 1843 (1809–1877) 1844 (1809–1879) 1844 (1809–1879) 1958* (1811–2105) 1828 (1809–1847) gag p24

3 2089 (2047–2131) 2078 (2046–2110) 2078 (2046–2110) 2078 (2046–2110) 2056 (2002–2110) gag p1

4 2489 (2463–2515) 2489 (2465–2515) 2489 (2465–2515) 2487 (2475–2499) 2598{ (2463–2733) pol PR

5 5981 (5951–6011) 5979 (5953–6005) 5976 (5951–6001) 5985 (5973–5997) 5998 (5989–6007) tat/rev

6 6551 (6543–6559) 6551 (6543–6559) 6551 (6543–6559) 6551 (6539–6563) 6551 (6543–6559) env gp120

7 7247 (7234–7260) 7246 (7231–7261) 7249 (7232–7266) 7483 (7471–7495) 7214 (7171–7257) env gp120

8 8679 (8664–8694) 8672 (8651–8693) 8679 (8663–8695) 8674 (8662–8686) 8678 (8663–8693) env gp41

aBreakpoint locations as determined by jpHMM with HXB2 numbering. The breakpoint locations are generally consistent across the five specimens, indicating that the
same A1/D recombinant structure is shared.
*This corresponds to a region of subtype D uncertainty;
{This corresponds to a region of subtype A uncertainty; refer to Figure 1. PR = Protease.
doi:10.1371/journal.pone.0083337.t001
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the East African sequences in both the subtype A and subtype D

trees (data not shown). No clustering was observed with subtype

A1 or D sequences from the UK. This suggested that CRF0_A1D

probably originated in East Africa and was possibly introduced to

the UK as a recombinant, rather than emerging from subtype A1

and D strains circulating in the UK.

Figure 3. Recombinant map of CRF50_A1D and maximum likelihood phylogenetic trees of non-recombinant fragments. Maximum
likelihood trees of putative non-recombinant fragments from specimens 33365, 8179, 40534 and 34567 drawn using PhyML with PAUP-defined
parameters. HIV-1 subtypes used for analysis were A–D, F, G, H, J, K. Numbers indicate bootstrapping support from 1000 replicates (excepting slice 5;
100 replicates). 70% bootstrap support and monophyletic clustering were the criteria for subtype classification. The recombinant map was drawn
using the RDT program at Los Alamos. Component subtype fragments are labeled 1–9 on the genome map, corresponding with numbered
phylogenetic trees. The genomic regions in which the URF specimen 34567 did not cluster with the CRF50_A1D specimens are indicated in the
appropriate trees.
doi:10.1371/journal.pone.0083337.g003

Figure 4. Confirmed structure of the complex recombinant. The confirmed structure of the complex A1/B/D/U recombinant specimen 34567
following maximum likelihood analysis with the CRF50_A1D specimens. CRF50_A1D regions are shown in green and subtype B regions are shown in
blue.
doi:10.1371/journal.pone.0083337.g004
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Time-scaled analysis dated the emergence of CRF50_A1D in

the UK to 1992 [95% highest posterior density (HPD) 1966–2007;

posterior probability 0.9933] (Figure 5). Phylogeographic analysis

showed probable emergence in northwest England followed by

spread to London and southeast England, with further, limited

transmission events in southwest and northeast England and

Scotland. Demographic information was available for 51/72

patients infected with CRF50_A1D. Of these, 45 (88.2%) were

MSM, 3 (5.9%) were heterosexual males, and 2 (3.9%) were IDUs.

Analysis including the CRF50/B/U unique recombinant form

(URF) sequence showed a median divergence date of 2000,

indicating an onward recombination event between CRF50_A1D

and a subtype B strain. The CRF50_A1D/B/U sequence came

from an MSM.

Discussion

The HIV epidemic in MSM in the UK continues to diversify,

creating opportunities for the emergence of novel recombinant

forms. By scanning a large national sequence repository, we

identified 72 patients who all appeared to be infected with the

same novel A1/D recombinant. Near full-length SGS of plasma

HIV-1 RNA was performed to characterize the structure of the

recombinant. Five patients were found to carry the same A1/D

recombinant, which was classified as CRF50_A1D. Based on the

recombinant profile, we conclude that CRF50_A1D is the subtype

A recombinant that Gifford et al hypothesized was circulating

among MSM in 2007 [6]. It should be noted that some

recombination breakpoints were not identical among the five

CRF50_A1D isolates in the jpHMM plots. However, the

confidence intervals of the identity estimations and the subsequent

analyses indicated that the uncertainties were unlikely to reflect a

true alternative recombinant structure. We also found evidence of

further genetic evolution of CRF50_A1D through recombination

with subtype B, which is the predominant HIV-1 subtype

circulating among MSM in the UK. This complex URF was

classified as CRF50_A1D/B/U. Crucially, the estimated emer-

gence date of 1992 was both prior to the introduction of highly

active antiretroviral therapy and during a period when HIV

infections were spreading exponentially in African countries,

creating ideal conditions for the creation of novel HIV recombi-

nants which could move into the wider epidemic.

We found a relatively low number of patients infected with this

strain within a database that at the time of screening contained

55,556 sequences from 43,002 patients. This relatively modest

spread could reflect fitness properties of the CRF. We detected an

unusual structure of the env gene in this recombinant, in which

three out of the five hypervariable regions belonged to subtype A1,

whereas the remaining two regions belonged to subtype D.

Available data indicate that recombination events in env tend to

include either the entire gene or at least the entirety of gp120, and

this has been related to the functional impact of this protein on

viral fitness [15].

We found that CRF50_A1D was related to A1 and D strains of

East African origin. A1/D recombinants detected in East Africa

have been associated with a fast disease progression, which may

limit the number of infections in the community [16–19]. It should

be noted however that in a sub-analysis, the CD4 cell count slopes

before starting ART were similar in MSM infected with subtype B

or CRF50_A1D (data not shown). These considerations indicate

that CRF50_A1D has potentially interesting phenotypic proper-

ties, which would bear further investigation. Further studies are

required to indicate whether there is an influence on clinical

outcomes or treatment responses.

There are limitations to this study. Our phylogeographic

approach dated the emergence of CRF50_A1D in the UK to

mid-1992. This study had a limited number of sequences with

which to draw this inference. The prevalence of CRF50_A1D was

low in the dataset (72/43,002 or 0.17%) with no evidence for rate

increase over time. While the UK-DRB comprehensively collects

pol gene sequences from patients undergoing drug resistance in

routine care in the UK, not all HIV centers contribute to the

dataset. Furthermore, the database contains only protease and

reverse transcriptase sequences and there are similarity between

subtype B and subtype D in these genetic regions. Thus it may be

proposed that the 72 CRF50_A1D infections identified represent

an underestimate. This in turn may potentially bias the estimated

date of emergence. Evolutionary analysis of the individual gene

using the available full-length sequences and reconstruction of the

ancestral subtype A1 and D strains may yield a more precise

elucidation of the emergence date and help to determine whether

single or multiple introductions occurred in the UK. Furthermore,

given that the majority of 72 individuals infected with

CRF50_A1D had only partial pol sequences available for analysis,

it may be postulated that some of these cases may have shown a

more complex viral genomic structure if full-length genome

analysis had been performed.

The study of novel HIV variants such as CRF50_A1D and the

URF CRF50/B/U provides a tool for studying transmission

networks and interactions between populations and risk groups,

thus producing valuable epidemiological insights [20,21]. Al-

though in the early years of the HIV epidemic in Western Europe

it was rare to find non-B infections in MSM [22], more recent data

indicate that non-B infections are not only increasingly important,

but are being transmitted indigenously among this population

[23]. The use of molecular epidemiological techniques to map

these variants can add to our understanding of data gathered using

traditional epidemiological means and provides valuable insights

into the dynamics of the HIV epidemic that can be used to guide

control strategies.
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