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Abstract. In this paper we apply the high-level modelling language
PEPA to the performance analysis of a parallel program with a pipeline
skeleton which computes the Mean Value Analysis (MVA) algorithm for
queueing networks.

1 Introduction

From the algorithmic and performance perspectives, Grid systems are charac-
terised by the dynamically heterogeneous nature of the resources at the program-
mer’s disposal. This property adds a new dimension to the already challenging
parallel programming task. The Enhance project [1, 2] aims to simplify the effec-
tive programming of such systems by exploiting and synthesising results from two
underlying research programmes. Stochastic process algebras such as PEPA [3]
are already used to model the behaviour of concurrent systems in which some
aspects of behaviour are not precisely predictable. Meanwhile, skeletal paral-
lel programming [4] recognises that many real applications draw their structure
from a range of well known solution paradigms and seeks to make it easy for an
application developer to tailor such a paradigm to a specific problem.

The choice of a particular skeleton carries with it considerable information
about implied scheduling dependencies. In response to changing workload on
servers, or unplanned unavailability due to software or hardware faults, the ap-
plication can be restructured to use an alternative implementation skeleton or
can simply reevaluate the parameters to the skeleton which is currently in use.
Such resilience to operational faults is not typically found in low-level parallel
programming approaches and is one of the strengths of a structured approach
to parallel programming. Furthermore, the use of skeletons allows the program-
mer to provide explicit information about the future interaction structure of the
application, which would be difficult or impossible to derive statically from an
equivalent unstructured program source. By modelling skeletons with PEPA,
and thereby being able to address aspects of uncertainty which are inherent to
Grid computing, we aim to underpin systems which can make better scheduling
and dynamic rescheduling decisions than less sophisticated approaches.
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The ability to reconfigure and redeploy an application on-the-fly can be used
even more effectively if the future load on the available servers can be esti-
mated at least tolerably well. The Network Weather Service (NWS) [5] provides
us with these estimates. Analogously with meteorological climate prediction, a
short-range forecast is made on the basis of a record of recent activity. Perfect
forecasting of future load is, of course, not achievable but in the experience of
the users of the NWS, its predictions turn out to be useful more often than they
are misleading and so scheduling decisions based on NWS information can be
favourable ones.

In previous papers [1, 2], we have reported on development of our pipeline
and deal skeletons, on their associated PEPA models, and upon the construction
of AMoGeT, a modelling tool which automatically generates PEPA models for
the pipelines (optionally with embedded deals), given information on the per-
formance of the customising software components, and on resource performance
obtained dynamically from NWS [5]. These PEPA models are solved using pro-
cedures of numerical linear algebra implemented in the PEPA Workbench [6].

We summarise the main technical ideas of the work here to make the present
paper self-contained. Briefly, the PEPA process algebra is a timed process al-
gebra where the duration of activities is modelled by exponentially-distributed
random variables. Processes can choose between alternatives, and can be com-
posed in parallel. Processes in a composition can be required to synchronise on
shared activities. For example, a producer can enter a job into a pipeline only
if the first stage is willing to accept it, and a stage in the pipeline can pass
on a completed job only if a consumer is ready to receive it. Both of these are
synchronisations. The slower partner in the synchronisation determines the rate
of the joint activity.

Timed activities, choice, parallel composition and synchronisations are the
modelling tools offered by the PEPA language. The analysis procedures are
implemented in the PEPA Workbench software tool. We use PEPA models which
denote finite-state stochastic (in fact, Markovian) processes. A PEPA model
submitted to the Workbench will be compiled into a Continuous-Time Markov
Chain (CTMC) and the long run (“steady state”) probability distribution over
all of the states of the model is computed using an iterative numerical procedure.
From this can be calculated performance metrics such as the throughput of the
pipeline, which is the basis of the comparison which allows us to rank scheduling
decisions.

This paper presents the first serious application of our technology. We have
taken an existing MPI program [7] for the Mean Value Analysis problem, refac-
tored it as an instance of our pipeline skeleton (replacing the explicit MPI with
our pipeline skeleton) and used AMoGeT to deploy the resulting program across
a subset of the available processors of our local Beowulf cluster, while deliber-
ately skewing the performance characteristics of the processors with a variety
of artificial loads. Section 2 reviews the MVA problem and its pipelined paral-
lelisation. Section 3 describes our experimental plan, and the expected results.
Section 4 describes and discusses the actual results.
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long int m[100]; double a[100];
void main (void) {

int i;
for (i = 0; i < 100; i++) {

a[i] = (double) random();
m[i] = random();

}
for (i = 0; i < 100; i++) {

a[i] = a[100 − i] ∗ m[i];
if (i == 99) i = 0;

}
}

(a) (b)

Fig. 1. (a) Pipeline implementation of the MVA algorithm, (b) load generation.

2 The Mean Value Analysis Algorithm

The application under investigation is a numerical procedure which is used in the
quantitative analysis of queueing networks. A queueing network is used to de-
scribe a system as a collection of service centres visited by customers attempting
to fulfil their service requirements. The customers under study may very often be
jobs executing on a variety of servers. The objective is to determine meaningful
performance metrics about the system such as average queue length and utili-
sation of servers. This information can be used to rectify performance problems
which stem from the design of the network. Typically this will involve network
re-structuring or the introduction of additional servers in order to decrease mean
queue length and increase utilisation.

Three distinct types of analysis can be applied to queueing networks, de-
pending on their structure and the service discipline used at service centres.
Firstly, closed-form analytic solutions exist for open queueing networks for a
limited class of service disciplines if customers do not re-enter the network af-
ter their service is complete. Secondly, numerical algorithms may be applied to
open or closed product-form networks with Poisson arrivals and exponentially-
distributed service times with the possibility for customers to loop back and
re-enter the system. Finally, Monte Carlo discrete-event simulation may be ap-
plied in other cases. These three types of analysis have increasing evaluation
cost. We are considering the second type here.

Numerical algorithms compute the probability of a network of M service
centres being in a state n = (n1, n2, . . . , nM ) using a descriptor of the form

Pr(n) =
1
G

M∏
i=1

fi(ni)

where G is a normalisation constant for the probability values and f is a function
which depends upon the type of the service centre [8].

The Mean Value Analysis (MVA) algorithm [9] computes performance met-
rics such as utilisation and average queue length for such queueing networks



using increasing customer populations, from 0 to N . In the present study we
base our skeletal program on an existing parallel implementation of MVA due to
Gennaro and King [7]. Their implementation uses MPI to coordinate the com-
putation and has the structure of a pipeline, with task dependencies as shown in
Figure 1(a). We have taken the computational cores of their code, and embedded
them in a skeleton program, replacing the explicit use of MPI with a call to our
pipeline skeleton (shown in Figure 2(a)). The MVA application is novel in that
the number of stages in the pipeline is not an implicit property of the algorithm,
but is dictated by the granularity of the partitioning of the implicit task graph
(Figure 1(a)). As illustrated, we have arbitrarily chosen a three stage version.
Changing the granularity is trivial (redefining a constant) in both original MPI
and skeletal versions of the code.

3 Experimental Plan

Our immediate goal is to demonstrate experimentally that AMoGeT can use its
PEPA pipeline model, informed by dynamically gathered resource performance
information, to choose a good allocation of pipeline stages to processors. To this
end, we have chosen to work with a three stage version of the MVA pipeline, and
a five processor subset of a Beowulf cluster. These numbers are small enough to
allow us to ask AMoGeT to generate and evaluate all possible schedules (which
three processors to use, and in which order). As the implied search space grows
exponentially, exhaustive search will eventually become prohibitive. Pruning the
search space is an orthogonal challenge. The work reported here demonstrates
that AMoGeT provides a sound objective function upon which to base heuristics.

Our experiments are grouped into sets of six runs. In each set, we artificially
create situations in which zero, one, two, three, four and five of the available
processors are seeded with heavy computational loads. Without loss of generality,
and to assist the reader, we choose processors with lowest index (or, rank) when
loading processors. For example, to load three processors we choose processors
1, 2, and 3. Since our Beowulf currently has a “free-for-all” allocation policy,
there may be other sporadic communication and computation loads placed by
other users.

For each run, in each set, we ask AMoGeT to gather information and predict
which three of the five available processors will provide the best and worst overall
application performance (remembering that in a pipeline, this choice should be
affected by both computation and communication resource availability). We then
run (in sequence) these two schedules, noting the execution times on each of the
selected processors.

For each set of experiments, we present a total of 36 measured run times.
These are grouped into six pairs of three measurements (each measurement cor-
responding to a pipeline stage). Each pair corresponds to experiments with a
fixed number of “bad” processors, grouped left to right in the graph from zero
bad processors to five bad processors. Within each pair, to the left we find the
real run times on the three processors in the predicted best case, and to the



right the real run times on the three processors in the predicted worst case.
For example, in Figure 2(b), the second pair of runs (indexed (2,5,4) (5,1,3))
indicate that it was predicted that using processors 2, 5 and 4 would give the
best performance and that using processors 5, 1 and 3 would give the worst
performance. The height of the bars gives the actual run time on each of these
processors in the corresponding run, and the figure of 63.29% at the top indicates
the improvement from worst run to best run.

We present results for two such sets of experiments. In the first set, conducted
on a cluster with low background interference from other users, our “bad” proces-
sors were artificially loaded to have around 33% of the availability of the “good”
processors. In the second set, conducted on a cluster with higher background
interference from other users, the “bad” processors’ availability is improved to
around 66%.

An intuitive assessment of the situation, based on conventional wisdom about
pipeline performance, might suggest the following outcomes:

– we should choose three “good” processors, when these are available;
– the gap between best and worst case schedules should be widest in those

situations for which it is possible to choose all “good” processors in the best
case, and at least one “bad” processor in the worst case (which for our set-up
occurs only in the “one bad processor” and “two bad processors” runs);

– both of the preceding observations may be tempered for situations in which
the performance of computationally “good” processors is hampered by ex-
cessively bad communications performance to intended neighbours.

4 Experimental Outcomes

The experiments were conducted on two separate Beowulf clusters (16 nodes and
64 nodes) with RedHat Linux Fedora Core 3 release, version 2.6.12. We used
LAM-MPI implementation of the MPI standard, version 7.1.1. For extracting
CPU availability per node, and inter-node TCP communication latency, we used
the Network Weather Service (NWS), version 2.13.

The number of classes in the queueing network is set to three, with each class
having a population of 1024. The number of resources in the queueing network is
set to two resource queues. For the artificial load simulation, we use the program
shown in Figure 1(b), adapted from [10, page 171].

The experimental results are shown in Figure 2. The results show that the
mapping suggested by our approach produces satisfactory improvements, as ex-
pected. The results for the cluster with low background interference and CPU
availability reduced to 33%, show improvements of up to 63% when stages can
be mapped to unloaded nodes. This choice is reflected in the corresponding map-
ping. When more than two nodes are loaded, our model still chooses the best
possible mapping, producing an improvement of around 10%. The results for
the cluster with more background interference and CPU availability reduced to
66%, show improvements of up to 29%. Because of the sporadic interference, the



performance improvements display some variation, giving an average improve-
ment of about 8% when all nodes are unloaded, or one or all of the stages are
mapped to loaded nodes. Considering the average execution time of 40 seconds
to generate and solve the pipeline PEPA models for the 60 possible mappings,
our approach proves to be pragmatic and advantageous.

In contrast to our use of computational load generation, we made no attempt
to impose artificial communication load. Nevertheless, detailed inspection of the
NWS readings (not reproduced here) reveals that real imbalances in commu-
nication load arose from the background on a number of occasions, sometimes
with interesting effects on predicted best and worst schedules. For example, in
Figure 2(c), in the two loaded processor case (these being processors 1 and 2,
as explained above), there is an unusual spike in predicted latency between pro-
cessor 5 and processor 3. The predicted worst case schedule (5,3,2) chooses to
exploit this weakness, even at the expense of not choosing the weak processor 1.
Similarly, in the (rightmost) “all” loaded case, there is a very high spike in the
latency between processors 1 and 5. Again this is exploited in the worst case and
avoided in the best, although the difference in actual run times between these
cases is smaller than might have been expected. It may be that this variation is
attributable to the inevitable distinction between predicted latencies, as used in
scheduling, and actual latencies experienced at run time.

5 Conclusions

In this paper we have applied performance analysis methods based on stochastic
process algebra to an exemplar of the class of structured parallel programs with
a pipeline configuration of tasks. Our exemplar is the parallel implementation
of the MVA algorithm for queueing networks. Our methods are general ones: we
are using MVA simply as an example pipeline-structured application. Thus we
have not made alterations to our methods to take advantage of specific features
of MVA which are not usually found in a pipeline-structured parallel program.

By basing our performance predictions on measurements of network latency
and compute load we are able to predict ahead-of-run those scheduling decisions
which will lead to the shortest run-time and those which lead to the longest run-
time. In the present study we did not find a single instance where the performance
predictions computed by the PEPA Workbench were misleading: predicted best
cases always significantly outperformed predicted worst cases in practice. Our
analysis is fully automatic and runs without user intervention. The analysis cost
is modest. This is essential for maintaining the freshness of the measurement data
and so that the scheduling overhead does not impede the progress of the main
computation. The relative speed of the analysis points towards its suitability for
use in on-line scheduling decisions.

In the present paper our dynamic scheduling is performed before run. Our
eventual plan is to allow dynamic rescheduling within a run so that downstream
computations benefit from measurements obtained during the upstream compu-
tation.
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void first stage (void) {
do { /∗ Perform computations and update queue lengths. ∗/

if (node idx[0] == end) PipeGive (tmp qlen, dtype, 1); /∗ Send queue lengths. ∗/
} while (update node idx()); /∗ Continue if not done. ∗/ }

void last stage (void) {
do { if (node idx[0] == start) PipeTake (tmp qlen, dtype, 1); /∗ Receive queue lengths. ∗/

/∗ Perform computations and updates. ∗/ } while (update node idx());
/∗ Generate output. ∗/ }

void inter stage (void) {
do {/∗ Receive, compute, update and send queue lengths. ∗/} while (update node idx()); }

int main (int argc, char ∗argv[]) {
SkelLibInit(); /∗ Initialise skeleton library. ∗/
for (i = 0; i < NSTAGES+1; i++) {spreads[i] = SPLOCAL; types[i] = dtype;} /∗ Data map. ∗/
for (i = 0; i < NSTAGES; i++) amodes[i] = SKEL; /∗ Stage type. ∗/
mystage = myrank(); /∗ Process to stage mapping. ∗/
stages[0] = first stage; stages[NSTAGES−1] = last stage; /∗ Assign stage function. ∗/
for (i = 1; i < NSTAGES − 1; i++) stages[i] = inter stage; /∗ Assign stage function. ∗/
Pipeline(NSTAGES, amodes, stages, mystage, BUF, spreads, types,

NULL, 0, 0, NULL, 0, &outmul, 0, mycomm()); /∗ Execute pipeline. ∗/
/∗ Output results, and finalise. ∗/

}

(b)
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Fig. 2. (a) Implementation source code (simplified), (b) 33 percent availability (16
node cluster with low background interference), (c) 66 percent availability (64 node
cluster with higher background interference). bi and wi respectively correspond to the
best and worst stage i mapping.



6 Related Work

The combination of stochastic modelling, structured parallelism and dynamically
derived performance monitoring used to inform our scheduling approach is, we
believe, unique. Previous skeletal and similarly structured systems have used
analytical performance models to guide scheduling on homogenous resources [11–
13], and information gathered from NWS to guide scheduling in heterogenous
contexts [14].
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