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Abstract

We address the problem of applying resource-bounded functional programming languages in practice on
object-oriented virtual machines which include calls to native methods coded in low-level languages without
garbage collection support. We consider the application of a functional language with a high-level type
system which incorporates measures of heap space consumption in types on such an execution platform.
We supplement the syntactic type inference procedure of the functional language with a separate analysis
which estimates the costs of memory leaks incurred by calls to garbage collection-ignorant functions.

Keywords: Resource-bounded functional programming languages, native method calls, object-oriented
virtual machine

1 Introduction

Camelot is a resource-bounded functional programming language which compiles
to structured Java byte code which runs on an unmodified Java virtual machine.
Camelot functions recycle memory locations in order to reduce the number of object
allocations performed, and consequently, the cost of garbage collection. The object
allocation cost of evaluating a Camelot function is computed by a syntactic type
inference procedure which inspects the abstract structural expression of the function
in Damas-Milner style. A type is assigned to a function which includes both the
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usual surface typing specifying the types of the function parameters and result and
a cost expression specifying the number of objects allocated in terms of the size of
the input data structures.

Camelot also provides a foreign function interface which allows an application
developer to invoke Java methods. Java in turn has its Java Native Interface (JNI)
which allows Java methods to invoke functions which have no equivalent byte code
representation. These are typically C routines which manipulate raw memory, access
peripherals, or allocate non-Java objects such as operating system resources. In
some cases these might be library functions from a proprietary source available
only as compiled images with no corresponding program source code. In this case,
even if a space leak is detected in the library code it could be impossible to repair
without the source code. One can only file a bug report and wait for the maintainers
to fix the problem in the next release.

In practice, Camelot programs need to invoke such native methods in order to
perform tasks such as building and displaying user interface components. The type
inference algorithm which guarantees resource-consumption bounds for applications
written entirely in Camelot is not applicable in this situation because not all of the
program text is available for inspection and enquiry; and not all of the program
text is in the Camelot language in any case. In this paper we propose a complemen-
tary resource-based analysis which can be applied to (impure) Camelot applications
which invoke Java methods which call C functions.

The invocation of native methods has an impact on the inference of memory
heap-allocated by a Camelot application in that the invoked native methods might
themselves allocate memory. This memory is allocated in an address space which
is inaccessible to the garbage collector of the JVM. If these native methods do not
themselves deallocate all of the memory which they have allocated then this effect
will manifest itself as a space leak in our application.

Space leaks are not a very significant concern in short-lived applications but
they are a highly significant one in long-running applications such as server-side
code which is intended to run for weeks or months without failing. As more and
more space is leaked in a long-running application the allocation of new memory
becomes unproductive. In the short term this leads to performance degradation
and in the long term to the application failing with an out-of-memory error.

Thus our analysis is most applicable to server-side code but on the server side is
also the right place to use native methods. Native methods are not on-line portable
code in the sense of Java byte code. A native method compiled for a Unix platform
will not run under Windows, and vice versa. Portability is a significant concern for
code which is to run on the client machine because different clients will have different
operating systems and hardware but non-portability is not the same issue on the
server side. It is frequently the case that a Java application running on a server
will be compiled to native code entirely through the use of a ‘way ahead of time’
optimising native code compiler such as BulletTrain, SpecialJ or GCJ. Because the
analysis which we describe here is specifically tailored for native methods it is to be
applied by the code producer as part of software development and tuning, not by
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the code consumer as part of the code verification process.
We propose a resource-based analysis which predicts resource consumption as a

function of time. The main effect of the analysis will be to quantify the severity of
the space leaks from native methods with respect to the application overall. This
analysis constitutes a soft type system for impure server-side Camelot applications.
The analysis does not reject any programs but instead classifies the severity of their
space leak flaws. Even an application with significant space leak problems might
be usable on a large enough server for sufficiently long that regular maintenance on
the server would cause it to be likely to be taken down during the time frame in
which the application has not leaked enough space for it to be a genuine concern.

In the presence of source-unavailable C functions which must be treated as
opaque (“black boxes”) by the analysis, the resource-based analysis will necessarily
rest on the use of quantified approximation as made formal in the probabilities and
average durations used by the model. This leads to the definition of a stochastic
process used to represent the impure Camelot application under study.

Structure of this paper:
In the following section we present an overview of Camelot, an extended strict

first-order functional programming language. We detail in particular those features
which the Camelot language provides for reusing heap-allocated memory. In Sec-
tion 3 we give an overview of the heap-usage analysis for pure Camelot programs.
We discuss this both at the high-level in terms of bounds on heap-space consump-
tion in the functional language and then at the low-level in terms of certifying the
byte code into which our high-level programs are compiled by the Camelot com-
piler. After this we go on in Section 4 to present a novel analysis which shows how
impure Camelot programs which call C routines can be analysed for their space
consumption behaviour. We describe the tools used to compute the results of the
analysis. Conclusions are presented in Section 5.

2 Camelot

The Camelot compiler targets the Java Virtual Machine and provides language
support for reusing memory. The JVM does not provide an instruction to free
memory, consigning this to the garbage collector, a generational collector with three
generations and implementations of stop-and-copy and mark-sweep collections. The
Camelot run-time disposes of unused addresses by adding them to a free list of
unused memory. On the next allocation caused by the program the storage is
retrieved from the head of the free list instead of being allocated by the JVM new
instruction. When the free list becomes empty the necessary storage is allocated by
new.

This storage mechanism works for Camelot, but not for Java, because Camelot
uses a uniform representation for types which are generated by the compiler, allow-
ing data types to exchange storage cells. This uniform representation is called the
diamond type [4,5], implemented by a Diamond class in the Camelot run-time. The
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type system of the Camelot language assigns types to functions which record the
number of parameters which they consume, and their types; the type of the result;
and the number of diamonds consumed or freed.

2.1 Functional and imperative programming

One example of a situation where type-safe reuse of addresses can be used is in a list
updating function. As with the usual non-destructive list processing, this applies
a function to each element of a list in turn, building a list of the images of the
elements under the function. In contrast to the usual implementation of a function
such as map, the destructive version applies the function in-place by overwriting
the contents of each cons cell with the image of the element under the function as
it traverses the list.

The following simple function increments each integer in an integer list. The
Camelot concrete syntax is similar to the concrete syntax of Caml. Where addresses
are not manipulated, as here, a Camelot function can also be compiled by Caml.

The constructor “::” used below is pronounced “cons”. When used on the left
hand side of an arrow in the context of a pattern match it will decompose a non-
empty list into its head and its tail. When used on the right hand side of an arrow
in the context of an expression it will construct a cons-cell to add a new element
onto the front of a list.

let rec incList lst =
match lst with

[] −> []
| h :: t −> (h + 1) :: incList t

The above is a non-destructive version of the list processing function which allocates
as many cons-cells as there are elements in the list.

In the following version (“destIncList”) we have a destructive implementation
where the storage in the list is reused by overwriting the stored integers with their
successors. Thus this version does not allocate any storage.

The constructor “@” used below is pronounced “stored at”. When used on the
left hand side of an arrow in the context of a pattern match it will obtain the
address which a cons-cell is stored at (similarly to the address-of operator & of C
but without the attendant problems of lack of type safety or pointer-related memory
faults). When used on the right hand side of an arrow in the context of an expression
it will store a cons-cell at a given address (thereby overwriting the allocated object
which is stored there).

let rec destIncList lst =
match lst with

[] −> []
| ( h :: t)@a −> ((h + 1) :: destIncList t)@a

In a higher-order version of this function, a destructive map, we would have the
memory conservation property that if the function parameter does not allocate
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storage then an application of the destructive map function would not either.
Selective use of in-place update in this way can be used to realise deforestation, a

program transformation which eliminates unnecessary intermediate data structures
which are built as a computation proceeds.

2.2 Linearity

As an example of a function which is not typable in Camelot we can consider the
following one. This function attempts to create a modified copy of a list, interleaved
with the original list. The (deliberate) error in implementing this function is to
attempt to store the cons cells at the front of the list and the cons cell in second
place at the same location, d.

let rec incListCopy lst =
match lst with

[] −> []
| ( h :: t)@d −>

let tail = ((h + 1) :: t)@d
in (h :: tail )@d (∗ Error : d used twice ! ∗)

This function is faulted by the Camelot compiler with the following diagnostic error
message.

File "incListCopy.cmlt", line 4-5, characters 18-80:
! ..................let tail = ((h + 1) :: t)@d
! in (h :: tail)@d.............
! Variable d of type <> used non-linearly

The destIncList function above demonstrates storage re-use in Camelot. As an
example of programmed control of storage deallocation consider the destructive sum
function shown below. Summing the elements of an integer list—or more generally
folding a function across a list—is sometimes the last operation performed on the
list, to derive an accumulated result from the individual values in the list. If that
is the case then at this point the storage occupied by the list can be reclaimed and
it is convenient to do this while we are traversing the list.

let rec destSumList lst =
match lst with

[] −> 0
| ( h :: t)@ −> h + destSumList t

Matching the location of the object against a wildcard pattern (the symbol) indi-
cates that this address is not needed (because it is not bound to a name) and thus it
can be freed. The destSumList function frees the storage which is occupied by the
spine of the list as it traverses the list. In a higher-order version such as destructive
fold we would have the memory reclamation capability that the function passed in
as a parameter could also free the storage occupied by the elements of the list, if
these were other storage-occupying objects such as lists or trees.
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2.3 Object-oriented features

Camelot classes contain methods which can invoke functions which are not asso-
ciated with any class. At the interface between the object sublanguage and the
functional sublanguage of Camelot it is necessary to specify the types of the formal
parameters of a function. Thus, in the following (contrived) example it is necessary
to specify the type of the parameter of the id function.

(∗ An example Camelot class with a method calling a
function which is defined outside the class ∗)

class callExample =
method myName() : string = id ”callExample”

end

let id ( s : string ) = s

As usual, within the functional sublanguage a type inference procedure removes
almost all need for the programmer to supply type information.

2.4 Implementation

The Camelot compiler functions in a very different operational mode from most
compilers for functional programming languages because it concentrates on hav-
ing predictable analysis of space consumption and intentionally will not apply
optimisations if they are not known to always guarantee to improve space usage
with respect to the type-based analysis. The Camelot compiler is also structured
in a way which tends to increase our confidence in its correctness by compiling
into a structured dialect of Java bytecode called Grail. Grail is structured byte-
code in the sense that it is in A-normal form (functions and primitives are ap-
plied to values only). The Camelot compiler is available for free download from
http://groups.inf.ed.ac.uk/mrg/camelot/.

3 Analysis

To explicate the context for the analysis of impure Camelot applications we first
give an overview of the analysis of pure Camelot applications (which do not call
functions written in other languages).

The existing inference procedure for Camelot [5] tracks heap allocations in order
to report the quantity of heap memory allocated by a Camelot function call. This
cost is expressed as a function of the size of the input arguments. The cost may
be negative, if presently-allocated memory is freed by the call and returned to the
managed free-list in the Camelot run-time.

Other types of memory use are not recorded. Specifically, stack allocation is not
tracked by the analysis. Thus, it is possible for Camelot functions to fail for the
reason that they recurse sufficiently deeply that they overflow the Java run-time
stack. This is possible in principle—nothing in the heap-space analysis prevents
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it—and it also happens in practice, requiring the developer to rewrite their code to
prevent this fault.

3.1 Analysis of Camelot Functions

The Camelot runtime provides a freelist of unused heap units (“diamonds”). When
a “diamond” is needed then

• unless the freelist is empty, it is taken from the freelist;
• a JVM new (allocation) is performed otherwise.

Deallocation means just returning the “diamond” to the freelist.
The inference procedure is aimed to solve the following task:

to find, if they exist, linear in the size of arguments and a value, functions δ−(·)
and δ+(·), such that if a freelist contains at least δ−(x1, . . . , xm) “diamonds” and
f(x1, . . . , xm) terminates with the value v, then during the evaluation no new heap
units are allocated, and after the evaluation there will be at least δ+(v) “diamonds”
in the freelist.

The inference rules are designed for a notated-type system. For example, a value
of a type L(A, k) is a list of elements of a type A, such that per each element
there are k heap units in a freelist, which play a role of a “credit”. A judgment
Γ, n �Σ e : A, n′ means that with a signature Σ in a notated typing context Γ
and with n extra “diamonds” available, the term e has a notated type A with n′

unused “diamonds” left. For the sake of simplicity, we will omit a subscript Σ.
Notations play the role of coefficients for the linear bound functions δ−, δ+,

mentioned in the task. Consider the meaning of a typing judgment in more detail.
Let, for example, for an expression e and its free variable x of a type L(L(int)) one
obtains the following typing: x : L(L(int, 2), 4), 6 � e : L(int, 3), 1. This means
that if x is evaluated to [l1, . . . , lm], and the evaluation of e terminates with a result
l and a freelist has size at least 6 + Σi=1,..., m(4 + 2|li|) = 6 + 4m + 2Σi=1,..., m|li|
“diamonds”, then after the evaluation there will be at least 1 + 3|l| “diamonds” in
the freelist (| · | denotes the length of a list).

As an example of an annotated inference rule consider the rule for the destructive
pattern-matching:

Γ, n � e1 : A, n′

Γ, x h : A, x t : L(A, k), n + 1 + k � e2 : A, n′

Γ, x : L(A, k), n �Σ match x with

Nil -> e1

| (x h::x t)@ -> e2

: A, n′
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The sum 1 + k in the antecedent exposes that to evaluate e2 one may demand
additionally 1 + k “diamonds”. One extra heap unit is provided by deallocation
while destructive pattern-matching. The k heap units are for sure in the freelist,
just because it’s a necessary “credit” of the matched cell. Compare the rule above
with the rule for the nondestructive match:

Γ, n � e1 : A, n′

Γ, x h : A, x t : L(A, k), n + k � e2 : A, n′

Γ, x : L(A, k), n �Σ match x with

Nil -> e1

| (x h::x t) -> e2

: A, n′

Here one can provide only k extra “diamonds” guaranteed by a credit of the matched
cell.

The whole typing system is sound w.r.t. the notated operational semantics,
where a relation m, E, h � e � v, h′, m′ means that the evaluation of e with
environment E, and heap h terminates in the presence of a freelist of size m, with
a value v, modified heap h′, and the freelist has m′ “diamonds”. Here, as usually,
an environment (stack) E : V ar ⇀ V al is a finite partial map from variables to
values, heaps h, h′ : Loc ⇀ V al are finite partial maps from location set to values.

Using the notated type system one may obtain a notated signature for a given
Camelot function, like “copy : L(A, 1), 0− > L(A, 0), 0” for a usual, not in-place,
copy-function. First one augments a type derivation with variables instead of num-
bers and builds a notated derivation tree for a given function. Then one collects
and solves numerical linear constraints, arising from the side conditions of the rules.
Assuming benign sharing of heap regions occupied by values of variables, a solution
of the system of constraints contains desired coefficients of linear heap bounds for
the function - they are the notations in its signature.

The semantical condition called benign sharing means that if at a certain point
in the evaluation of a program a heap cell is deallocated by a destructive pattern
matching, then this cell must not be accessible from the variables occurring in the
continuation. This condition is formulated on the level of the operational semantics
of the language. Proving a predicate for a compiled Grail image of a given Camelot
program (recall that Grail is the structured dialect of Java bytecode which Camelot
is compiled into) we have to approximate this condition statically. Until now this
has been done by essentially linear usage of Grail variables. We are considering
different possibilities to make the approximation of benign sharing less restrictive.
There are a few methods available, see for instance, the paper on usage aspects [1]
or the work on layered sharing [7].

In general, the method does not necessary subsume a “freelist size” interpre-
tation for a number in the notated operational semantics. One views it just as a
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number of free units available. Suppose that one has a garbage collector instead of
maintaining a freelist. Then, given a functional program f , we find, if exist, linear
bounds δ−(·), δ+(·), such that if f(x1, . . . , xm) terminates with the value v, and
if there are at least δ−(x1, . . . , xm) free cells available, then starting the evaluation
with N heap units occupied, if we run the garbage collector every time, when the
number of occupied units reaches N + δ−(x1, . . . , xm), during the evaluation the
number of occupied units will never exceed N + δ−(x1, . . . , xm).

3.2 Verification of Heap Bounds

One needs to prove that the same functions δ− and δ+ define the consumption and
gain for a Grail image of the Camelot program under consideration. We define an
assertion for Grail programs

�U, n, Γ � A, m�,

the definition of which basically corresponds to the meaning of the high-level type
judgment Γ, n � e : A, m, where U contains the set of free variables of e.

To get automatic, syntactically driven, proofs for such predicates we apply de-
rived rules which mirror the high-level notated typing rules. The Grail rules are
proven a-priori for any syntactical construct of Grail plus freelist managing func-
tions, make and free. For instance,

Γ(x) = L(int, k)

Diamond.F ree(x) : �U, 0, Γ � L(int, k), 1�

One can immediately see technical limitations of our approach. If one has to
certify a Grail method m1, invoking another method, say m2, then eventually the
specification of m2 should be present in a specification table in the exact form above.
It means that:

• either m2 is an image of a Camelot function and the specification of m2 is derivable,
• or the specification is supplied externally.

In order to estimate the reliability of our approach we propose to apply statistical
methods. One can consider the “pure” subprograms of impure Camelot application
separately and then

• evaluate (statistically) the possible “harm” from native invocations;
• and evaluate the probability of native calls.

In this paper we concentrate on the former task.

4 Analysing impure Camelot applications

Recall that Camelot programs compile to Java bytecode and can execute on an
unmodified JVM. The compiled representation of a Camelot program has access
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to the APIs of the Java platform, and the Java language, in its turn, has a foreign
function interface for invoking native methods written in C (the JNI).

We give an example of such interaction, which leads to fatal, from the point of
view of heap consumption, consequences.

Consider a Camelot program with a Java method invocation of a method called
allocate applicable to object instances of the class outOfMemory. The program
below introduces such an object instance (with the name c) and invokes the allocate
method in a recursive function called allocLoop.

(∗ A Camelot program which repeatedly calls a Java method ∗)
val main: string array −> unit
val allocLoop : unit −> unit

let rec allocLoop() =
let c = new outOfMemory() in (∗ ... a Java class ∗)
let = c#allocate() in (∗ ... native method call ∗)

allocLoop () (∗ ... tail call of this function ∗)

let main s = allocLoop()

The implementation of the Java class outOfMemory is given below.

/∗ The Java class used by the Camelot program ∗/
class outOfMemory {

/∗ The allocate method is a native method ∗/
public native void allocate ();

/∗ A static block of code executed at class load time ∗/
static {

/∗ Load the shared object library with the compiled
C implementation of the allocate () method ∗/

System. loadLibrary (”outofmemory”)
}

}
The C function allocate allocates some memory every time that it is called.
Clearly, this process cannot continue forever.

The following C program contains the necessary JNI imports to be invocable
from the Java class presented above.

/∗ The C function compiled to a shared library to be used
by the Java class ∗/

#include <jni.h>

#include ”outOfMemory.h”
#include <stdio.h>

JNIEXPORT void JNICALL

S. Gilmore, O. Shkaravska / Electronic Notes in Theoretical Computer Science 151 (2006) 27–4536



Java outOfMemory allocate(JNIEnv ∗env, jobject obj)
{

printf (”Allocating memory ...”);

/∗ malloc may fail by returning a null pointer ∗/
if ((void∗)malloc(102400) == NULL) {

printf (” failed !\n”);
} else {

printf (”succeeded\n”);
}
return;

}
On a typical Linux platform, this program will allocate memory very rapidly, filling
up the available real memory. Then the Kernel Swap Daemon (kswapd) will be
invoked to swap pages of memory out to the swap file. Fairly soon, the swap file
fills up and the program may be killed by the operating system (thereby freeing up
all of the memory which it claimed) or may simply hang, requiring the program to
be killed by the user or the machine to be rebooted.

The effect of attempting to allocate memory when there is no more left to be
allocated depends ultimately on the definition of the malloc function. The malloc
function is defined in the C language specification for the standard library to return
a null pointer when it cannot allocate the required memory. Potentially any call to
malloc in a C program must be prepared to deal with a null pointer being returned
as a result.

This is form of Camelot application which we seek to analyse via stochastic
modelling, (Camelot calling Java, calling C) because it is not amenable to the
precise space inference of Hofmann and Jost [5].

4.1 Details of the analysis

Our statistical analysis of impure Camelot applications proceeds by first walking
over the program to obtain its control flow graph. During this pass much of the
information which relates to the logic of the application can be abstracted away.
Arithmetic expression evaluation and other parts of the computation which do not
incur heap-allocation events, or call native methods or call pure Camelot functions
can be removed in order to formulate a significantly simpler program on which the
remainder of the analysis is based.

At this point much of the data dependencies in the program are removed and
replaced by statistical approximations to the control flow behaviour. Thus a deter-
ministic conditional expression can be replaced by a probabilistic choice between
alternatives and the conditional expression which is contained in the test in the
conditional can itself be removed, if its evaluation allocates no storage on the heap
either directly or indirectly and calls no native methods. Multi-way branching
caused by pattern match evaluation can be treated similarly to give a compound

S. Gilmore, O. Shkaravska / Electronic Notes in Theoretical Computer Science 151 (2006) 27–45 37



probabilistic choice.
Where a native function is called in the Camelot program we insert a possible

failure point representing a fatal out-of-memory error which abruptly terminates the
execution of the program. The relative frequency of these also needs to be estimated.
Some of these potential failure points can be eliminated if we can determine that the
native code routines do not have space leaks using tools such as Dmalloc, Valgrind
or others [9].

In order to reflect the strong simplification which has been applied to the pro-
gram at this point we choose to render it into a different formal language, Ramsey
and Pfeffer’s stochastic lambda calculus [10].

e ::= x | v | λx.e | e1 e2 | let x = e′ in e

| choose p e1 e2

| (e1, e2) | e.1 | e.2

| L e1 | R e2 | case e el er

The distinctive feature of the stochastic lambda calculus is the probabilistic choice
between alternatives (choose p e1 e2 evaluates to e1 with probability p and to e2

with probability (1−p)). The remaining constructs are more familiar and include the
left- and right-labelling of values in order to distinguish exceptional (or error) results
from good values. The case construct tests such a label and applies subexpressions
el and er respectively to the carried value.

We make use of the usual datatypes (such as booleans and integers) and built-
in functions such as succ, pred , and cond . In addition we use functions such as
sizeof to return the size of a machine-representation of a type. For readability
we write succ(x) as x + 1 and applications of the three-place conditional function
cond bexp exp1 exp2 as if bexp then exp1 else exp2. Again for reasons of readability,
we will sometimes write let x = e1 in let y = e2 in e3 as let x = e1; let y = e2; e3.
Where it is certain that no ambiguity can arise, we will omit the semi-colon in this
syntactic form. We will also add redundant parentheses if they seem to be needed
to clarify complex compound expressions which enclose multiple sub-expressions.

4.2 Example

Consider a Camelot function of a type List→unit which calls a static Java method
fnative if the length of an input list is even. We suppose that the body of fnative
contains a native call of a C function with, perhaps, a memory leak.

let rec evenOddLength lst =
match lst with

[] −> fnative ()
| h :: t −> match t with

[] −> ()
| hh :: tt −> (evenOddLength tt)
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Suppose that we have obtained, say experimentally, the probability p of the
length of a list to be even. We can abstract a list to its length and obtain a very
simple stochastic λ-term, representing the body of the Camelot function:

choose p memleak ()

We have inserted a potential memleak point instead of the Java method invocation,
assuming that we cannot guarantee that the native call does not contain memory
leaks.

We want to map a term in a stochastic λ-calculus onto a Markov chain, the
states of which are, in their turn, terms. The transitions of the chain are labeled
with pairs (α, r), with α for an action and r for a rate. A rate is a concept which
is more general than a transition probability, in a sense that the sum of two rates
for two branching transitions is not necessary equal to 1.

Consider, for instance, a function f(lst) in a stochastic λ-calculi which body is
presented by the term above: e ≡ choose p memleak (). In this simple case the
body of the function does not contain lst as a free variable. The transition graph
for the call of this function on a list x will have the form

f(x)
(f, r)� e[lst := x]

memleak
�
(m

em
lea

k ,
r 1

)

()

((), r2)

�

The rates are proportional to probabilities: ri = kpi, for some positive k, where
p1 = p and p2 = 1 − p. The rate r is equal to r1 + r2 = k.

4.3 Second example

Consider a stochastic lambda calculus term which represents a Camelot function
which, with probability pc will invoke a Java method, javaMethod , and with proba-
bility 1−pc will invoke another Camelot function, camelotFn. We track the changes
to the available program memory m, as allocations are made. The outcome is ex-
amined in a case expression. If all of the memory allocations have been successful
then the function will recurse to perform other function or method calls, otherwise
the application exits with an out-of-memory error.

let loop = λm. let step =
choose (pc)(javaMethod m)(camelotFn m)

in case step loop exit

Having determined using the Hofmann-Jost type system that the Camelot function
does not allocate memory then we could model this using a stochastic lambda
calculus term which represents preservation of the current memory level (the current
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value is labelled with an L tag, indicating success).

let camelotFn = λm. L m

Examining the Java method we realise that this either invokes a pure Java method
(compiled to type-safe, garbage-collected bytecodes), bytecodeMethod , or calls a
native function (compiled to type-unsafe, memory-unsafe native code), nativeFn.
With probability pb it is the bytecode method which is called.

let javaMethod = λm. choose (pb)(bytecodeMethod m)(nativeFn m)

As with the Camelot function, we may have been able to determine that the byte-
code method does not allocate any memory, in which case it too simply preserves
the current memory.

let bytecodeMethod = λm. L m

Due to its control flow, the native function call will not always lead to a space
leak. Sometimes memory will be freed after having been allocated; or on some calls
memory is not allocated. Thus, another probability variable enters the model: the
probability with which this application of this function will cause a space leak, p�.

let nativeFn = λm. choose (p�)(leakSpace m)(noSpaceLeak m)

The outcome where no space is leaked is similar to the others which we have seen.
In the case where space is leaked either a failure outcome or a success outcome is
returned, depending on whether or not enough memory is available to satisfy the
current allocation request. The denote the type of the currently-requested allocation
by alloct .

let leakSpace = λm. if m > sizeof (alloct)
then L (m − sizeof (alloct))
else R (m)

To make use of this representation of the program it is necessary to seed the
stochastic lambda calculus model with estimates of the relative frequency of events
in the computation and their duration. These quantities need to be estimated as
accurately as is possible at the point of undertaking the analysis of the program.
The ideal situation would be to derive these data values from the cost model for
the Grail language [2] but our techniques for doing this are not at present suffi-
ciently well advanced and so instead we derive values for these distributions from
instrumentation and measurement of our software implementation.

Fortunately, a modern JVM such as SUN’s Java HotSpot Virtual Machine re-
lease 1.5 has sophisticated intrumentation and measurement capabilities including
a redesigned and extended interface to the JVM internals through the Java Virtual
Machine Tool Integration API (JVMTI). This generalises and extends the previ-
ous JVM Platform Debugger Architecture and JVM Profiling Interface to provide
programmatic access to the JVM management and to facilitate instrumentation of
Java byte code at run-time.
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Having built an abstact representation of the program in a stochastic lambda
calculus realisation and having obtained estimates of the frequency of occurrence of
events through instrumentation, measurement or other means we are now able to
effect our analysis.

4.4 Analysis process

We begin by deriving the reduction sequence which follows from our stochastic
lambda calculus term. In any deterministic lambda calculus the branching in such a
derivation sequence can be removed by chosing a reduction strategy which identifies
a single subterm of the whole which is to be reduced next, and confluence guarantees
that the same end result will be obtained. In the stochastic lambda calculus the
branching which stems from probabilistic choice cannot be removed and so the
reduction path from a given stochastic lambda calculus term is in general a tree.
This tree has (lambda calculus representations of) fatal out-of-memory events at
the leaves and we are interested in the duration of the path from the root to one of
these leaves.

Now we have formulated the problem as a stochastic process analysis procedure.
We wish to compute passage-time quantiles for this activity and so we turn to a
stochastic process analysis tool. We have used both the DNAmaca analyser [6] and
PRISM [8] for this model.

In Markovian modelling two kinds of analysis deserve mention, because they
offer up different insights into the model. The first is a steady-state analysis, which
looks at the behaviour of the model in the long run, when any initial warm-up
period has passed. The second is transient analysis, which looks at the behaviour
of the model at an instant of time, which might be close to the start of its lifetime
and still within reach of any effects of the initial configuration of the system. We
perform the latter analysis here.

The results from our analysis tools can be presented either as probability dis-
tribution functions (PDFs) or cumulative density functions (CDFs). The meaning
of the former is the probability of the measured event happening at this instant
in time (so the value of a PDF tends to zero as time tends to infinity because the
event becomes more likely to have already happened). The meaning of the latter is
the accumulated probability that the measured event has happened plotted against
increasing time (so the value of a CDF tends to one as time tends to infinity because
the event becomes more likely to have already happened). The graphs presented
in Figures 1 and 2 show the results for the above stochastic lambda calculus model
presented in Section 4.3.

Since this is a passage-time analysis of a computer application it is legitimate
to ask whether the same information could have been obtained simply by repeat-
edly running the application. The answer is that this information could have been
obtained experimentally in this way but that the cost in compute-time would be
prohibitively expensive. To plot the above graph from experimental data one would
need to re-run the application and accumulate enough observations of the point
of failure so that one could meaningfully compute the percentage of times when
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Fig. 1. Cumulative density plot of probability of system fault due to accumulated space leaks varying pc

these failures occurred. Even if we were satisfied with only 100 runs of the appli-
cation being considered sufficient to allow us to calculate statistically valid results
for a long-running program such as the ones considered in the present paper this
would mean that the run-time of the series of experiments would be measured in
decades of compute time, which is infeasible. The passage-time analysis performed
via transient analysis of the underlying continuous-time stochastic process gives us
the benefit that we can generalise from short run-times (on a per-function basis) to
long run-times (over the passage from system initialisation to system failure).

4.5 Comparison of results and discussion

Figures 1 and 2 show how the probability of system failure increases as time passes.
Thus all of the graphs show the accumulated probability increasing from zero to-
wards one. To produce these plots we held the durations of function call times
constant and varied only the probabilities of calling functions of various kinds.

The probability varied in Figure 1 is pc, the probability of calling a Java method.
Space leaks only occur in Camelot applications because Java methods are called so
as the probability of these calls being made is reduced, so to is the likelihood of
system failure due to memory exhaustion. We hold pb and p� constant in this plot
(at 0.5).

In Figure 2 we vary p�, the probability that a called native method leaks space.
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Fig. 2. Cumulative density plot of probability of system fault due to accumulated space leaks varying p�.
The value when p� = 0.1 is below 0.0015 even at t = 115.0.

Variations in this value have a more pronounced effect on the possibility of a crash
than might have been expected if we had not taken the trouble to conduct the
quantitative analysis which we have done. The conclusion is that reducing the
probability of a leak has a marked effect on the longevity of the application, reducing
the impact of the leak to the point where it is practicable to tolerate it, in the
knowledge that periodic system resets will clear all of the leaked memory in any
case. We hold pb and pc constant in this plot (at 0.5).

5 Conclusions

We have discussed the Camelot programming language, an innovative high-level
functional programming language which expresses resource consumption informa-
tion within its type system. For a principled programming language to be useful,
it must also make concessions to practice [3]. The Camelot programming language
allows users to invoke Java methods which may in turn invoke native functions in
low-level languages such as C. We have taken some time here to discuss how this
can interoperate with the high-level language analysis.

The problem discussed is how potential memory leaks, which occur with some
probability when a native method is invoked, will impact on the system as a whole.
Qualitatively, the end effect is sure: the memory leak will eventually cause system
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failure. However, we are interested in quantitative analysis here: “How soon will
the memory leak cause system failure?” Answers to questions such as these can-
not be determined experimentally because the cost of the experimental procedure
to determine these (repeatedly re-running a long-running application) is too high.
Formal analysis is needed here, and it is useful here.

We have considered the case where some parts of the program (written in the
Camelot programming language) are open to inspection and enquiry but others
(pre-compiled library images of C applications) are not. Thus the analysis which
we undertake must inevitably make use of approximation since the complete be-
haviour of the C functions is not known. We work with observations of the function
behaviour made externally, as can be obtained from the profiling information of
time- and space-accurate profilers. These are available for modern JVMs and detail
also the cost of native method invocations. Our analysis depends crucially on the
accuracy of these approximations. Our use of approximations is in contrast to the
function heap-space analysis for the pure subset of the Camelot language due to
Hofmann and Jost, which is a precise analysis making no use of approximation.

Seeded with a stochastic process representation of an impure Camelot appli-
cation obtained via a stochastic lambda calculus intermediate form, the transfor-
mation into a continuous-time Markov chain, transformation via uniformisation,
transient solution and cumulative density function computation is entirely auto-
matic and can be performed with low computational cost, pointing to the potential
usefulness of this method for systems of larger size than those considered here.

The example which we considered was a relatively simple one, with simple con-
trol flow. However, the method which we used to analyse this example has greater
generality. Mapping into the stochastic lambda calculus allows us express more com-
plex control-flow structures such as partial application, function-passing, dynamic
method dispatch, callbacks, event handling, and exceptional completion as found in
the functional and object-oriented languages presently in use. This indicates that
the method could have practical application in modelling more complex program
structures in the impure multi-language application solutions in development today.
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