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HYSICS CONTRIBUTION

FEASIBILITY OF IMAGE REGISTRATION AND INTENSITY-MODULATED
RADIOTHERAPY PLANNING WITH HYPERPOLARIZED HELIUM-3

MAGNETIC RESONANCE IMAGING FOR NON–SMALL-CELL
LUNG CANCER

ROB H. IRELAND, PH.D.,*§ CHRIS M. BRAGG, M.SC.,†§ MARK MCJURY, PH.D.,§¶

NEIL WOODHOUSE, PH.D.,* STAN FICHELE, PH.D.,* EDWIN J. R. VAN BEEK, M.D., PH.D., F.R.C.R.,*�

JIM M. WILD, PH.D.,* AND MATTHEW Q. HATTON, M.B.CH.B., F.R.C.P., F.R.C.R.‡

Academic Units of *Radiology, †Medical Physics, and ‡Clinical Oncology, University of Sheffield, Sheffield, United Kingdom;
§Department of Radiotherapy Physics, Weston Park Hospital, Sheffield, United Kingdom; ¶Department of Medical Physics, Belfast

City Hospital Trust, Belfast, Northern Ireland, United Kingdom; and �Department of Radiology, Carver College of Medicine,
University of Iowa, Iowa City, IA

Purpose: To demonstrate the feasibility of registering hyperpolarized helium-3 magnetic resonance images (3He-MRI)
to X-ray computed tomography (CT) for functionally weighted intensity-modulated radiotherapy (IMRT) planning.
Methods and Materials: Six patients with non–small-cell lung cancer underwent 3He ventilation MRI, which was
fused with radiotherapy planning CT using rigid registration. Registration accuracy was assessed using an
overlap coefficient, calculated as the proportion of the segmented 3He-MR volume (VMRI) that intersects the
segmented CT lung volume expressed as a percentage of VMRI. For each patient, an IMRT plan that minimized
the volume of total lung receiving a dose >20 Gy (V20) was compared with a plan that minimized the V20 to
well-ventilated lung defined by the registered 3He-MRI.
Results: The 3He-MRI and CT were registered with sufficient accuracy to enable functionally guided IMRT
planning (median overlap, 89%; range, 72–97%). In comparison with the total lung IMRT plans, IMRT
constrained with 3He-MRI reduced the V20 not only for the well-ventilated lung (median reduction, 3.1%; range,
0.4–5.1%; p � 0.028) but also for the total lung volume (median reduction, 1.6%; range, 0.2–3.7%; p � 0.028).
Conclusions: Statistically significant improvements to IMRT plans are possible using functional information
provided by 3He-MRI that has been registered to radiotherapy planning CT. © 2007 Elsevier Inc.
Hyperpolarized helium-3 MRI, Image registration, IMRT treatment planning, Non–small-cell lung cancer.
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INTRODUCTION

yperpolarized noble gas magnetic resonance imaging (MRI)
s an emerging technique that enables novel quantitative anal-
sis of pulmonary physiology (1, 2). Although the density of
as introduced into the lungs is low, optical pumping tech-
iques can be used before inhalation to produce extremely high
uclear spin polarization levels that provide a signal size suf-
cient for MRI. By applying this method with the inert, non-
adioactive isotope helium-3 (3He), MR images of in vivo lung
entilation and oxygen sensitivity can be obtained with un-
recedented spatial and temporal resolution (3, 4). The tech-
ique has shown great promise in diseases such as cystic
brosis, asthma, and emphysema (1).

Reprint request to: Rob Ireland, Ph.D., Academic Unit of
adiology, University of Sheffield, Sheffield, S10 2JF, UK.
el: (�44) 1-142711714, Fax: (�44) 1-142265521, E-mail;
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ital Cancer Appeal and Sheffield Hospitals Charitable Trust also A

273
As demonstrated with other functional imaging modali-
ies, such as emission tomography, image registration of
He-MRI with anatomic 1H-MRI and X-ray computed to-
ography (CT) could provide improved clinical interpreta-

ion of the functional data, owing to the superior anatomic
ocalization provided by image fusion. In particular, the
ombination of 3He-MRI and CT for the management of
ung cancer patients has the potential to be a clinically
mportant application of 3He-MR image registration.

adiation pneumonitis
For patients with non–small-cell lung cancer (NSCLC)

ho are suitable for radiotherapy treatment, functional pul-

rovided funding. The 3He gas polarizer was loaned from GE
ealthcare (Princeton, NJ).
cknowledgments—The authors thank Patricia Fisher, Sally Flem-

ng, Zead Said, Catherine Anthony, Gillian Brown, Kitty Wilcock,
nd Anirban Chattopadhyay for their assistance.
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onary reserve may be severely reduced because radical
adiotherapy will cause damage to noncancerous lung tissue
n addition to the intended target volume. Consequently,
adiation pneumonitis is the most common dose-limiting
omplication of radiotherapy (5).

The key to lowering the risk of radiation pneumonitis
ay be to reduce the dose to healthy regions of lung while
aintaining an adequate dose to the tumor. However, this

pproach requires the healthy (well-ventilated and perfused)
ung to be identified. CT images used in conventional ra-
iotherapy treatment planning cannot separate these func-
ioning areas from those that have been previously damaged
nd contribute little to respiration. Supplementary images of
ung ventilation and perfusion are, therefore, required if
adiation fields are to be optimized to reduce the dose to
ealthy lung.

reatment planning with SPECT
The potential value of incorporating functional informa-

ion into lung cancer treatment planning has been investi-
ated with single photon emission computed tomography
SPECT) (6–9). However, there are several practical limi-
ations to the use of SPECT for treatment planning, primar-
ly the additional radiation dose and often suboptimal image
uality due to difficulties with attenuation correction and
mage reconstruction. Recently, hyperpolarized 3He-MRI
as emerged as an alternative lung ventilation imaging
odality that eliminates the need for radioisotopes and has

he potential to provide functional information superior to
hat from SPECT (10).

Although hyperpolarized 3He-MRI has been shown to
etect radiation-induced lung injury in rats (11), no previous
ork has investigated the potential role of in vivo 3He-MRI

or the assessment and treatment planning of lung cancer
atients. For NSCLC patients who require radiotherapy,
He-MR images of ventilation and function could have a
onsiderable impact on patient management.

Before treatment, many patients have regions of lung
ith poor ventilation or perfusion that contribute little to

ffective lung function. By identifying these regions and
sing the information when planning treatment, 3He-MR
mages may enable radiation fields to be targeted to limit the
ose to the healthy regions of lung, which could reduce the
ncidence of treatment complications.

In addition, the information provided by 3He-MR functional
mages will make it possible to calculate dose–volume histo-
rams that are weighted by functional information, which
ould be a valuable tool for treatment plan analysis (12).

He-MR image registration
For 3He-MRI to be used in radiotherapy, the images must

rst be registered with the CT acquired for treatment plan-
ing. However, 3He-MR image registration has yet to be
idely investigated because the lungs represent a nonrigid

ystem with high mobility and thus present a challenging
ystem for image registration. Image registration of perfu-

ion MRI and 3He-MRI using controlled gas administration p
as been demonstrated in pigs (13, 14), and a fiducial
ystem for 3He to 1H-MRI registration has been described
15), but in vivo studies involving the registration of 3He-

RI to CT have not been previously reported. Therefore,
he first objective of this study was to investigate the feasi-
ility of in vivo 3He-MR image acquisition and registration
o X-ray CT for the management of patients with NSCLC.

MRT planning
Radiotherapy treatment planning of lung cancer with

upplementary functional images has been examined for
ore than a decade (16, 17). Using conventional treatment-

lanning techniques on 104 lung cancer patients, Munley et
l. (18) found that 11% of plans were modified according to
PECT, whereas 48% of plans were considered “potentially
odifiable” owing to the identification of lung regions with

elatively low perfusion but unable to be utilized for treat-
ent planning without improved planning tools. However,

n recent years there have been significant improvements to
reatment planning and delivery with the development of
ntensity-modulated radiotherapy (IMRT). From a study of
1 NSCLC patients, Murshed et al. (19) concluded that
MRT planning can significantly improve target coverage
nd reduce the volume of normal lung irradiated above low
oses with a potential 10% reduction in the risk of radiation
neumonitis.
Planning with IMRT involves the specification of a num-

er of constraints, some of which can conceivably be de-
ived from functional information when available. For the
ase of 3He-MRI, once the images have been registered to
lanning CT, the 3He-MRI data can then be incorporated
nto the treatment-planning process. In related SPECT stud-
es, the functional data are incorporated into inverse plan-
ing with the aim of reducing the dose to healthy regions of
ung and improving the sparing of critical structures (6–8,
6). Therefore, the second objective of this study was to
ompare IMRT plans constructed with and without con-
traints derived from the 3He-MRI data.

METHODS AND MATERIALS

SCLC patients
Patients with NSCLC underwent hyperpolarized 3He ventilation
RI in addition to conventional X-ray CT for radiotherapy treat-
ent planning. All patients gave written informed consent to

articipate, and the study was approved by the local research ethics
ommittee (NS02-11-1507).

mage acquisition
Hyperpolarized 3He-MR ventilation imaging was performed on
1.5-T whole body Eclipse system (Philips Medical Systems,

leveland, OH), which was fitted with a second radiofrequency
RF) amplifier (2 kW; Analogic Corporation, Peabody, MA) and a
ransmit–receive circuit tuned to 48.5 MHz for 3He (2). Imaging
as performed with a flexible twin saddle quadrature transmit–

eceive RF coil (IGC Medical Advances, Milwaukee, WI). Three
yringes that could be filled remotely with 3He or water were

laced on the chest to act as fiducial markers (15). Images were
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cquired on a flat couch top similar to that used during the
cquisition of radiotherapy planning CT. However, accurate re-
roduction of patient treatment position was not possible owing to
he thoracic RF coil, which required the patients to be imaged
upine with their arms down.

The 3He images were obtained with a low flip angle, gradient
cho acquisition with 112 centric phase encoding views (2), flip
ngle � � 9°, 19 coronal slices, 13 mm slice thickness with no gap,
eld of view � 43 cm, time to echo � 3.4 ms, time to repetition

6.7 ms, 128 samples, and bandwidth � 16 kHz. Each coronal
mage was 128 � 128 pixels with 3.3 mm pixel size. The 3He gas
Spectra Gases, Huntingdon, UK) was polarized on site to 30% by
ptical pumping with rubidium spin exchange apparatus (GE
ealthcare, Princeton, NJ). In vivo imaging was then performed
uring a single 14 s breath-hold of a 300 mL 3He/700 mL N2

ixture inhaled from a Tedlar bag (Jensen Inert Products, Coral
prings, FL) from a starting point of functional residual capacity.
o inhalation of room air was permitted. Blood oxygen saturation
as monitored with an MRI-compatible pulse oximeter throughout

he procedure. Patients were coached in the breathing maneuver
nd were allowed a trial breath hold with a dummy bag containing
oom air before imaging. Half-Fourier single shot fast spin echo
H-MR images were also acquired during the same imaging ses-
ion with the patients in the same position as during the 3He-MRI.

On the same day, treatment planning transaxial CT was acquired
512 � 512 pixels with pixel size 0.9375 mm) with 5 mm slice
hickness (Philips Medical Systems PQS CT). The patients were
maged in the conventional treatment position, which is supine
ith arms raised above the head while breathing freely.

mage registration
The 3He-MR images were imported into Philips Medical Sys-

ems ACQSIM, which interpolated the 19 coronal 3He-MR images
o match the voxel size and orientation of the transaxial planning
T. ACQSIM’s rigid registration tools were then used to register

he 3He-MRI to the planning CT. To assist the manual registration
rocedure, the fiducial 3He markers were aligned with the external
T contour when possible. Verification of the image registration
ethodology was performed with a chest phantom that was

canned with the same 3He-MRI and CT imaging protocols as the
atients.
Using in-house custom Matlab software (MathWorks, Natick,
A), registration accuracy was assessed using an overlap coeffi-

ient (�), which is calculated as the proportion of the segmented
He-MR slice volume (VMRI) that intersects the segmented CT
ung slice volume (VCT) expressed as a percentage of VMRI

� � 100 �
VMRI � VCT

VMRI

,

here the higher the overlap value the better the registration.
egmentation was performed manually by an experienced lung
adiotherapy consultant with a suitable windowing of the 3He-MR
mages that varied from patient to patient because of differences in
he signal-to-noise ratio.

The 3He-MR volume may be different than the CT-defined
olume, owing to the possibility of ventilation defects detected in
he functional images. This is to be expected because many of the
atients have a history of heavy smoking and may have regional
bstruction from chronic obstructive pulmonary disease evident in

heir 3He-MRI (20). Hence, the overlap coefficient is a more a
ppropriate measure of 3He-MR to CT registration accuracy than,
or example, the intersection-union ratio, which may have been
sed if the two volumes were expected to be similar.
It is useful to analyze the registration accuracy across the entire

ung volume and for individual slices that are the most important
hen planning treatment. Hence, for each patient, the overlap

oefficient was first calculated for each image slice, and then the
ean and standard deviation was determined for all slices con-

aining (1) CT-defined lung, (2) the planning target volume (PTV),
nd (3) the gross tumor volume (GTV).

MRT planning
The registered 3He-MRI was segmented in ACQSIM and the

ontours exported as a DICOM structure set to the Eclipse plan-
ing system (Varian Medical Systems, Palo Alto, CA) for IMRT
lanning.
Functional lung tissue was defined as the intersection of the lung

T volume with well-ventilated lung segmented from the regis-
ered 3He images �VMRI�VCT�. Total lung volume included the
psilateral and contralateral lung but excluded the GTV, which was
ontoured by an experienced lung radiotherapy consultant. A
-mm uniform margin was added to the GTV to produce the CTV.
he CTV-to-PTV margin was 10 mm in the axial plane and 15 mm

n the craniocaudal direction.
Inverse planning for IMRT was performed using the Dose-

olume-Optimizer module of the Eclipse planning system. Plans
ere produced using five or seven nonopposing, coplanar fields,
ith the beam angles manually optimized for each patient. The

MRT plans were not used for patient treatment.
For each patient, plans were produced using two distinct sets of

ose–volume constraints. In the first set (Plan A), constraints were
hosen with the aim of minimizing the volume of lung receiving a
ose of �20 Gy (V20). In the second set (Plan B), lung constraints
ere applied to minimize the V20 of lung tissue identified on the

He-MRI as functional. Additional constraints were selected to
roduce continuous hyperfractionated accelerated radiotherapy
CHART) plans (21) that met the criteria shown in Table 1. Tighter
onstraints were applied to the PTV to produce homogeneity in the
TV within the International Commission on Radiation Units and
easurements–recommended limits of 95% and 107% where pos-

ible.
A full three-dimensional forward dose calculation with inhomo-

eneity correction was performed for each plan, and dose–volume
istograms were produced. For each plan, the following parame-
ers were calculated: (1) FLV20 (percentage of functional lung
eceiving �20 Gy), (2) TLV20 (percentage of total lung receiving

20 Gy), and (3) MFLD (mean dose to functional lung).
A measure of the overall quality of the treatment plan, incor-

orating measures of both target dose and functional lung dose,
as given by VPTV95/FLV20, which is the ratio of the percentage
olume of the PTV receiving at least 95% of the prescription dose
VPTV95) to the functional lung V20.

In addition, a conformity index (CI) was used that accounts for

Table 1. Intensity-modulated radiotherapy planning constraints

pinal cord Maximum dose �40 Gy
lanning target
volume

Mean dose 54 Gy; 90% of volume receiving
at least 95% of prescription dose

ormal tissue Maximum dose �54 Gy
ny normal tissue receiving at least 95% of the prescription dose
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nd for any tissue within the PTV that does not receive this dose
22). The maximal value of the index is unity, when the 95%
sodose conforms exactly to the PTV, whereas a value of 0
epresents a geographical miss. The index is defined as the product
f the fraction of PTV receiving at least 95% of the prescription
ose and the ratio of the volume of PTV receiving at least 95% to
he volume of tissue receiving at least 95% (the treated volume,

T):

Cl �
VPTV95

VPTV

VPTV95

VT

.

Statistical significance of differences between the dose param-
ters for Plan A and Plan B were calculated using the Wilcoxon
igned ranks test.

RESULTS

SCLC patients
Six male patients consented for the study (Table 2). All

atients had histologically proven inoperable NSCLC and
ad been selected for radical CHART (21). None of the
atients had been previously treated with radiotherapy of
he thorax. Patients had WHO performance status of 0–2
nd forced expiratory volume in 1 s (FEV1) �1.5 L. During
He-MR imaging, no significant decrease in blood oxygen
aturation was observed, and no ill effects were reported
fter inhalation of the 3He/N2 gas mixture.

Fig. 1. (a) Hyperpolarized 3He magnetic resonance image

Table 2. Summ

Patient no. Staging Tumor site

1 T4N2Mx � IIIB Right upper lobe
2 T2N2Mx � IIIA Right hilum
3 T4N2Mx � IIIB Right hilum
4 T3N2Mx � IIIA Right upper lobe
5 T2N0M0 � IB Left lower lobe
6 T2NxMx � IB Left main bronchus
a tumor in the upper right lobe. (b) Corresponding 1H magnet
mage registration
Lung phantom. For the chest phantom, regions of 3He

oncentration were well registered to the CT “lung” regions
� � 100%), which demonstrated the validity of the image
ransfer procedure and the feasibility of 3He-MRI and CT

anual rigid registration.
3He-MR and 1H-MR. For in vivo data, Fig. 1a demon-

trates the complementary information provided by MRI
ith hyperpolarized 3He. A complete obstruction is evident

n the 3He-MR ventilation image from a patient with a
umor in the right upper lobe that is visible on the 1H-MRI
Fig. 1b). The 3He images indicate that the tumor has caused
complete ventilation obstruction of the upper right lung.
3He-MR and planning CT. The registered 3He-MR image

isplayed with the external, lung, and GTV contours delin-
ated from the planning CT is shown for 2 patients in Fig.
. In both cases, the ventilation MR images are well regis-
ered to the CT lung segments. For Patient 5, the image has
een windowed to display 2 fiducials that lie on the external
T contour.
Figure 3 displays the overlap coefficient (�) for each

mage slice, and Table 3 provides the mean and standard
eviation of � for each patient. According to all the regis-
ered images containing CT-defined lung, for Patient 4 (� �
7.0 � 1.9) and Patient 5 (� � 96.7 � 2.2) the registration
s highly accurate and has low variance. Patients 1, 2, and 6
how good accuracy (� � 85.5 � 15.1, � � 89.6 � 5.8,

ting a complete ventilation obstruction for a patient with

patient details

Total lung
volume (cm3)

Functional lung
volume (cm3)

Planning target
volume (cm3)

3,930.2 2,246.2 581.0
3,463.6 1,939.3 794.0
4,002.1 2,689.4 747.7
5,677.2 3,320.5 759.1
6,120.1 2,899.0 240.3
5,825.7 1,057.5 347.4
exhibi
ary of
ic resonance image.
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nd � � 88.2 � 8.1, respectively), whereas Patient 3
xhibits the lowest accuracy and high variability (and � �
1.9 � 14.6). Similar values are found when � is calculated
ver the registered images containing the PTV or GTV,
xcept for Patient 3, which is 9.8% less accurate over the
TV images compared with overall Patient 3 images con-

aining lung (t test, p � 0.01).
Fiducial markers. The markers were not visible for the

rst 3 patients owing to poor signal-to-noise ratio at the
ducial position due to 3He gas leakage from the syringe.
his problem was rectified for the final 3 patients, which
llowed the fiducial markers to be visualized on the
He-MR images (Fig. 2). The markers assisted the manual
lignment of the 3He-MRI with the external CT contour,
nabling the fusion of the ventilation MR within the CT
ung segments.

MRT planning
The total and functional lung volumes for the patients are

hown in Table 2 along with the PTV. Dose–volume pa-
ameters achieved by the two sets of optimization con-
traints are shown in Table 4.

In all patients, the incorporation of 3He-MRI information
n the inverse planning process produced improvements in
he volume of lung irradiated. This was reflected in reduc-
ions not only in FLV20 (median reduction, 3.1%; range,
.4–5.1%; p � 0.028) but also in TLV20 (median reduction,
.6%; range, 0.2–3.7%; p � 0.028). The MFLD was also
educed for each patient when the functional lung was used
n the optimization. The lung dose was improved even in
atients, such as Patient 5, in whom the optimization using
he total lung produced low lung dose statistics.

The improvements in lung dose were sometimes at the

Fig. 2. Sample registered hyperpolarized 3He magnetic re
and right lung and, for Patient 4, the gross tumor volum
computed tomography (CT) (left).
ost of deterioration of other aspects of the dose distribu- h
ion. For example, reductions of more than 3.5% in both
LV20 and TLV20 and a reduced MFLD were seen in Patient
, but the dose to normal tissue was increased when only
unctional lung was used in the optimization. This is re-
ected in the lower CI for this patient in Plan B. A lower CI
as also seen for Patient 5, due predominantly to slightly

educed target coverage, although the PTV dose require-
ents were met by both plans. In all patients, the overall

lan quality measure, VPTV95/V20, was improved when the
unctional lung was used in the inverse planning process.

The location of the functional lung identified by the
He-MRI was an important factor in determining the impact
f specifically including that tissue in the optimization. In
atient 2, relatively modest improvements were seen in Plan

(for example, a 0.6% reduction in FLV20 and a small
ncrease in CI). Although 56% of the patient’s total lung
olume was functional, the majority of that functional tissue
ay inferior to the large PTV and so was not in the path of
he coplanar beams. As a result, the scope for influencing
he volume of functional lung receiving a given dose was
imited.

Patient 1 also had a large PTV, extending 13 cm cranio-
audally, but in this instance the majority of the functional
ung tissue was ipsilateral to and close to the PTV. The two
ets of constraints produced plans of a generally similar
uality; using the 3He-MRI information in the optimization
esulted in similar target coverage, small (�0.5%) reduc-
ions in FLV20 and TLV20, and identical VPTV95/V20. How-
ver, CI was lower when the functional lung information
as used, reflecting an increased volume of normal tissue

eceiving at least 54 Gy. This may, in part, be due to the
roximity of the functional lung to the PTV—optimizing
uch that the dose to the functional lung tissue close to the

ce image (right) displayed with the external contour, left
V) from the transaxial radiotherapy treatment-planning
sonan
e (GT
igh-dose region is minimized provides a greater challenge
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or the inverse planning software. In this instance it seems
o have been achieved only at the expense of an increased
ose elsewhere.
The PTV of Patient 4 lay close to the spinal cord at some

evels. Inverse planning to spare the entire lung consistently

Fig. 3. The overlap coefficient (�) to evaluate image r
computed tomography slice.
roduced plans in which the spinal cord dose exceeded 5
olerance. To maintain an acceptable cord dose, the mean
TV dose was limited to 52.4 Gy, so just 80% of the PTV
eceived at least 95% of the 54-Gy prescription dose. Using
nly the functional lung in the optimization produced lower
pinal cord doses, enabling the desired prescription dose of

tion for all 6 patients displayed with a sample coronal
egistra
4 Gy to be achieved. This was not at the expense of the



l
f
P
c
t
G

i
C
c
p
t
c
c
w
r

c
t
m
l
h
l
i
n
H
r
b

a
a

H

o
r
p

T

m
v

T
ab

le
4.

D
os

e
pa

ra
m

et
er

s
fo

r
Pl

an
A

(m
in

im
iz

in
g

do
se

to
th

e
to

ta
l

lu
ng

)
an

d
Pl

an
B

(m
in

im
iz

in
g

do
se

to
th

e
fu

nc
tio

na
l

lu
ng

)

Pa
tie

nt
no

.

FL
V

2
0

(%
)

T
L

V
2
0

(%
)

M
FL

D
(G

y)
V

P
T

V
9
5
/F

L
V

2
0

C
I

PT
V

�
95

%
(%

)
C

or
d

m
ax

(G
y)

V
ol

no
rm

al
tis

su
e

�
54

G
y

(%
)

Pl
an

A
Pl

an
B

Pl
an

A
Pl

an
B

Pl
an

A
Pl

an
B

Pl
an

A
Pl

an
B

Pl
an

A
Pl

an
B

Pl
an

A
Pl

an
B

Pl
an

A
Pl

an
B

Pl
an

A
Pl

an
B

1
32

.8
32

.4
31

.4
31

.2
15

.8
14

.9
3.

0
3.

0
0.

85
0.

75
2.

2
4.

1
39

.5
39

.6
0.

09
0.

35
2

19
.4

18
.8

23
.2

22
.8

12
.3

12
.2

4.
6

4.
8

0.
79

0.
82

9.
9

8.
9

35
.7

36
.5

0.
16

0.
13

3
28

.1
24

.3
27

.6
23

.9
13

.3
12

.5
3.

5
3.

9
0.

86
0.

74
2.

2
5.

2
38

.1
40

.0
0.

17
0.

47
4

27
.1

23
.5

27
.1

24
.7

14
.2

13
.2

3.
0

4.
1

0.
76

0.
85

18
.8

3.
4

40
.0

40
.0

0.
02

0.
10

5
7.

6
5.

0
11

.7
9.

0
5.

2
5.

0
12

.9
18

.9
0.

86
0.

79
2.

6
5.

2
25

.8
30

.1
0.

01
0.

07
6

33
.9

28
.8

19
.0

18
.3

16
.3

14
.0

2.
9

3.
4

0.
85

0.
88

1.
4

2.
4

22
.0

32
.4

0.
07

0.
05

di
an

27
.6

23
.9

25
.2

23
.4

13
.8

12
.9

3.
3

4.
0

0.
85

0.
81

2.
4

4.
6

36
.9

38
.1

0.
08

0.
12

W
ilc

ox
on

te
st

)
0.

02
8

0.
02

8
0.

02
8

0.
04

3
0.

46
2

0.
46

3
0.

04
3

0.
11

6

A
bb

re
vi

at
io

ns
:

FL
V

2
0

�
pe

rc
en

ta
ge

of
th

e
fu

nc
tio

na
l

lu
ng

re
ce

iv
in

g
�

20
G

y;
T

L
V

2
0

�
pe

rc
en

ta
ge

of
th

e
to

ta
l

lu
ng

re
ce

iv
in

g
�

20
G

y;
M

FL
D

�
m

ea
n

do
se

to
th

e
fu

nc
tio

na
l

lu
ng

;
T

V
9
5
/F

L
V

2
0

�
ra

tio
of

th
e

pe
rc

en
ta

ge
vo

lu
m

e
of

th
e

pl
an

ni
ng

ta
rg

et
vo

lu
m

e
(P

T
V

)
re

ce
iv

in
g

at
le

as
t9

5%
of

th
e

pr
es

cr
ip

tio
n

do
se

(V
P

T
V

9
5
)

to
th

e
fu

nc
tio

na
ll

un
g

V
2
0
;C

I
�

co
nf

or
m

ity
ex

;P
T

V
�

95
%

�
pe

rc
en

ta
ge

of
th

e
PT

V
re

ce
iv

in
g

le
ss

th
an

95
%

of
th

e
pr

es
cr

ib
ed

do
se

;C
or

d
m

ax
�

m
ax

im
um

sp
in

al
co

rd
do

se
;V

ol
no

rm
al

tis
su

e
�

54
G

y
�

pe
rc

en
ta

ge
of

th
e

no
rm

al
ue

(n
on

-P
T

V
)

re
ce

iv
in

g
�

54
G

y.

279Lung IMRT with 3He MRI ● R. H. IRELAND et al.
ung dose; the FLV20 for Plan B was 3.6% lower than that
rom Plan A, and the MFLD was 1.0 Gy lower. If the mean
TV dose in Plan A was increased to 54 Gy such that the
ord tolerance was exceeded, these improvements through
he use of 3He-MRI information increased to 4.5% and 1.5
y, respectively.
The IMRT plans demonstrated the general suitability of

nverse planning in the production of clinically acceptable
HART treatment plans. In one instance (Patient 6), the
onventional treatment plan produced at the time of the
atient’s treatment was limited by the proximity of the PTV
o the spinal cord, necessitating a compromise in PTV
overage. Both IMRT plans produced met the PTV dose
onstraints while delivering spinal cord maximum doses
ell within tolerance (22 Gy and 32 Gy for Plans A and B,

espectively).
In just one case (Patient 3), the IMRT plans were clini-

ally unacceptable, because of large hot spots in normal
issue that were present irrespective of the beam arrange-
ent. The delineation of an “avoidance” structure, to which

ow dose–volume constraints were applied, was of limited
elp in overcoming this problem. For this patient, whose
arge PTV extended 16.5 cm in the craniocaudal direction,
nverse planning using the Dose-Volume-Optimizer may
ot be a suitable means of producing a treatment plan.
owever, the inclusion of noncoplanar beams may assist in

educing the high-dose regions and realizing the potential
enefits of sparing the functional lung seen in Plan B.

DISCUSSION

This preliminary work demonstrates the feasibility of
cquiring in vivo hyperpolarized 3He-MRI suitable for im-
ge registration to CT for IMRT treatment planning.

yperpolarized helium-3 MRI
The development of MRI for detailed depiction of anat-

my in the lungs has been slow when compared with other
egions of the body. This is largely owing to the hostile

able 3. Mean (SD) of the overlap coefficient used as a measure
of registration accuracy calculated for all slices containing

CT-defined lung, PTV, and GTV

Patient
no.

Within lung
images

Within PTV
images

Within GTV
images

1 85.5 (15.1) 82.8 (16.3) 85.8 (12.2)
2 89.6 (5.8) 89.2 (6.4) 86.4 (4.7)
3 71.9 (14.6) 66.3 (14.7) 62.1 (13.0)
4 97.0 (1.9) 97.7 (1.3) 98.1 (1.0)
5 96.7 (2.2) 96.6 (2.6) 97.0 (2.7)
6 88.2 (8.1) 90.0 (5.8) 89.5 (4.2)

Abbreviations: SD � standard deviation; CT � computed to-
ography; PTV � planning target volume; GTV � gross tumor

olume.
Values are percentages.
hysical environment of the lungs for MRI, namely the low
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roton density and high magnetic field inhomogeneity.
hus, 1H-MRI has provided some limited anatomic infor-
ation on lung parenchyma at the field strengths that are

sed routinely (1.5 T). More widespread in clinical radio-
ogic practice is the use of MRI in assessing pulmonary
irculation through perfusion and angiography techniques
23). In recent years, the emergence of hyperpolarized noble
as MRI has led to increased interest in the role of MRI for
ulmonary assessment because hyperpolarized 3He can pro-
ide novel functional information at high spatio-temporal
esolution. Helium-3 imaging is safe, noninvasive, and re-
roducible and does not involve the use of ionizing radia-
ion (1). As an emerging technology, implementation of 3He
maging can be expensive and is currently available at a
mall number of centers. However, the problems of cost and
ccess may be addressed by the distribution of polarized gas
rom a central production facility to a large geographic
egion (24) and by the advent of new clinical whole body
canners capable of multinuclear imaging.

mage registration
Quantification of registration accuracy is a difficult prob-

em. In this study, a measure of overlap is used to provide
measure of registration accuracy. With improved image

uality it may become possible to also quantify the regis-
ration using anatomic landmarks. Across all 6 patients there
as a variable pattern of registration accuracy measured by

he overlap coefficient (Fig. 3). However, 3He-MRI and CT
ere registered with sufficient accuracy to enable function-

lly guided IMRT planning (median overlap, 89%; range,
2–97%). For Patients 1 and 3, registration accuracy de-
reased toward the apex of the lungs. For Patient 2, the
ccuracy dipped toward the middle of the lung. Similarly, a
mall decrease was observed for Patient 4, but otherwise
ccuracy was consistently high as was the case for Patient 5.
or Patient 6, registration accuracy improved from lower to
pper lung.
The example fused images in Fig. 2 were created using a

igid transformation, which is the most commonly used
ethod of image registration. However, there are a number

f potential limitations with this approach when applied to
ung. First, the 3He-MRI and CT images were acquired with
ifferent breathing schemes. Treatment at our institution is
lanned on CT acquired while the patient is breathing
reely. However, 3He-MRI necessitates the use of a breath-
old, and this difference could lead to differences in lung

orphology between the two sets of images. Furthermore, f

REFEREN

2004;52:673–678.
he coil used for 3He-MRI precludes the simulation of
reatment position while acquiring the ventilation images.
onsidering the potential problems in this initial study, the
pplication of rigid registration of 3He-MRI and CT was
romising because it was possible to register the edges of
entilation images with reasonable accuracy as quantified
y the overlap coefficient. Improvements to the methodol-
gy, such as the use of ventilation and perfusion 3He-MRI
4), breath-hold CT, treatment position 1H MRI, and non-
igid registration (25, 26) are being explored in a follow-up
tudy that is currently underway.

reatment planning
Image registration of the ventilation 3He-MRI to CT

nabled the functional lung to be taken into account when
reatment planning with IMRT, and all plans satisfied the
pinal cord dose constraint. When minimizing the dose to
otal lung (Plan A), V20 (median, 25%; range, 12–31%) was
omparable to other reported values, such as those reported
y Murshed et al. (19) (median, 25%; range, 13–43%).
In all patients, optimizing with the aim of reducing V20

or functional lung (Plan B) reduced V20 not only for func-
ional lung (median reduction, 3.1%; range, 0.4–5.1%; Wil-
oxon p � 0.028) but also for total lung volume (median
eduction, 1.6%; range, 0.2–3.7%; Wilcoxon p � 0.028).
unctional lung dose was also improved in all patients
median reduction, 0.9 Gy; range, 0.1–2.3 Gy; Wilcoxon p

0.028), and an improvement in plan quality index,

PTV95/V20, was achieved across all 6 patients when opti-
izing to only functional lung (median increase, 0.45;

ange, 0–6; Wilcoxon p � 0.043). The differences in con-
ormity index were less consistent: Patients 1, 3, and 5
howed an improved degree of dose conformity to the PTV,
hereas the other 3 patients had a less well conformed
igh-dose region. In the patients for whom CI was better
hen the total lung was included in the optimization, the

mproved conformity was a result of a lower volume of
ormal tissue receiving 95% of the prescription dose.

CONCLUSIONS

This study has demonstrated that hyperpolarized 3He-
RI can be registered to radiotherapy planning CT. Using

he information provided by the registered 3He images,
tatistically significant improvements to functionally guided
MRT plans were demonstrated for the V20 for the total and
unctional lung, in addition to the mean lung dose to the

unctional lung.
CES
1. van Beek EJ, Wild JM, Kauczor HU, et al. Functional MRI of
the lung using hyperpolarized 3-helium gas. J Magn Reson
Imaging 2004;20:540–554.

2. Wild JM, Woodhouse N, Paley MN, et al. Comparison be-
tween 2D and 3D gradient-echo sequences for MRI of human
lung ventilation with hyperpolarized 3He. Magn Reson Med
3. Moller HE, Chen XJ, Saam B, et al. MRI of the lungs using
hyperpolarized noble gases. Magn Reson Med 2002;47:
1029–1051.

4. Wild JM, Fichele S, Woodhouse N, et al. 3D volume-localized
pO2 measurement in the human lung with 3He MRI. Magn
Reson Med 2005;53:1055–1064.
5. Rodrigues G, Lock M, D’Souza D, et al. Prediction of radia-



1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

281Lung IMRT with 3He MRI ● R. H. IRELAND et al.
tion pneumonitis by dose-volume histogram parameters in
lung cancer: A systematic review. Radiother Oncol
2004;71:127–138.

6. Christian JA, Partridge M, Nioutsikou E, et al. The incorpo-
ration of SPECT functional lung imaging into inverse radio-
therapy planning for non-small cell lung cancer. Radiother
Oncol 2005;77:271–277.

7. Miften MM, Das SK, Su M, et al. Incorporation of functional
imaging data in the evaluation of dose distributions using the
generalized concept of equivalent uniform dose. Phys Med
Biol 2004;49:1711–1721.

8. Seppenwoolde Y, Engelsman M, De Jaeger K, et al. Optimiz-
ing radiation treatment plans for lung cancer using lung per-
fusion information. Radiother Oncol 2002;63:165–177.

9. Marks LB, Munley MT, Spencer DP, et al. Quantification of
radiation-induced regional lung injury with perfusion imaging.
Int J Radiat Oncol Biol Phys 1997;38:399–409.

0. Stavngaard T, Sogaard LV, Mortensen J, et al. Hyperpolarised
3He MRI and 81mKr SPECT in chronic obstructive pulmo-
nary disease. Eur J Nucl Med Mol Imaging 2005;32:448–457.

1. Ward ER, Hedlund LW, Kurylo WC, et al. Proton and hyper-
polarized helium magnetic resonance imaging of radiation-
induced lung injury in rats. Int J Radiat Oncol Biol Phys
2004;58:1562–1569.

2. Marks LB, Sherouse GW, Munley MT, et al. Incorporation of
functional status into dose-volume analysis. Med Phys 1999;
26:196–199.

3. Hong C, Leawoods JC, Yablonskiy DA, et al. Feasibility of
combining MR perfusion, angiography, and 3He ventilation
imaging for evaluation of lung function in a porcine model.
Acad Radiol 2005;12:202–209.

4. Rizi RR, Saha PK, Wang B, et al. Co-registration of acquired
MR ventilation and perfusion images—validation in a porcine
model. Magn Reson Med 2003;49:13–18.

5. Woodhouse N, Fichele S, van Beek EJ, et al. A fiducial system
for hyperpolarized 3He/1H MRI image registration [Abstract].
Presented at the UK Radiological Congress; 6–8 June 2004;
Manchester, UK.

6. Das SK, Miften MM, Zhou S, et al. Feasibility of optimizing

the dose distribution in lung tumors using fluorine-18-fluoro-
deoxyglucose positron emission tomography and single
photon emission computed tomography guided dose prescrip-
tions. Med Phys 2004;31:1452–1461.

7. Marks LB, Spencer DP, Bentel GC, et al. The utility of
SPECT lung perfusion scans in minimizing and assessing the
physiologic consequences of thoracic irradiation. Int J Radiat
Oncol Biol Phys 1993;26:659–668.

8. Munley MT, Marks LB, Scarfone C, et al. Multimodality
nuclear medicine imaging in three-dimensional radiation treat-
ment planning for lung cancer: Challenges and prospects.
Lung Cancer 1999;23:105–114.

9. Murshed H, Liu HH, Liao Z, et al. Dose and volume reduction
for normal lung using intensity-modulated radiotherapy for
advanced-stage non-small-cell lung cancer. Int J Radiat Oncol
Biol Phys 2004;58:1258–1267.

0. Woodhouse N, Wild JM, Paley MN, et al. Combined helium-
3/proton magnetic resonance imaging measurement of venti-
lated lung volumes in smokers compared to never-smokers. J
Magn Reson Imaging 2005;21:365–369.

1. Saunders M, Dische S, Barrett A, et al. Continuous hyperfrac-
tionated accelerated radiotherapy (CHART) versus conven-
tional radiotherapy in non-small-cell lung cancer: A random-
ised multicentre trial. CHART Steering Committee. Lancet
1997;350:161–165.

2. Bragg CM, Conway J, Robinson MH. The role of intensity-
modulated radiotherapy in the treatment of parotid tumors. Int
J Radiat Oncol Biol Phys 2002;52:729–738.

3. van Beek EJ, Wild JM, Fink C, et al. MRI for the diagnosis of
pulmonary embolism. J Magn Reson Imaging 2003;18:627–
640.

4. Wild JM, Schmiedeskamp J, Paley MN, et al. MR imaging of
the lungs with hyperpolarized helium-3 gas transported by air.
Phys Med Biol 2002;47:N185–N190.

5. Barber DC. Efficient nonlinear registration of 3D images
using high order co-ordinate transfer functions. J Med Eng
Technol 1999;23:157–168.

6. Ireland RH, Wood SM, Metherall P, et al. Feasibility of
non-linear image registration for radiotherapy treatment plan-
ning with gamma camera PET [abstract]. Nucl Med Commun

2004;25:318.


	FEASIBILITY OF IMAGE REGISTRATION AND INTENSITY-MODULATED RADIOTHERAPY PLANNING WITH HYPERPOLARIZED HELIUM-3 MAGNETIC RESONANCE IMAGING FOR IMAGING FOR NON–SMALL-CELL LUNG CANCER
	INTRODUCTION
	Radiation pneumonitis
	Treatment planning with SPECT
	3He-MR image registration
	IMRT planning

	METHODS AND MATERIALS
	NSCLC patients
	Image acquisition
	Image registration
	IMRT planning

	RESULTS
	NSCLC patients
	Image registration
	Lung phantom
	3 He-MR and 1 H-MR
	He-MR and planning CT
	Fiducial markers

	IMRT planning

	DISCUSSION
	Image registration
	Treatment planning

	CONCLUSIONS
	Acknowledgments
	REFERENCES


