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Representation and Integration: Combining Robot
Control, High-Level Planning, and Action Learning

Ronald Petrick1, Dirk Kraft2, Kira Mourão1, Christopher Geib1, Nicolas Pugeault1,,2
Norbert Krüger2, and Mark Steedman1

Abstract. We describe an approach to integrated robot control,
high-level planning, and action effect learning that attempts to over-
come the representational difficulties that exist between these diverse
areas. Our approach combines ideas from robot vision, knowledge-
level planning, and connectionist machine learning, and focuses on
the representational needs of these components. We also make use of
a simple representational unit called an instantiated state transition
fragment (ISTF) and a related structure called an object-action com-
plex (OAC). The goal of this work is a general approach for inducing
high-level action specifications, suitable for planning, from a robot’s
interactions with the world. We present a detailed overview of our
approach and show how it supports the learning of certain aspects of
a high-level representation from low-level world state information.

1 INTRODUCTION AND MOTIVATION
The problem of integrating low-level robot systems with high-level
symbolic planners introduces significant representational difficulties
that must first be overcome. Since the requirements for robot-level
control and vision tend to be different from that of traditional plan-
ning, neither representation is usually sufficient to accommodate the
needs of an integrated system. Overcoming these representational
differences is a necessary challenge, however, since both levels seem
to be required to produce human-like behaviour.

In general, robot systems tend to use representations based on vec-
tors of continuous values, which denote 3D spatial coordinates, joint
angles, force vectors, or other world-level features that require real-
valued parameters [20]. Such representations allow system builders
to succinctly specify robot behaviour since most of the computa-
tions required for low-level robot control are effectively captured
as continuous transforms of continuous vectors over time. On the
other hand, high-level planning systems typically use representations
based on discrete, symbolic models of objects, properties, and ac-
tions, described in logical languages (e.g., [5, 23, 16, 27, 31]). In-
stead of modelling low-level continuous processes, these representa-
tions capture the dynamics of the world or the agent’s knowledge at
a more abstract level, for instance by characterizing the state changes
that result from deliberate, planned action.

In this paper we describe an approach for integrating a robot/vision
system with a high-level planner, that attempts to overcome the rep-
resentational challenges described above. In particular, our approach
gives rise to a system that is capable of automatically inducing certain
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aspects of a high-level representation suitable for planning, from the
robot’s interactions with the real world using basic “reflex” actions.
This paper describes work currently in progress. As such, we do not
address the entire problem of learning action representations, but in-
stead focus on two important parts: object learning and action effect
learning. Our approach uses a simple representational unit called an
instantiated state transition fragment (ISTF) and a related structure
called an object-action complex (OAC) [7], both of which arise nat-
urally from the robot’s interaction with the world—and world ob-
jects in particular. These notions also help us address certain control
problems, for instance the relationship between high-level sensing
actions and their execution by the robot, and representational issues
that arise at different levels of our system. Although we only con-
sider a portion of a larger learning problem, we are also interested
in implementing these ideas within a framework that includes the
lowest-level control mechanisms right up to the high-level reason-
ing components. Finally, we believe our approach is general and that
these ideas can be successfully transferred to other robot platforms
and planners, with capabilities other than those we describe here.

To illustrate our approach, we will consider a simple robot ma-
nipulation scenario throughout this paper. This domain consists of
a robot with a gripper, a table with a number of objects on it, and
a “shelf” (a special region of the table). The robot has a camera to
view the objects in the world but does not initially have knowledge
of those objects. Instead, world knowledge must be provided by the
vision system, the robot’s sensors, and the basic action reflexes built
into the robot controller. The robot is given the task of clearing the
objects from the table by placing them on the shelf. The shelf has
limited space so the objects must be stacked in order for the robot
to successfully complete the task. For simplicity, each object is as-
sumed to be roughly cylindrical in shape and has a “radius” which
provides an estimate of its size. An object A can be stacked into an
object B provided the radius of A is less than that of B, and B is
an “open” object. Unlike a standard blocks-world scenario, the robot
will not have complete information about the state of the world. In
particular, we will often consider scenarios where the robot does not
know whether an object is open or not and must perform a test to de-
termine an object’s “openness”. The robot will also have a choice of
four different grasping types for manipulating objects in the world.
Not all grasp types can be used on every object, and certain grasp
types are further restricted by the position of an object relative to
other objects in the world. The set of available grasp types is shown
in Figure 1. Finally, actions in this domain can fail during execution
and the robot’s sensors may return noisy data.

The rest of the paper presents an overview of our approach from
a representational point of view, and discusses the main components
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(a) Grasp A (b) Grasp B (c) Grasp C (d) Grasp D

Figure 1. Available grasping types in the robot manipulation scenario

of our system. In Section 2 we describe the basic representations
used in the paper. In Section 3 we discuss how object information is
discovered from the robot/vision system’s initial experiences in the
world. In Section 4 we describe the high-level planner and plan exe-
cution monitor. In Section 5 we introduce a mechanism for learning
the effects of actions from state descriptions. In Section 6 we discuss
the current state of implementation in our system and some early
empirical results. Finally, in Section 7 we discuss the advantages of
our approach from a representation point of view, and describe some
areas of future work.

2 BASIC REPRESENTATIONS
At the robot/vision level, the system has a set Σ of sensors, Σ =
{σ1, σ2, . . . , σn}, where each sensor σi returns an observation obs(σi)
about some aspect of the world. The execution of a robot-level mo-
tor program or robot action may cause changes to the world which
can be observed through subsequent sensing. Each motor program
is typically executed with respect to particular objects in the world.
We assume that the robot/vision system does not initially know about
any objects and, thus, can’t execute many motor programs. Instead,
the robot has a set of basic reflex actions that aren’t dependent on
particular objects and can be used for exploring the world initially.

The planning level representation is based on a set of fluents,
f1, f2, . . . , fm: first-order predicates and functions that denote par-
ticular qualities of the world, robot, and objects. Fluents represent
high-level (possibly abstract) counterparts of some of the proper-
ties the robot is capable of sensing. In particular, the value of a flu-
ent is a function of the observations returned by the sensor set, i.e.,
fi = Γi(Σ). Typically, each fluent depends on a subset of the sensor
observations and not every sensor need map to a fluent (some sensors
are only used at the lower control level). Fluents can also be parame-
terized by high-level versions of the objects known at the robot level.

A state is a snapshot of the values of all instantiated fluents at some
point during the execution of the system. States represent a point
of intersection between the low-level and high-level representations,
since states are induced from a set of sensor observations and the
corresponding sensor/fluent mappings (i.e., the functions Γi). High-
level actions represent abstract versions of some of the robot’s motor
programs. Since all actions must ultimately be executed by the robot,
each action is decomposable to a fixed set of motor programs.3 Thus,
the robot’s interaction with the world can be viewed as a simple state
transition system: the robot’s sensor observations give rise to a state
description; executing an action brings about changes in the world
that can be observed through subsequent sensing. More importantly,
every interaction of this form provides the robot with an opportunity

3 We do not focus here on the problem of learning high-level action schema
(i.e., the set of action names and their parameters) or the action/motor pro-
gram mappings. Instead, we assume that the action schema are provided
with the corresponding mappings to robot-level motor programs.

to observe a small portion of the world’s state space, which we refer
to as an instantiated state transition fragment (ISTF) [7].

Formally, an ISTF is a tuple 〈si,mpj, objmp j
, si+1〉, where si is the

state that is sensed before applying the motor program instance mpj,
objmp j

is the object that the motor program is defined relative to, and
si+1 is the state sensed after executing the motor program. Thus, an
ISTF is a situated pairing of an object and an action that captures
a small fragment of the world’s state transition function. The states
si and si+1 contain snapshots of the robot’s information about these
states, some of which may be irrelevant to the action being applied.

We will also consider a second representational structure that re-
sults from generalising over instances of ISTFs. Such structures are
referred to as object-action complexes (OACs) [7], and are similar
to ISTFs, but contain only the relevant instantiated state information
needed to predict the applicability of an action and its effects, with
all irrelevant information pruned away. An OAC is defined by a tu-
ple of the form 〈Si,MPj,Objk, Si+1〉, where Si and Si+1 are two states,
MPj is a set of motor programs, and Objk is a class of objects. In this
case, Si only describes those properties of the world state that are re-
quired to execute any of the motor programs in MPj, when acting on
an object of class Objk. S i+1 describes a world state which captures
the properties changed by the motor program.

Typically, we consider ISTFs and OACs formed from partial state
descriptions. Such descriptions arise since the robot is not always
able to sense the status of all objects and properties of the world (e.g.,
occluded or undiscovered objects). We also note that the robot’s sen-
sors may be noisy and, thus, there is no guarantee that state reports
only contain correct information. Furthermore, certain sensor oper-
ations have associated resource costs (e.g., time, energy, etc.). For
instance, the robot can perform a test to determine whether an object
is open by “poking” the object to check its concavity. Such opera-
tions are only initiated on demand at the discretion of the high-level
planning system.

3 VISION-BASED OBJECT DISCOVERY

The robot system includes a vision component based on an early
cognitive vision framework [15] which provides a scene representa-
tion composed of local 3D edge descriptors that outline the visible
contours [26]. Because the system initially lacks knowledge of the
objects that make up the scene, the visual representation is unseg-
mented: descriptors that belong to one object are not explicitly dis-
tinct from the ones that belong to other objects, or the background.

To aid in the discovery of new objects, the robot is equipped with
a basic reflex action [1] that is elicited by specific visual feature com-
binations in the unsegmented world representation. The outcome of
these reflexes allows the system to gather knowledge about the scene,
which is used to segment the visual world into objects and identify
basic affordances. We consider a reflex where the robot tries to grasp
a planar surface in the scene. Each time the robot executes such a
reflex, haptic information allows the system to evaluate the outcome:
either the grasp was successful and the gripper is holding something,
or it failed and the gripper simply closed. A failed attempt forces the
system to reconsider its original assumptions, whereas a successful
attempt confirms the feasibility of the reflex. Once a successful grasp
is performed, the robot gains physical control over this part of the
scene. If we assume that the full kinematics of the robot’s arm are
known (which is true for industrial robots), then it is possible to seg-
ment the grasped object from the rest of the visual world as it is the
only part that moves synchronously with the robot’s arm.

With physical control, the system visually inspects an object from



a variety of viewpoints and builds a 3D representation [13]. Features
on the object are tracked over multiple frames, between which the ob-
ject moves with a known motion. If features are constant over a series
of frames they become included in the object’s representation, other-
wise they are assumed not to belong to the object. (A more detailed
description of the accumulation process can be found in [13].) The
final description is labelled and recorded as an identifier for a new
object class, along with the successful reflex (now a motor program).
Using this new knowledge, the system then reconsiders its interpre-
tation of the scene: using a representation-specific pose estimation
algorithm [3] all other instances of the same object class are identi-
fied and labelled. By repeating this process, the system constructs a
representation of the world objects, as instances of symbolic classes
that carry basic affordances, i.e., particular reflex actions that have
been successfully applied to grasp objects of this class.

The technical implementation of the pose estimation algorithm has
only recently become available. Prior to this, a circle detection algo-
rithm was developed to recognise cylindrical objects, to which the
domain was restricted for this work. Four grasp templates were used
to define the primitive reflex actions in an object-centric way (where
concrete grasps were generated based on the object pose). Although
this approach negates the need for the general pose estimation algo-
rithm, the conclusions drawn from experiments in this limited sce-
nario are still easily transferable to the general case.

Figure 2 illustrates the “birth of an object.” In (a), the dots on the
image show the predicted structures. Both spurious primitives, parts
of the background that are not confirmed by the image, and the con-
firmed predictions are shown. In (b), the shape model learned from
the object in (a) is shown. In (c) and (d), two additional objects are
shown along with their learned shape models. The “gap” in the shape
models corresponds to where the robot’s gripper held the objects.

The object-centric nature of the robot’s world exploration process
has immediate consequences for the high-level representation. First,
newly discovered objects are reported to the planning level and added
to its representation. At the planning level, objects are simply la-
bels while the real-world object information is stored at the robot
level. Such a representation means that we can avoid certain types
of real-valued information at the high level (e.g., 3D location coordi-
nates, object orientation vectors, etc.) and instead refer to objects by
their labels (e.g., obj1 may denote a particular red cup on the table).
With the addition of new objects, the planning system can immedi-
ately start using such objects in its reasoning and plan construction.
Since we assume that object names do not change over time, high-
level object labels act as indices into the low-level object representa-
tion. Thus, plans with object references will be understandable to the
robot/vision system. Finally, the successful identification of new ob-
jects will cause the robot/vision system to start sending regular state
updates to the planning level about these objects and their proper-
ties. In particular, the ISTFs that result from subsequent interactions
with the world will contain state information about these objects, pro-
vided they can be sensed by the robot. The planning level can then
use this information for plan construction and plan execution moni-
toring. Additional details about the link between the robot/vision and
planning systems are given in Section 6.

4 PLAN GENERATION AND MONITORING

The high-level planner is responsible for constructing plans that di-
rect the behaviour of the robot in order to achieve a set of goals.
For instance, in our example domain a plan might be constructed to
clear all “open” objects from the table. Plans are built using PKS

(“Planning with Knowledge and Sensing”) [24, 25], a knowledge-
level conditional planner that can operate with incomplete informa-
tion and high-level sensing actions. Like other symbolic planners,
PKS requires a goal, a description of the initial state, and a list
of the available actions before it can construct plans. Unlike tradi-
tional approaches, PKS operates at the knowledge level by modelling
the agent’s knowledge state, rather than the world state. By doing
so, PKS can reason efficiently about certain types of knowledge,
and make effective use of non-propositional features, like functions,
which often arise in real-world scenarios.

PKS is based on a generalization of STRIPS [5]. In STRIPS, a sin-
gle database represents the world state. Actions update the database
in a way that corresponds to their effects on the world. In PKS, the
planner’s knowledge state is represented by five databases, each of
which stores a particular type of knowledge. Actions are described
by the changes they make to the database set and, thus, to the plan-
ner’s knowledge state. PKS also supports ADL-style conditional ac-
tion effects [23].

Using PKS’s representation language, we can formally model the
example robot scenario by describing the objects, properties, and ac-
tions that make up the planning level domain. As we described above,
objects at the planning level are simply labels that denote actual ob-
jects in the world identified by the robot/vision system.

High-level domain properties are defined by sets of logical fluents,
i.e., predicates and functions that denote particular qualities of the
world, robot, and objects. For instance, to model the example object
manipulation scenario we include fluents such as:

• open(x): object x is open,
• gripperempty: the robot’s gripper is empty,
• ingripper(x): object x is in the gripper,
• ontable(x): object x is on the table,
• isin(x, y): object x is stacked in object y,
• reachableX(x): object x is reachable using grasp type X, and
• radius(x) = y: the radius of object x is y,

among others. While most high-level properties tend to abstract the
information returned by a set of sensors at the robot level, some
properties correspond more closely to individual sensors (e.g., grip-
perempty closely models a low-level sensor that detects whether the
robot’s gripper can be closed without contact, while ontable requires
data from a set of visual sensors concerning object positions).

High-level actions represent counterparts to some of the motor
programs available at the robot level. For instance, in the example
scenario the planner has access to actions like:

• graspA-stack(x): grasp object x from a stack using grasp type “A”,
• graspA-table(x): grasp x from the table using grasp A,
• putInto-object(x, y): put object x into an object y on the table,
• putAway(x): put x away on the shelf, and
• findout-open(x): determine whether x is open or not,

among others. Some actions like “grasp A” are divided into two ac-
tions to account for different object configurations, however, the mo-
tor programs that implement these actions do not necessarily make
such distinctions. Furthermore, the object-centric nature of the plan-
ning actions means that they do not require 3D coordinates, joint
angles, or similar real values but, instead, include parameters that
can be instantiated with specific objects. Actions also exist for other
grasping options (B, C, and D) available at the robot level. Actions
like findout-open are high-level sensing actions that direct the robot
to gather information about the world state that is not normally pro-
vided to the planner as part of its regular state updates.



Figure 2. Birth of the object

Table 1. Examples of PKS actions in the object manipulation domain

Action Preconditions Effects
graspA-table(x) K(clear(x)) add(Kf , ingripper(x))

K(gripperempty) add(Kf ,¬gripperempty)
K(ontable(x)) add(Kf ,¬ontable(x))
K(reachableA(x))
K(radius(x) ≥ minA)
K(radius(x) ≤ maxA)

findout-open(x) ¬Kw(open(x)) add(Kw, open(x))
K(ontable(x))

Actions in PKS are described by their preconditions and effects.
An action’s preconditions specify the domain properties that must
hold for an action to be applied, while an action’s effects encode the
changes made to the domain properties as a result of executing the
action. Table 1 shows two PKS actions from the example domain.
Here, Kf refers to a database that models the planner’s knowledge of
simple facts, while Kw is a specialized database that stores the results
of sensing actions that return binary information. An expression like
K(φ) denotes a knowledge-level query that intuitively asks “does the
planner know φ to be true?”

Given a goal, initial state description, and action list, the plan-
ner can build plans that are executable on the robot platform. We
currently provide an interface that allows a human user to specify
a high-level goal directly to the planning system. Initially, the plan-
ner does not know anything about the state of the world. After the
robot/vision system performs its early exploration process and be-
gins to produce ISTFs, an initial state description is generated and
supplied to the planner automatically with information about newly
discovered objects and their sensed properties, described in terms
of the high-level fluents. Since PKS can model an agent’s incom-
plete knowledge, the predicate and function instances in the initial
state are treated as known state information, with all other state in-
formation considered to be unknown. We currently assume that the
action schema are supplied to the planner as input, as are the map-
pings from high-level actions to low-level robot motor programs. (In
Section 5 we consider how high-level action effects can be learned
directly from state information.)

For instance, if we consider the situation in the example domain
where two unstacked and open objects obj1 and obj2 are on a ta-
ble, the planner can construct a simple plan using the above domain
encoding to achieve the goal of clearing the table:

[graspD-table(obj1),
putInto-object(obj1, obj2),
graspB-table(obj2),
putAway(obj2) ].

(1)

In this plan, obj1 is grasped from the table and put it into obj2, before
the stacked objects are grasped and removed to the shelf.

The planner can also build more complex plans by including sens-
ing actions. For instance, if the planner is given the goal of removing
the “open” objects from the table, but does not know whether obj1 is
open or not, then it can construct the conditional plan:

[findout-open(obj1),
branch(open(obj1))
K+ :

graspA-table(obj1),
putAway(obj1)

K− :
nil ].

This plan senses the truth value of open(obj1) and reasons about the
possible outcomes of this action by including branches in the plan: if
open(obj1) is true (the K+ branch) then obj1 is grasped and put away;
if open(obj1) is false (the K− branch) then no further action is taken.

To execute plans, the planning level interacts with the robot/vision
system. Actions are fed to the robot one at a time, where they are
converted into motor programs and executed in the world. A stream
of ISTFs is also generated, arising from the motor programs being
executed. Upon action completion the robot/vision level informs the
planner as to any world state changes (the final state of the last ISTF).

An essential component in this architecture is the plan execution
monitor, which assesses action failure and unexpected state informa-
tion to control replanning and resensing activities. In particular, the
difference between predicted and actual state information is used to
decide between (i) continuing the execution of an existing plan, (ii)



asking the vision system to resense a portion of a scene at a higher
resolution (in the hope of producing a more detailed state report),
and (iii) replanning from the unexpected state using the current state
report as a new initial planning state. The plan execution monitor
also has the important task of managing the execution of plans with
conditional branches, resulting from the inclusion of sensing actions.

When a high-level sensing action is executed at the robot level, the
results of the sensing are made available to the robot/vision system
in a subsequent ISTF, and passed to the planner as part of a state
update. In our example domain, sensing actions like findout-open al-
low the robot to use its lower-level object information to make more
informed decisions as to how such actions should best be executed
(e.g., for findout-open the robot could “poke” an object to determine
its openness). The plan execution monitor uses the returned informa-
tion to decide which branch of a plan it should follow, and feeds the
correct sequence of actions to the lower levels. If such information is
unavailable, resensing or replanning is triggered as above.

5 LEARNING ACTION REPRESENTATIONS

The planner is capable of constructing plans that direct the robot’s ac-
tions, in contrast to the reflex-based exploration of the world that the
robot must initially perform. This shift from undirected to directed
behaviour relies on an action specification that encodes the dynam-
ics of the world in which the robot operates. While we have described
how the robot/vision system is capable of generating ISTFs, the state
information encoded in such fragments contains information that is
both relevant and irrelevant to an action specification. The domain
information required for planning actions, however, is more like the
information found in a set of OACs, i.e., a generalization of the in-
formation in a set of ISTFs. Thus, presented with enough examples
of such state transitions, a learning procedure should be able to filter
out the irrelevant information and identify the necessary state infor-
mation required for OACs and planning operators.

Using machine learning techniques to learn action specifications
is not a new idea, and prior approaches have addressed this problem
using a variety of techniques. For instance, inductive learning [32]
and directed experimentation [8] have been applied to data repre-
sented in first-order logic, without noise or non-determinism. Other
approaches have used schema learning to learn probabilistic action
rules operating on discrete-valued sensor data [9]. Also, k-means
clustering of equivalence classes, followed by extraction of sensor
data features, has been used to train support vector machines (SVMs)
to predict deterministic action effects in a given context [4]. [18] pro-
poses a method of modelling actions by learning control laws that
change individual perceptual features of the robot’s world. Recently,
attention has shifted to methods which exploit relational structure in
order to improve speed and generalisation performance. [22] gener-
ates and refines rules using heuristic search, and shows that relational
deictic rules are learnt more effectively than propositional or purely
relational rules. [30] uses a logical inference algorithm to efficiently
learn rules in relational environments.

Our approach is based on a connectionist machine learning model,
namely kernel perceptron learning [2, 6]. This approach is particu-
larly useful for our task since it can be shown to provide good perfor-
mance, both in terms of training time and the quality of the models
that are learnt, making it an attractive choice for practical systems.

Learning the complete dynamics of a planning domain requires
the ability to learn both action preconditions and effects. Currently,
our learning mechanism only addresses the problem of learning ac-
tion effects, and the action schema and preconditions are supplied as

Input vector Corresponding action/property

0 graspA-table(obj1)
1 graspA-stack(obj1)
0 graspB-table(obj1)
0 graspC-table(obj1)
0 graspD-table(obj1)
0 putInto-object(obj1, obj2)

. . .


Actions

1 gripperempty
. . .

}
Object independent
properties

0 ontable
1 clear
0 isin-obj1
1 isin-obj2

. . .


Properties related
to grasped object (1)

1 ontable
0 clear
0 isin-obj1
0 isin-obj2

. . .


Properties related
to grasped object (2)

Figure 3. A binary input vector to the learning mechanism

input. Since an action’s effects determine the changes made to a state
during execution, the problem reduces to learning particular map-
pings between states. Furthermore, our current mechanism can only
learn standard STRIPS and ADL action effects, and is restricted to
relational state properties (i.e., no sensing actions or functions).

The input to the learning mechanism uses a vector representation
that encodes a description of the action being performed and the state
at which the action is applied. For each available action the vector in-
cludes an element that is set to 1 if the action is to be performed, or
0 otherwise. For states, we consider object-independent and object-
dependent properties separately. In the case of object-independent
properties (e.g., gripperempty), the vector includes an element for
each property, representing its truth value at the state being consid-
ered (1 = true, 0 = false). For object-dependent properties we con-
sider each property on a per object basis, and represent only those
properties of the objects directly involved in the action being applied,
and the objects related in some way to those objects. A form of deic-
tic representation is used (similar to [22]), where objects are specified
in terms of their roles in the action, or their roles in a property. Instead
of maintaining a “slot” in the input vector for each possible role, roles
are allowed to overlap. Thus, each object is represented by a set of
inputs, one for each object-specific predicate (e.g., ingripper), and
each relation with another object (e.g., isin). To bind relations to the
correct objects, extra predicates are used isin-obj1, isin-obj2, etc.).
This representation significantly reduces the number of inputs since
its size is dependent on the actions and relations between objects,
rather than the absolute number of objects in the world.

Overall, the input vector has the form: 〈actions, object-
independent properties, object slot 1 predicates, object slot 2 pred-
icates, . . . , object slot n predicates〉. Figure 3 shows one such input
vector for an action-state pair. In this case, the action performed is
graspA-stack. The “grasped object” properties are represented in the
object obj1 slot, while the “object below the grasped object” prop-
erties are represented in the object obj2 slot. Here, gripperempty,
clear(obj1), isin(obj1, obj2) and ontable(obj2) are true in the state,
since the corresponding bits are set to 1; all other bits are set to 0.

The output of the learning mechanism is a prediction of the prop-
erties that will change when the action is performed. The output is
also encoded as a binary vector, with each bit representing one prop-
erty of the state: the output value is 1 if the property changes and 0
if it does not. As with the input vector, object-independent properties



are represented by single elements, and object-specific properties are
represented on a per-object basis in slots. Overall, the output vec-
tor has the form: 〈object-independent properties, object slot 1 predi-
cates, object slot 2 predicates, . . . , object slot n predicates〉.

Using the above representation, the learning mechanism is tasked
with finding the association between action-precondition pairs and
their effects, i.e., rules of the form 〈A,PreA〉 → EffA. Currently, we
have focused on learning the effects of standard STRIPS and ADL
planning actions. Thus, all action effects involve either conjunctions
of predicates (in the case of STRIPS) or conjunctions of predicates
conditioned on other conjunctions of predicates (in the case of ADL).
As a result, it is sufficient to learn a rule for each effect predicate
separately and we can treat the learning problem as a set of binary
classification problems, one for each (conditional) effect predicate.

A classifier that is both simple and fast is the perceptron [28]. The
perceptron maintains a weight vector w which is adjusted at each
training step. The i-th input vector xi ∈ {0, 1}n in a class y ∈ {−1, 1}
is classified by the perceptron using the decision function f (xi) =
sgn(〈w · xi〉). If f (xi) is not the correct class then w is set to w+yx; if
f (xi) is correct then w is left unchanged. Provided the data is linearly
separable, the perceptron algorithm is guaranteed to converge on a
solution in a finite number of steps [21, 17]. Otherwise, the algorithm
oscillates, changing w at each misclassified input vector.

Since the problem of learning action effects is not linearly sepa-
rable in general, we adapt the perceptron algorithm by applying the
kernel trick [6]. By doing so, we implicitly map the input feature
space into a higher-dimensional space where the data is linearly sepa-
rable. Since the mapping is implicit, we avoid a massive expansion in
the number of features, which may make the problem computation-
ally infeasible. The kernel trick is applied by rewriting the decision
function in terms of the dot product of the input vectors:

f (xi) = sgn(〈w · xi〉) = sgn(
n∑

j=1

α jy j〈x j · xi〉),

where α j is the number of times the j-th example has been misclas-
sified by the perceptron. By replacing the dot product with a ker-
nel function k(xi, x j) which calculates 〈φ(xi) · φ(x j)〉 for some map-
ping φ, the perceptron algorithm can be run in higher dimensional
space without requiring the mapping to be explicitly calculated. An
ideal kernel is one which allows the perceptron algorithm to run over
the feature space of all conjunctions of features in the original in-
put space, allowing an accurate representation of the exact conjunc-
tion of features (action and preconditions) corresponding to a partic-
ular effect. In our case, the kernel k(x, y) = 2same(x,y) is used, where
same(x, y) is the number of bits with the same value in both x and y
[29, 10]. (See [19] for a more detailed discussion of this approach.)

6 INTEGRATION AND EMPIRICAL RESULTS
In this section we consider two separate interactions between the
components described above, forming part of the larger system we
are in the process of implementing (see Figure 4). In Section 6.1
we consider the link between the planning level and the robot/vision
level, and the execution of high-level plans on the robot platform.
In Section 6.2 we focus on the learning mechanism and the actions
that arise from the object manipulation scenario. Certain aspects of
our system, such as the plan execution monitor and the inclusion
of the learning mechanism within the larger system, are currently
under development and have not yet been fully implemented. The
robot/vision system forming the basis of our implementation con-
sists of an industrial 6 degrees of freedom robot with a two finger

Effectors
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Kernel
Perceptron

Sensors

Robot/Vision System

PKS

High−level Planning System

Execution
Monitor

World

Figure 4. System components and proposed/current interactions

grasper, a high resolution stereo camera system, and a haptic force-
torque sensor mounted between the robot and grasper, providing the
measurement of forces at the wrist.

6.1 Linking high-level plan generation with
robot/vision-level plan execution

From an integration point of view, the robot/vision system is cur-
rently linked directly to the planning level and we are experimenting
with plan generation and execution. Since the planner is not able to
handle raw sensor data as a state description, the low-level ISTFs
generated by the robot/vision system must be abstracted into a lan-
guage that is understandable by the planner. As a result, sensor data
is “wrapped” and reported to the planner in the form of “symbolic”
ISTFs with state representations that include predicates and func-
tions. Since our present focus is on object and action learning, we
have simply hard-coded the mappings between certain sensor com-
binations and the corresponding high-level properties.

For instance, some of the predicates used in the example manipu-
lation domain are computed as follows:

• ingripper, gripperempty: Initially the gripper is empty and the
predicate gripperempty is formed. As soon as the robot grasps
an object, and confirms that the grasp is successful by means
of the gripper not closing up to mechanical limits, the system
knows that it has the object in its hand and can form a predicate
ingripper(objX), using its visual information about discovered ob-
jects to identify the label objX corresponding to the object in the
gripper. A negated predicate ¬gripperempty is also generated, as
are negated ingripper instances for objects not in the gripper. Re-
leasing the object returns the gripper to an empty state again.

• reachableX : Based on the position of a circle forming the top of a
cylindrical object in the scene, as returned by the circle detection
algorithm, we can compute possible grasp positions (for the dif-
ferent grasp types) for each object. Using standard robotics path
planning methods we can then compute if there is a collision-free
path between the start position and the pose the gripper needs to
reach the object for a particular grasp.

• isin, clear, instack : These three predicates are computed based on
geometric reasoning. Since the object height is not known we can
only use the x, y-plane information. Furthermore the fact that ob-
jects with a bigger radius are lower in the stack is assumed. Ob-
jects whose centres (in the x, y-plane) are closer than 40mm are
selected as stack candidates. The sorted stack candidates can then
be checked for real inclusion using the circle centres and radii.



• open: We do not assume that all objects in the world are “open.”
Unlike the previous properties which can be determined directly
from ordinary sensor data, the robot must first perform an explicit
test in order to determine an object’s openness. In this case, the
robot gripper is used to “poke” inside the potential opening of
an object. If the robot encounters a collision where forces acting
upon the gripper are above a certain threshold, then the object is
assumed to be closed. Otherwise, we assume the object is open.
(We also envision a second, purely visual test for openness using
dense stereo, but this approach has not yet been implemented.)

After an initial exploration of its environment, the robot/vision
system provides the planner with a report of the current set of objects
it believes to be in the world, along with a (possibly partial) state re-
port of the sensed properties of those objects. Using this information
as its initial knowledge state, and the high-level action specification
described in Section 4, the planner attempts to construct a plan to
achieve the goal of clearing a set of objects from the table.

Once a plan has been generated, it is passed to the plan execu-
tion monitor which sends actions to the robot/vision level one step
at a time. At the robot level, a high-level action is decomposed into
a set of motor programs which are then executed by the robot in the
world. Currently, the mapping of actions to motor programs is pre-
programmed and supplied as part of the input to the system. During
the execution of low-level motor programs, a stream of ISTFs is gen-
erated and recorded by the robot/vision system. After an action has
been executed its success or failure is reported back to the plan ex-
ecution monitor, along with a new report on the state of the world
(the final state of the last ISTF). In our current implementation, the
plan execution monitor simply terminates the execution of a plan if
it encounters an unexpected state property, or a reported failure of an
action. Otherwise, it sends the next action to the robot for execution.
(No replanning or focused resensing is performed.) For instance, Fig-
ure 5 shows the robot executing the four-step plan described in (1) of
Section 4 for clearing the table. (The “shelf” in this case is a special
area at the side of the table.)

When a conditional plan with sensing actions is executed, the
plan execution monitor sends findout-open actions to the robot/vision
level like any other action. At the robot level, such an action is ex-
ecuted as the specific “poke” test described above to determine an
object’s openness. The results of this test are returned to the plan ex-
ecution monitor as part of the updated state report. The monitor then
uses this information to determine which branch of the conditional
plan it should follow. From the point of view of the robot, it will only
receive a sequential stream of actions and will be unaware of the con-
ditional nature of the plan being executed. Figure 6 shows the robot
testing the openness of two objects after receiving a sensing action
from the planning level. In (a), the test fails since the object is not
open; in (b) the test succeeds and the object is assumed to be open.

6.2 Learning STRIPS and ADL action effects in
the object manipulation domain

Separate from the above robot/vision-planner integration, we estab-
lished a preliminary link between the action effect learning mecha-
nism and the planner. In particular, we applied our learning procedure
to learn the effects of STRIPS and ADL planning actions, using data
simulated from the example object manipulation domain.

The learning mechanism was evaluated using data similar to the
ISTFs the robot/vision system is capable of producing. Both STRIPS
and ADL versions of the high-level actions were considered. (For ex-
ample, the two actions graspA-stack and graspA-table described in

(a) graspD-table(obj1) (b) putInto-object(obj1, obj2)

(c) graspB-table(obj2) (d) putAway(obj2)

Figure 5. Executing a high-level plan to clear a table

(a) Object is not open (b) Object is open

Figure 6. Testing the openness of an object

Section 4 were merged into a single ADL action, along with other
changes.) Sensing actions and references to functional fluents were
ignored. Two data sets were constructed to train and test the learn-
ing mechanism. Individual input vector instances were generated by
randomly selecting an action, and setting the inputs for the precondi-
tions required for the action to 1. The action input was set to 1, and
all other action inputs to 0. The remaining input bits were used to
create the two separate data sets. For the training data, half of the in-
puts in each instance were randomly set to 0 or 1, with the other half
all set to 0 (vice versa for the testing data). Outputs were set to 1 if a
state property changed as a result of the action and 0 if not. Thus, the
data used to train the learning mechanism incorporated the (strong)
assumptions that (i) all the necessary precondition information for
an associated action was included as part of an input vector, and (ii)
no spurious state changes was represented as part of an output vec-
tor. Noise was introduced in the irrelevant bits of the input vector,
however, only relevant changes were included in the corresponding
output vector.

The learning mechanism was evaluated over multiple test runs
using 3000 training and 500 testing examples. To determine an er-
ror bound on our results, 10 runs with different randomly generated
training and testing sets were used. (All testing was done on a 2.4
GHz quad-core system with 6 Gb of RAM. All times were measured
for Matlab 7.2.0.294.) The results of our testing are shown in Fig-



0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

Number of training examples

%
 e

rr
or

 

 
STRIPS (kernel perceptron)
STRIPS (standard perceptron)

(a) Average error rate for learnt STRIPS actions

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

Number of training examples

%
 e

rr
or

 

 
ADL (kernel perceptron)
ADL (standard perceptron)

(b) Average error rate for learnt ADL actions

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of training examples

tim
e 

(s
)

 

 

ADL

STRIPS

(c) Training time for STRIPS and ADL actions

0 500 1000 1500 2000 2500 3000

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84
x 10

−3

Number of training examples

tim
e 

(s
)

 

 

ADL

STRIPS

(d) Prediction time for STRIPS and ADL actions

Figure 7. Results from experiments in the object manipulation domain (from [19])

ure 7. (A more detailed analysis of these results and description of
our implementation can be found in [19].) In (a), the error rate for the
learnt STRIPS actions is shown, while (b) shows the error rate for the
ADL actions. In both cases, the average error dropped to less than 3%
after 700 training examples. The standard perceptron error rate, in-
cluded for comparison, shows significantly worse performance: over
5% error after 3000 training examples. In (c), the training time for
both STRIPS and ADL actions is shown (for 1 bit of the effect vec-
tor), while (d) shows the prediction time (for 1 bit of 1 prediction).

In practical terms, the learning mechanism was quite efficient, re-
quiring 0.035 seconds to train the system on 3000 examples and 1.84
× 10−3 seconds to test the system per output. For our particular ex-
ample domain, there was little difference between the training and
prediction times of STRIPS actions, compared with those for ADL
actions. (In general we expect performance on ADL domains will al-
ways take longer than STRIPS domains, particularly when the condi-
tional effect training examples are very dissimilar to the other train-
ing examples available.) Overall, the learning mechanism was able to
effectively abstract away the irrelevant information from the ISTFs to
produce a high-quality model of the action effects suitable for plan-
ning (at least for our current example domain).

7 DISCUSSION

From a representational point of view we have argued that ISTFs
and OACs, grounded from actions performed at the robot level, can
be viewed as the representational unit that underlies higher-level
representations of objects, properties, and actions (“representation
through integration”). As the low-level robot/vision system explores
the world, successful actions produce ISTFs; on the basis of multiple
experiences of particular ISTFs, OACs and high-level action models
can be learned. Although some aspects of our approach are currently
hard-coded (e.g., the action/motor program mappings), our learning
mechanisms are nevertheless able to abstract away from “irrelevant”
state information in the ISTFs to learn certain high-level OAC rela-
tionships from the robot’s interactions with the world.

The resulting representations also enable interesting interactions
between the components of the system (“integration through repre-
sentation”). For instance, the planner can ignore some details about
the execution of actions at the robot level (e.g., sensing actions like
findout-open) and can avoid making certain commitments that are
better left to the robot level (e.g., planning-level grasping actions are
unaware of low-level properties like object location, gripper orien-
tation relative to an object, etc.). Thus, we do not try to control all



aspects of robot behaviour at the planning level, but apply the plan-
ner’s strengths to problems it can more readily solve. (For instance,
PKS does not perform path planning but is more proficient at plan-
ning information-gathering operations.) As future work we are ex-
tending these ideas, for instance to allow the robot/vision system to
choose between a set of possible tests to perform when executing a
findout-open sensing action, while leaving the planning-level action
specification unchanged.

We have focused on two particular learning problems in this work:
object learning and action effect learning. As a result, we have
avoided addressing other learning problems (e.g., learning the low-
level sensor combinations that lead to particular high-level proper-
ties, or the mapping of high-level actions to low-level motor pro-
grams), which we leave to future work. Our focus on an implementa-
tion “from the world level to the knowledge level,” however, provides
us with a suitable testing framework for investigating such learning
challenges as well as new planning contexts. Moreover, we are also
interested in using this platform to explore other high-level learning
tasks such as language acquisition.

We must also improve the scalability of our approach and over-
come certain assumptions that are not realistic in real-world robotic
systems. For instance, the learning mechanism has mainly been
tested using state descriptions that are more “complete” than the
ISTFs the robot/vision system is likely to produce. One way we can
adapt our approach is by using a noise-tolerant variant of the per-
ceptron algorithm, such as adding a margin term [11]. We also be-
lieve these techniques can be applied to irrelevant output data (i.e.,
irrelevant state changes in the action effects), since such changes be-
have like noise. Additional work is needed to extend our approach
to more complex action representations, notably sensing actions and
functions. We also believe our approach can be extended to learn ac-
tion preconditions, provided it is possible to only represent a small
number of objects in the state at a time. An attentional mechanism
of some sort may be of help in this task [14]. Finally, although we
have tested our learning mechanism on simulated data from the same
domain used for the robot/vision-planner experiments, we are also
aiming to test our learning mechanism with online data generated di-
rectly from the robot/vision system. Additional work is also needed
to complete the remaining components of our system, most notably
the plan execution monitor.

Our approach for integrating a robot/vision system with a high-
level planner and action learning mechanism combines ideas from
robot vision, symbolic knowledge representation and planning, and
connectionist machine learning. The current state of our work high-
lights some significant interactions between the specific components
of our system, however, we believe our approach is much more gen-
eral and can be applied to other robot platforms and planners. (For in-
stance, we have recently begun work to test some of our components
and specifications on a humanoid robot platform.) The components
we describe in this paper form part of a larger project called PACO-
PLUS4 investigating perception, action, and cognition—combining
robot platforms with high-level representation and reasoning based
on formal models of knowledge and action [12].
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